Hello!

- I'm Chris Blake, your lecturer for the rest of semester
- We'll cover: fluid motion, thermal physics, electricity, revision
- MASH centre in AMDC 503-09.30-16.30 daily
- My consultation hours: Tues 10.30-12.30
- Wayne's consultation hours: Thurs 2.30-4.30
- cblake@swin.edu.au
- 0392148624

Fluid Motion

- Hydrostalicerequinonum and Pascal's Law
- Archimedes' Principle and Buoyancy
- Fluid Dynery cs
- Conservation of Mass: Continuity Equaiton
- Conservation of Energy: Bernoulli's Equation
- Applications ÓFFluid.Dymatios

A microscopic view

Liquid
Fluid
Incompressible

Gas
Fluid
compressible

What new physics is involved?

- Fluids can flow from place-to-place
- Their density can change if they are compressible (for example, gasses)
- Fluids are pushed around by pressure forces
- An object immersed in a fluid experiences buoyancy

Density

- The density of a fluid is the concentration of mass

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad \rho=\frac{\mathrm{m}}{V} \quad \text { Units are } \frac{\mathrm{kg}}{\mathrm{~m}^{3}}
$$

- Mass $=100 \mathrm{~g}=0.1 \mathrm{~kg}$
- Volume $=100 \mathrm{~cm}^{3}=10^{-4} \mathrm{~m}^{3}$
- Density $=1 \mathrm{~g} / \mathrm{cm}^{3}=1000 \mathrm{~kg} \mathrm{~m}^{3}$

The shown cubic vessels contain the stated matter. Which fluid has the highest density ?

1 kg of water at
$73^{\circ} \mathrm{C}$

Pressure

- Pressure is the concentration of a force - the force exerted per unit area

Greater pressure! (same force, less area)

Exerts a pressure on the sides and through the fluid

Pressure

Pressure $=\frac{\text { FORCE }}{\text { AREA }}$

FORCE

$$
p=\frac{F}{A}
$$

- Units of pressure are $\mathrm{N} / \mathrm{m}^{2}$ or Pascals $(\mathrm{Pa})-1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~Pa}$
- Atmospheric pressure $=1 \mathrm{~atm}=101.3 \mathrm{kPa}=1 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$

A What is responsible for the force which holds urban climber B in place when using suction cups.

1. The force of friction

2. Vacuum pressure exerts a pulling force
3. Atmospheric pressure exerts a pushing force
4. The normal force of the glass.

Hydrostatic Equilibrium

Application of hydraulic pressure

© 2013 Encyclopædia Britannica, Inc.

- Pressure differences drive fluid flow
- If a fluid is in equilibrium, pressure forces must balance
- Pascal's law: pressure change is transmitted through a fluid

Hydrostatic Equilibrium with Gravity

Fluid element

Derivation:

$$
\begin{gathered}
(P+d P) A-p A=m g \\
d P A=\rho A d h g \\
\frac{d P}{d h}=\rho g \\
P=P_{0}+\rho g h
\end{gathered}
$$

Pressure force on the bottom must be greater in order to
balance gravity.
Pressure in a fluid is equal to the weight of the fluid per unit area above it:

$$
P=P_{0}+\rho g h
$$

Consider the three open containers filled with water.

 How do the pressures at the bottoms compare?

1. $P_{A}=P_{B}=P_{C}$
2. $P_{A}<P_{B}=P_{C}$
3. $\boldsymbol{P}_{A}<\boldsymbol{P}_{B}<\boldsymbol{P}_{C}$
4. $\boldsymbol{P}_{B}<\boldsymbol{P}_{A}<P_{C}$
5. Not enough information

The three open containers are now filled with oil, water and honey respectively. How do the pressures at the bottoms compare?

1. $P_{A}=P_{B}=P_{C}$
2. $P_{A}<P_{B}=P_{C}$
3. $\boldsymbol{P}_{A}<\boldsymbol{P}_{B}<P_{C}$
4. $\boldsymbol{P}_{B}<\boldsymbol{P}_{A}<P_{C}$
5. Not enough information

Calculating Crush Depth of a Submarine

Q. A nuclear submarine is rated to withstand a pressure difference of 70 atm before catastrophic failure. If the internal air pressure is maintained at 1 atm , what is the maximum permissible depth ?

$$
\begin{aligned}
& P=P_{0}+\rho g h \\
& P-P_{0}=70 \mathrm{~atm}=7.1 \times 10^{6} \mathrm{~Pa} ; \rho=1 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3} \\
& h=\frac{P-P_{0}}{\rho g}=\frac{7.1 \times 10^{6}}{1 \times 10^{3} \times 9.8}=720 \mathrm{~m}
\end{aligned}
$$

Measuring Pressure

Q. What is height of mercury (Hg) at 1 atm ?

$$
\begin{gathered}
\rho_{H g}=13.6 \mathrm{~g} / \mathrm{cm}^{3} \\
P=P_{0}+\rho g h \rightarrow h=P / \rho g \\
h=\frac{1 \times 10^{5}}{1.36 \times 10^{4} \times 9.8}=0.75 \mathrm{~m}
\end{gathered}
$$

Atmospheric pressure can support a 10 meters high column of water. Moving to higher density fluids $p=p_{0}+\rho g h$ allows a table top barometer to be easily constructed.

Pascal's Law

- Pressure force is transmitted through a fluid
Q. A large piston supports a car. The total mass of the piston and car is 3200 kg . What force must be applied to the smaller piston?

Pressure at the same height is the same! (Pascal's Law)

$$
\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

$$
F_{1}=\frac{A_{1}}{A_{2}} m g=\frac{\pi \times 0.15^{2}}{\pi \times 1.20^{2}} \times 3200 \times 9.8=490 \mathrm{~N}
$$

Gauge Pressure

Gauge Pressure is the pressure difference from atmosphere. (e.g. Tyres)

$$
P_{a b s o l u t e}=P_{\text {atmosphere }}+P_{\text {gauge }}
$$

Archimedes' Principle and Buoyancy

Why do some things float and other things sink ?

Archimedes' Principle and Buoyancy

Objects immersed in a fluid experience a Buoyant Force!

The Buoyant Force is equal to the weight of the displaced fluid !

Archimedes' Principle and Buoyancy

The hot-air balloon
floats because the weight of air displaced
(= the buoyancy force)
is greater than the weight of the balloon

The Buoyant Force is equal to the weight of the displaced fluid !

Which of the three cubes of length l shown below has the largest buoyant force?

1. water
2. stone
3. wood
4. the buoyant force is the same
5. Not enough information

Example Archimedes' Principle and Buoyancy

Q. Find the apparent weight of a 60 kg concrete block when you lift it under water, $\rho_{\text {concrete }}=2200 \mathrm{~kg} / \mathrm{m}^{3}$

Interpret

Water provides a buoyancy force Apparent weight should be less Develop

$$
\begin{aligned}
\rho_{\text {con }} & =\frac{m}{V} \\
V & =\frac{m}{\rho_{\text {con }}}
\end{aligned}
$$

Evaluate

$$
\begin{aligned}
& F_{\text {net }}=m g-F_{b}=w_{\text {apparent }} \\
& F_{b}=m_{\text {disp water }} g=\rho_{\text {water }} V g \\
& w_{\text {app }}=m g-\frac{\rho_{\text {water }} m g}{\rho_{\text {con }}} \\
& w_{\text {app }}=m g\left(1-\frac{\rho_{\text {water }}}{\rho_{\text {con }}}\right) \\
&=60 \times 9.8 \times\left(1-\frac{1000}{2200}\right)=321 \mathrm{~N} \\
& \text { Assess }
\end{aligned}
$$

The Buoyant Force is equal to the weight of the displaced fluid.

Floating Objects

Q. If the density of an iceberg is 0.86 that of seawater, how much of an iceberg's volume is below the sea?

Buoyancy force $F_{B}=$ weight of water displaced

$$
\begin{gathered}
V_{\text {sub }}=\text { submerged volume } \\
F_{B}=m_{\text {water }} g=\rho_{\text {water }} V_{\text {sub }} g
\end{gathered}
$$

In equilibrium, $F_{B}=$ weight of iceberg

$$
F_{B}=m_{\text {ice }} g=\rho_{i c e} V_{i c e} g
$$

$$
\rho_{\text {water }} V_{\text {sub }} g=\rho_{\text {ice }} V_{\text {ice }} g \rightarrow \frac{V_{\text {sub }}}{V_{\text {ice }}}=\frac{\rho_{\text {water }}}{\rho_{\text {ice }}}=0.86
$$

A beaker of water weighs w_{1}. A block weighting w_{2} is suspended in the water by a spring balance reading $w_{0 \%}$. Does the scale read

1. w_{1}
2. $w_{1}+w_{2}$
3. $w_{1}+w_{3}$
4. $w_{1}+w_{2}-w_{3}$
scale

5. $w_{1}+w_{3}-w_{2}$
[182235405

Centre of Buoyancy

(a)

(b)

The Centre of Buoyancy is given by the Centre of Mass of the displaced fluid. For objects to float with stability the Centre of Buoyancy must be above the Centre of Mass of the object. Otherwise Torque yield Tip !

Fluid Dynamics

Laminar (steady) flow is where each particle in the fluid moves along a smooth path, and the paths do not cross.

Streamlines spacing measures velocity and the flow is always tangential, for steady flow don't cross. A set of streamlines act as a pipe for an incompressible fluid

Non-viscous flow - no internal friction (water OK, honey not)

Turbulent flow above a critical speed, the paths become irregular, with whirlpools and paths crossing. Chaotic and not considered here.

Conservation of Mass: The Continuity Eqn.

The rate a fluid enters a pipe must equal the rate the fluid leaves the pipe. i.e. There can be no sources or sinks of fluid.

Conservation of Mass: The Continuity Eqn.

Q. How much fluid flows across each area in a time Δt :

$$
\Delta m=\rho V_{1}=\rho A_{1} v_{1} \Delta t
$$

$$
\Delta m=\rho V_{2}=\rho A_{2} v_{2} \Delta t
$$

$$
\text { flow rate }: \frac{\Delta m}{\Delta t}=\rho A v \quad \text { continuity eqn : } \quad A_{1} v_{1}=A_{2} v_{2}
$$

Conservation of Mass: The Continuity Eqn.

Q. A river is 40 m wide, 2.2 m deep and flows at $4.5 \mathrm{~m} / \mathrm{s}$. It passes through a $3.7-\mathrm{m}$ wide gorge, where the flow rate increases to 6.0 m / s. How deep is the gorge?

$$
A_{1}=w_{1} d_{1}
$$

Continuity equation : $A_{1} v_{1}=A_{2} v_{2} \rightarrow w_{1} d_{1} v_{1}=w_{2} d_{2} v_{2}$

$$
d_{2}=\frac{w_{1} d_{1} v_{1}}{w_{2} v_{2}}=\frac{40 \times 2.2 \times 4.5}{3.7 \times 6.0}=18 \mathrm{~m}
$$

Conservation of Energy: Bernoulli's Eqn.

What happens to the energy density of the fluid if I raise the ends?

Energy per unit

$$
p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}=\text { const }
$$ volume

Total energy per unit volume is constant at any point in fluid.

$$
p+\frac{1}{2} \rho v^{2}+\rho g y=\text { const }
$$

Conservation of Energy: Bernoulli's Eqn.

Q. Find the velocity of water leaving a tank through a hole in the side 1 metre below the water level.

$$
P+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }
$$

At the top: $P=1 \mathrm{~atm}, v=0, y=1 \mathrm{~m}$
At the bottom: $P=1 \mathrm{~atm}, v=?, y=0 \mathrm{~m}$

$$
\begin{gathered}
P+\rho g y=P+\frac{1}{2} \rho v^{2} \\
v=\sqrt{2 g y}=\sqrt{2 \times 9.8 \times 1}=4.4 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Which of the following can be done to increase the flow rate out of the water tank ?

1. Raise the tank ($\uparrow \boldsymbol{H})$
2. Reduce the hole size

3. Lower the water level ($\downarrow \boldsymbol{h}$)
4. Raise the water level ($\uparrow \boldsymbol{h}$)
5. None of the above

Summary: fluid dynamics

Continuity equation: mass is conserved!
$\rho \times v \times A=$ constant
For liquids:
$\rho=$ constant $\rightarrow v \times A=$ constant
(Density ρ, velocity v, pipe area A)

Bernoulli's equation: energy is conserved!

$$
P+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }
$$

(Pressure P, density ρ, velocity v, height y)

Bernoulli's Effect and Lift

Newton's $3^{\text {rd }}$ law
$P+\frac{1}{2} \rho v^{2}+\rho g y=$ constant
(air pushed downwards)

Lift on a wing is often explained in textbooks by Bernoulli's Principle: the air over the top of the wing moves faster than air over the bottom of the wing because it has further to move (?) so the pressure upwards on the bottom of the wing is smaller than the downwards pressure on the top of the wing.

Is that convincing? So why can a plane fly upside down?

Chapter 15 Fluid Motion Summary

- Density and Pressure describe bulk fluid behaviour
- Pressure in a fluid is the same for points at the same height
- In hydrostatic equilibrium, pressure increases with depth due to gravity
- The buoyant force is the weight of the displaced fluid
- Fluid flow conserves mass (continuity eq.) and energy (Bernoulli's equation)
- A constriction in flow is accompanied by a velocity and pressure change.
- Reread, Review and Reinforce concepts and techniques of Chapter 15

Examples 15.1, 15.2 Calculating Pressure and Pascals Law
Examples 15.3, 15.4 Buoyancy Forces: Working Underwater + Tip of Iceberg
Examples 15.5 Continuity Equation: Ausable Chasm
Examples 15.6, 15.7 Bernoulli's Equation - Draining a Tank and Venturi Flow

