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Cosmological physics

What is “dark energy” ?

1) new, missing matter-
energy component

2) failure of the laws of 
gravity on cosmic scales

3) failure to correctly 
model inhomogeneity



Tests of large-scale gravity

• Can tests of G.R. be extended to cosmic scales?  
And can that yield insight into dark energy?



How fast are structures 
growing within it?

Probes of the cosmological model

How fast is the Universe 
expanding with time?



• Obtain complete cosmological information in the low-
z Universe, where dark energy dominates, to 
complement current and future high-z galaxy surveys

• Make a 1% measurement of the expansion parameter 
H0 using the baryon acoustic peak, enabling 
fundamental tests of the cosmological model

• Perform new tests of General Relativity across a range 
of scales using two complementary methods, galaxy 
peculiar velocities and redshift-space distortions

Full Taipan survey cosmology case



Baryon acoustic peak

• Standard ruler in galaxy clustering pattern which allows 
the mapping out of cosmic distances



• Standard ruler in galaxy clustering pattern which allows 
the mapping out of cosmic distances

• Calibrated in units of Mpc using CMB physics with 
accuracy of 1.1% [WMAP] , 0.3% [Planck]

• Application to a low-z survey measures H0

Baryon acoustic peak



Existing low redshift measurement!
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D(z=0.1) = 456 +/- 27 Mpc

H0 = 67.0 +/- 3.2 km s-1 Mpc-1

6dF Galaxy Survey



Why measure H0?

• Full Taipan survey will make ~1% H0 measurement

• Local expansion rate is a fundamental cosmic parameter 
(e.g. important for determining the age of the Universe)

• Assuming flat LCDM, Planck CMB constrains H0 to 
~1.5%, but this is a model-dependent result

• Independent determination of H0 can improve the 
measurement of other parameters (e.g. dark energy, 
neutrino numbers/masses)

• There are systematic discrepancies between CMB and 
local H0 measurements (Cepheids, masers, supernovae)



Why measure H0?

Planck Collaboration: Cosmological parameters
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Planck Collaboration: Cosmological parameters
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Planck results

Red : CMB only

Blue : CMB+BAO

• Planck determination of H0 is model-dependent



Weinberg et al. (2012)
• Assuming (w0, wa) model, 

1% H0 measurement adds 
about 40% to Stage III dark 
energy experiments [e.g. 
BOSS, DES, etc.]

• Adds very little to Stage IV 
experiments [e.g. LSST, 
SKA, etc.]

Figure 45 Dependence of the DETF FoM on the accuracy of additional measurements of the Hubble
constant for Stage III and IV forecasts from §8.3. The fiducial Stage IV program with FoM= 664
is marked by an open circle.

In Figure 45, we show the effect on the DETF FoM of adding a prior on H0 to the fiducial Stage
III and IV forecasts. In all cases, adding a prior with precision that matches the uncertainty one
would have in the absence of the prior increases the FoM by ∼ 40%. The uncertainties in other
parameters are affected little by the inclusion of an independent H0 measurement, as discussed in
§7.1.

For a more general dark energy parameterization such as the binned wi values, predictions
for σh can be orders of magnitude weaker than they are for w0–wa or ΛCDM (see Figs. 36–37).
In this case an independent, local measurement of H0 is vital for accurate determination of the
Hubble constant. However, H0 priors do not significantly improve dark energy constraints in this
case; an H0 constraint limits the range of w(z) in the lowest-redshift bin, but since w(z = 0) is
only weakly correlated with the equation of state at higher redshifts by SN, BAO, WL, and CMB
data, the impact of an additional H0 measurement on the equation of state at z > 0 is small.
The improvement in the DETF FoM in Fig. 45 is largely a consequence of the restrictions that
the w0–wa parameterization places on the evolution of w(z) between z = 0 and higher redshifts.
Of course, a discrepancy between directly measured H0 and a w0 − wa prediction would already
provide the crucial insight that w0 −wa is inadequate; it just wouldn’t give further direction about
the evolution of w(z).

8.5.2. The Alcock-Paczynski Test

For the AP test (§7.3), we consider the observableH(z)DA(z). Since Stage IV BAO data provide
tight constraints on both H(z) and DA(z), which are further strengthened by the SN, WL, and
CMB measurements, it is not surprising that the product H(z)DA(z) is predicted very precisely in
the combined forecasts. The left panel of Figure 46 shows that the uncertainty in the AP observable
is ∼ 0.2% at 0 < z < 3 for Stage IV data, and it is still predicted to sub-percent accuracy with Stage
III data. Independent measurements of the AP observable that are significantly less precise than

194

• H0 prior helps with measurements of dark energy

Adding H0 prior

Why measure H0?



Why measure H0?

• Local determinations of H0

Eclipsing binaries
(in LMC, 50 kpc)

Parallax (< 1 kpc)
Masers (NGC4258 at 7.6 Mpc)

Cepheids
(< 30 Mpc)

Supernovae
(z < 0.1)



Why measure H0?

• Discrepancies between Planck and local measurements



Why measure H0?

• Discrepancies could be systematic errors ...?

• ... or signatures of non-LCDM physics?

• ... or signature of gravitational physics driven by 
inhomogeneity / backreaction ?



Tests of large-scale gravity

• Is the growth rate of 
structure consistent 
with the cosmic 
expansion history?

• Is the gravitational 
physics of the 
homogeneous and 
inhomogeneous 
Universe consistent?

• Need to measure 
galaxy velocities ...



observer

infalling
galaxies

coherent
flowsvirialized

motions

• Can detect galaxy velocities statistically via redshift-
space distortion in galaxy redshift surveys

Measuring correlated galaxy velocities



4 Beutler et al.

Figure 2. The 2D correlation function of 6dFGS using a density
weighting with P0 = 1600h3 Mpc−3. For reasons of presentation
we binned the correlation function in 0.5h−1 Mpc bins, while in
the analysis we use larger bins of 2h−1 Mpc. Both redshift-space
distortion effects are visible: the “finger-of-God” effect at small
angular separation rp, and the anisotropic (non-circular) shape
of the correlation function at large angular separations.

There is a possible bias in the estimation of the correla-
tion function due to the fact that we estimate both the mean
density and the pair counts from the same survey. This leads
to a non-zero difference between the true correlation func-
tion estimate of an ensemble of surveys and the ensemble
average of ξ(s) from each survey. This is commonly known
as the integral constraint (e.g. Peebles 1980), which can be
calculated as (see e.g. Roche et al. 2002)

ic =

∑

ξmodelRR
∑

RR
(8)

and enters our correlation function estimate as

ξdata = ξ′data + ic, (9)

where ξ′data is the redshift-space correlation function from
eq. 5 and ξmodel is the model for the correlation function.
In 6dFGS ic is typically around 6 × 10−4 and so has no
significant impact on the final result.

In Figure 2 we show the 2D correlation function calcu-
lated from the 6dFGS dataset. In this Figure we use bins
of 0.5h−1 Mpc, while for the analysis later on we use larger
bins of 2h−1 Mpc (see Figure 6). The figure shows clearly
the two effects of redshift-space distortions which we will
discuss later in section 5, the “finger-of-God” effect at small
rp, and the linear infall effect at larger rp which gives the
correlation function a non-circular shape.

3.1 Density weighting

In Fourier space the error in measuring the amplitude of a
mode of the linear power spectrum1 is given by

σP (k) = (b+ fµ2)2P (k) + 〈N〉, (10)

where b is the linear bias, f is the growth rate, µ is the
cosine of the angle to the line of sight and P (k) is the matter
power spectrum. The first term on the right hand side of
this equation represents the sample-variance error, while the
second term (〈N〉) represents the Poisson error.

If the sample-variance error is dominant we can reduce
the power spectrum error by employing a weighting scheme
which depends upon the galaxy density n(z), such as the
one suggested by Feldman, Kaiser & Peacock (1994)

wi(z) =
1

1 + n(z)P0
, (11)

where P0 describes the amplitude of the weighting. A
stronger weighting (larger value of P0) yields a smaller
sample-variance error since it increases the survey volume
by up-weighting sparsely sampled regions. However, such a
weighting scheme also increases the Poisson error because it
shifts the effective redshift to larger values with a smaller
galaxy number density. This is illustrated in Figure 3(a)
and 3(b). Such a weighting scheme is standard for large scale
structure analyses.

In a magnitude-limited sample such as 6dFGS, up-
weighting higher redshift galaxies also has the effect of shift-
ing the galaxy bias to larger values. The sample-variance
error is proportional to the clustering amplitude, and so a
larger bias results in a larger error. However, the weight-
ing will still ensure that the relative error of the power
spectrum, σP (k)/P (k), is minimised. The redshift-space dis-
tortion signal is inversely proportional to the galaxy bias,
β $ Ωγ

m(z)/b. If weighting increases the bias b, it also re-
duces the signal we are trying to measure. We therefore must
investigate whether the advantage of the weighting (the re-
duced relative error) outweighs the disadvantage (increasing
galaxy bias).

The situation is very different for measuring a signal
that is proportional to the clustering amplitude, such as the
baryon acoustic peak. In this case the error and the sig-
nal are proportional to the bias, and so weighting will al-
ways be beneficial. We stress that an increasing bias with
redshift is expected in almost all galaxy redshift surveys.
Therefore redshift-space distortion studies should first test
whether galaxy weighting improves the measurement. The
6dF Galaxy Survey is quite sensitive to the weighting scheme
employed because it has a high galaxy density, making the
sample-variance error by far the dominant source of error.

Finally, we have to consider the correlation between the
bins in the measured power spectrum or correlation func-
tion. If the error is sample-variance dominated, the bins will
show large correlation (especially in the correlation func-
tion), while in the case of Poisson-noise dominated errors,
the correlation is much smaller. Weighting will always in-
crease the Poisson noise and hence reduce the correlation
between bins.

1 As the correlation function and power spectrum are related by
a Fourier transform, the following discussion also holds true for a
correlation function measurement.

c© 0000 RAS, MNRAS 000, 000–000

6dFGS: z ≈ 0 measurements of fσ8 and σ8 11
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Figure 7. The value of gθ(zeff ) = f(zeff )σ8(zeff ) as a function of
the cut-off scale rcutp , obtained by fitting the 6dFGS 2D correla-
tion function with two different models (as described in section 5.3
and 5.4). At large scales the two models converge to similar val-
ues, while on small scales the models deviate from each other
because of the different descriptions of non-linear evolution. For
the final parameter measurements in Table 1 we chose model 2,
ξSc(rp, π), with a conservative cut-off scale of rcutp = 16h−1 Mpc.
In the lower panel we plot the reduced χ2 as an indicator of the
quality of the fit.

We can also express our results in terms of β which
is given by β = gθ/gb = 0.373 ± 0.054. We summarise all
measured and derived parameters in Table 1.

6.2 Derivation of σ8 and Ωm

In this section we use redshift-space distortions to directly
measure σ8. The angular dependence of the redshift-space
distortion signal in the 2D correlation function allows us
to measure β, which quantifies the amplitude of redshift-
space distortions. Together with Ωm(z) and γ = 0.55, this
constrains the linear bias b through the equation

b ! Ωγ
m(z)
β

. (44)

Knowing b we can use the absolute amplitude of the
correlation function, [bσ8(z)]

2, to constrain σ8(z=0) =
[D(z=0)/D(zeff )]× σ8(zeff).

For computational reasons we use our first model,
ξst(rp,π), in this sub-section and fit the five parameters
σ8, Ωm, b, H0 and σp using an MCMC approach. Since
the shape of the correlation function is only sensitive to
Γ = Ωmh, we cannot constrain Ωm and H0 at the same
time. For the final results we include a prior on the Hubble
constant (H0 = 73.8 ± 2.4 kms−1 Mpc−1, Riess et al. 2011,
from now on referred to as HST prior) and marginalise over
it. We use the same binning and fitting ranges as in the
previous section.

The best-fitting model results in χ2/d.o.f = 1.35. We
find σ8 = 0.76 ± 0.11, Ωm = 0.250 ± 0.022, b = 1.48 ± 0.27
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Figure 8. Likelihood distribution of gθ and gb derived from the
fit to the 2D correlation function. The solid black contours show
model ξSc(rp,π), while the dashed contours show the streaming
model (see section 5.3 and 5.4 for details of the modelling). The
fitting range is 0 < π < 30h−1 Mpc and 10 < rp < 30h−1 Mpc
for ξst(rp,π) and 0 < π < 30h−1 Mpc and 16 < rp < 30h−1 Mpc
for ξSc(rp,π). The black cross indicates the best-fitting value for
the solid black contours.
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Figure 9. This plot shows the likelihood distribution of the
galaxy bias b and σ8, which we obtained by fitting the 6dFGS
2D correlation function assuming γ = 0.55. The solid black
line shows the result using a prior on the Hubble constant of
H0 = 73.8±2.4 km s−1 Mpc−1 from Riess et al. (2011), while the
dashed black line uses a prior of H0 = 67 ± 3.2 kms−1 Mpc−1

from Beutler et al. (2011). Although the detection of redshift-
space distortions can partially break the degeneracy between b

and σ8 which exists in the 1D correlation function, there is still a
significant residual degeneracy. The black cross marks the maxi-
mum likelihood value for the solid black lines.
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• 6dFGS measurement from Beutler et al. (2012)

• (13% growth rate accuracy)

Existing low redshift measurement!



• Full Taipan survey will make 5% growth measurement

Measuring correlated galaxy velocities



Measuring velocities of individual galaxies

• Simultaneous measurements of distance D and redshift z

• Use standard candle (supernovae, fundamental plane, ...)

[Small print :
this equation is not exact!]



• Measurement of Johnson et al. (2014) : consistency with 
standard model with particular sensitivity to large scales

“Standard model”

300 Mpc/h 100 Mpc/h 50 Mpc/h

• Taipan survey velocity sample will be 10 times larger !!

Existing low redshift measurement!



• The density fluctuations source the large-scale velocity 
field, so sample variance cancels 

• We obtain greatly improved measurements of beta = f/b

• Scale-dependence of “beta” on large scales would be a 
“smoking gun” for non-standard cosmological physics 
such as non-Gaussianity or modified gravity

• See Koda et al. (2014) for full density+velocity Fisher 
matrix forecasts including the Taipan survey

• PhD student Caitlin Adams currently implementing a 
joint likelihood analysis for 6dFGS

Joint fits to the density and velocity fields



• At the last Taipan workshop we decided to focus initially 
on a self-contained 1-year survey which could target 
~400,000 sources

• Taipan Y1 cosmology survey will be selected from 
2MASS : what is the optimal selection?

• If the full 4-year Taipan survey will produce a 1% H0 
measurement, can we produce a 2% measurement Y1?

Year-1 Taipan cosmology survey



• Need to maximize the survey volume spanned by 
~400,000 targets, given observational limits

• Do not re-observe 6dFGS redshifts in Y1

• Reach higher redshifts by: (1) including 2MASS point 
sources, (2) using a minimum J-K cut

• We do not know optical magnitudes, but can estimate 
with Ned’s rproxy = J + 1.1 + 0.8(J-K)

• SDSS-matched “sandbox” catalogue provides us with 
redshift distributions, fibre magnitudes

Optimization of  Y1 cosmology survey



• Use Fisher matrix techniques to predict H0 and growth 
measurements given survey n(z) and area
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ABSTRACT

We present the cosmological distance errors achievable using the baryon acoustic oscilla-
tions as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from
Seo & Eisenstein (2003). We isolate the information from the baryonic peaks by excluding dis-
tance information from other less robust sources. Meanwhile we accommodate the Lagrangian
displacement distribution into the Fisher matrix calculation to reflect the gradual loss of in-
formation in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift
distortions. We then show that we can contract the multi-dimensional Fisher matrix calculations
into a 2-dimensional or even 1-dimensional formalism with physically motivated approximations.
We present the resulting fitting formula for the cosmological distance errors from galaxy redshift
surveys as a function of survey parameters and nonlinearity, which saves us going through the
12-dimensional Fisher matrix calculations. Finally, we show excellent agreement between the
distance error estimates from the revised Fisher matrix and the precision on the distance scale
recovered from N-body simulations.

Subject headings: large-scale structure of the universe — distance scale — cosmological parame-
ters — cosmic microwave background

1. Introduction

The famous Hubble expansion drives more distant objects to recede faster from us. Recent observations
of supernovae argue that this expansion is in fact accelerating, implying an existence of dark energy with
negative pressure (Riess et al. 1998; Perlmutter et al. 1999; Riess et al. 2001; Knop et al. 2003; Tonry et al.
2003; Riess et al. 2004). This dark energy, which contributes two third of energy density in the present
Universe, is mysterious in its physical origin. Precise measurements of its time evolution will be crucial to
uncover the identity of this energy component. One of most promising probes to measure the dark energy
is a standard ruler called baryon acoustic oscillations in large-scale clustering (Eisenstein et al. 1998, 1999)

Baryon acoustic oscillations (hereafter BAO) arise from sound waves that propagated in the hot plasma
of tightly coupled photons and baryons in the early Universe. As the Universe expands and cools, photons
finally decouple from baryons 400,000 years after the Big Bang, with the sound waves revealed as the
acoustic oscillations in the anisotropies of the Cosmic Microwave Background (hereafter CMB) (Miller et al.
1999; de Bernardis et al. 2000; Hanany et al. 2000; Lee et al. 2001; Halverson et al. 2002; Netterfield et al.
2002; Benôıt et al. 2003; Bennett et al. 2003; Pearson et al. 2003; Hinshaw et al. 2006). The equivalent
but attenuated feature exists in the clustering of matter, as baryons fall into dark matter potential well

Optimization of  Y1 cosmology survey



Analysis of sandbox catalogue

• Analysis based on Ned’s SDSS-matched “sandbox” 
catalogue Taipan_equatorial_sandbox_151021.fits



• Inclusion of 2MASS point sources

Analysis of sandbox catalogue



• Inclusion of 2MASS point sources

Analysis of sandbox catalogue



• Correlation between J-K and redshift

Analysis of sandbox catalogue



• Correlation between J-K and redshift

Analysis of sandbox catalogue



• Correlation between J-K and redshift

Analysis of sandbox catalogue



Analysis of sandbox catalogue

• How faint in optical magnitude can we go?



Analysis of sandbox catalogue

• How faint in optical magnitude can we go?



• How faint in optical magnitude can we go?

Baseline rproxy<17.5

Analysis of sandbox catalogue



Optimization of  Y1 cosmology survey

• BAO optimization for rproxy<17.5 : J<15.5, J-K>1.1



Optimization of  Y1 cosmology survey

J J-K rproxy
Veff

(Gpc/h)3
BAO 

(%)
growth

(%)
Notes

<15.5 >1.1 <17.5 0.183 2.1 7.8 Taipan Y1 baseline

<15.0 none <17.5 0.161 2.3 8.7 no J-K cut

<15.5 >1.0 <17.2 0.146 2.4 8.9 brighter rproxy

<15.7 >1.2 <17.8 0.213 1.9 7.1 fainter rproxy

<15.5 >1.05 <17.5 0.169 2.2 8.1 just extended

<15.5 >1.1 <17.5 0.238 1.9 7.1 adding in 6dFGS



Baseline Taipan Y1 cosmology catalogue

• Start from Ned’s combined 2MASS all-sky catalogue 
“Taipan_InputCat_v0.101_20151125.fits”



Cut Explanation Number

none Taipan_InputCat_v0.101_20151125 2,413,252

dec<10, |b|<10 Visibility, avoid Galactic plane 1,020,721

rproxy<17.5 Approximate observational Taipan limit 902,073

J<15.5 NIR limit [not much effect given rproxy] 860,880

K>12.75 Do not re-observe 6dFGS sources 747,376

J-K>1.1 Preferentially restrict to high-z 408,590

Baseline Taipan Y1 cosmology catalogue

[Note : 15% point sources, 3% fainter than fibre limit, ??% stars]

• Baseline selection cuts



• Selection box in (J, K) magnitudes

rproxy<17.5

J-K>1.1

K>12.75

J<15.5

Baseline Taipan Y1 cosmology catalogue



Baseline Taipan Y1 cosmology catalogue

• Sky distribution of baseline selection



Baseline Taipan Y1 cosmology catalogue

• Redshift distribution of baseline selection



Next steps

• Apply tiling code to baseline Taipan Y1 cosmology 
catalogue, what is the efficiency of target allocation?

• To what extent does the Y1 cosmology catalogue allow 
the Taipan peculiar velocity science to be completed?

• Generate first version of mock catalogues

• Apply tiling code to mocks, investigate clustering 
systematics due to correlation of allocation with density

• Develop curved-sky BAO reconstruction code

• Continue cosmological science with 6dFGS



• Taipan survey will allow the ultimate low-redshift 
tests of cosmic expansion and gravity

• Baryon acoustic peak will measure H0 to 1%, cross-
checking CMB vs. local standard candles

• Redshift-space distortions in the galaxy sample will 
produce the best measurement of the z=0 growth 
rate, testing G.R. on intermediate scales

• Peculiar velocity sample will allow new tests of G.R. 
on the largest scales of 100s Mpc/h

• Year 1 survey will make major progress in these goals

Conclusions


