The Taipan Year-I cosmology survey

Chris Blake (Swinburne)

Cosmological physics

What is "dark energy" ?

 new, missing matterenergy component

2) failure of the laws of gravity on cosmic scales

3) failure to correctly model inhomogeneity

Tests of large-scale gravity

• Can tests of G.R. be extended to cosmic scales? And can that yield insight into dark energy?

Probes of the cosmological model

How fast is the Universe expanding with time?

How fast are structures growing within it?

Full Taipan survey cosmology case

- Obtain complete cosmological information in the lowz Universe, where dark energy dominates, to complement current and future high-z galaxy surveys
- Make a 1% measurement of the expansion parameter H₀ using the baryon acoustic peak, enabling fundamental tests of the cosmological model
- Perform new tests of General Relativity across a range of scales using two complementary methods, galaxy peculiar velocities and redshift-space distortions

Baryon acoustic peak

• Standard ruler in galaxy clustering pattern which allows the mapping out of cosmic distances

Baryon acoustic peak

- Standard ruler in galaxy clustering pattern which allows the mapping out of cosmic distances
- Calibrated in units of Mpc using CMB physics with accuracy of 1.1% [WMAP], 0.3% [Planck]

• Application to a low-z survey measures H_0

Existing low redshift measurement!

D(z=0.1) = 456 +/- 27 Mpc

6dF Galaxy Survey

Beutler et al. (2011)

- Full Taipan survey will make $\sim 1\%$ H₀ measurement
- Local expansion rate is a fundamental cosmic parameter (e.g. important for determining the age of the Universe)
- Assuming flat LCDM, Planck CMB constrains H₀ to ~1.5%, but this is a model-dependent result
- Independent determination of H₀ can improve the measurement of other parameters (e.g. dark energy, neutrino numbers/masses)
- There are systematic discrepancies between CMB and local H₀ measurements (Cepheids, masers, supernovae)

Why measure H_0 :

• H₀ prior helps with measurements of dark energy

Weinberg et al. (2012)

- Assuming (w₀, w_a) model, 1% H₀ measurement adds about 40% to Stage III dark energy experiments [e.g. BOSS, DES, etc.]
- Adds very little to Stage IV experiments [e.g. LSST, SKA, etc.]

Local determinations of H₀

Eclipsing binaries (in LMC, 50 kpc)

Parallax (< I kpc)

(z < 0.1)

• Discrepancies between Planck and local measurements

- Discrepancies could be systematic errors ...?
- ... or signatures of non-LCDM physics?
- In or signature of gravitational physics driven by inhomogeneity / backreaction ?

Tests of large-scale gravity

- Is the growth rate of structure consistent with the cosmic expansion history?
- Is the gravitational physics of the homogeneous and inhomogeneous Universe consistent?
- Need to measure galaxy velocities ...

Measuring correlated galaxy velocities

 Can detect galaxy velocities statistically via redshiftspace distortion in galaxy redshift surveys

Existing low redshift measurement!

- 6dFGS measurement from Beutler et al. (2012)
- (13% growth rate accuracy)

Measuring correlated galaxy velocities

• Full Taipan survey will make 5% growth measurement

Measuring velocities of individual galaxies

- Simultaneous measurements of distance D and redshift z
- Use standard candle (supernovae, fundamental plane, ...)

Existing low redshift measurement!

• Measurement of Johnson et al. (2014) : consistency with standard model with particular sensitivity to large scales

Taipan survey velocity sample will be 10 times larger !!

Joint fits to the density and velocity fields

- The density fluctuations source the large-scale velocity field, so sample variance cancels
- We obtain greatly improved measurements of beta = f/b
- Scale-dependence of "beta" on large scales would be a "smoking gun" for non-standard cosmological physics such as non-Gaussianity or modified gravity
- See Koda et al. (2014) for full density+velocity Fisher matrix forecasts including the Taipan survey
- PhD student Caitlin Adams currently implementing a joint likelihood analysis for 6dFGS

Year-I Taipan cosmology survey

- At the last Taipan workshop we decided to focus initially on a self-contained I-year survey which could target ~400,000 sources
- Taipan YI cosmology survey will be selected from 2MASS : what is the optimal selection?
- If the full 4-year Taipan survey will produce a 1% H₀ measurement, can we produce a 2% measurement Y I?

Optimization of YI cosmology survey

- Need to maximize the survey volume spanned by ~400,000 targets, given observational limits
- Do not re-observe 6dFGS redshifts in YI
- Reach higher redshifts by: (1) including 2MASS point sources, (2) using a minimum J-K cut
- We do not know optical magnitudes, but can estimate with Ned's r_{proxy} = J + 1.1 + 0.8(J-K)
- SDSS-matched "sandbox" catalogue provides us with redshift distributions, fibre magnitudes

Optimization of YI cosmology survey

 Use Fisher matrix techniques to predict H₀ and growth measurements given survey n(z) and area

IMPROVED FORECASTS FOR THE BARYON ACOUSTIC OSCILLATIONS AND COSMOLOGICAL DISTANCE SCALE

Hee-Jong Seo & Daniel J. Eisenstein

Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721

hseo@as.arizona.edu,deisenstein@as.arizona.edu

Submitted to The Astrophysical Journal 12-20-2006

ABSTRACT

We present the cosmological distance errors achievable using the baryon acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from Seo & Eisenstein (2003). We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile we accommodate the Lagrangian

 Analysis based on Ned's SDSS-matched "sandbox" catalogue Taipan_equatorial_sandbox_151021.fits

Inclusion of 2MASS point sources

Inclusion of 2MASS point sources

• Correlation between J-K and redshift

• Correlation between J-K and redshift

• Correlation between J-K and redshift

• How faint in optical magnitude can we go?

• How faint in optical magnitude can we go?

• How faint in optical magnitude can we go?

Optimization of YI cosmology survey

• BAO optimization for r_{proxy}<17.5 : J<15.5, J-K>1.1

Optimization of YI cosmology survey

J	J-K	r _{proxy}	V _{eff} (Gpc/h) ³	BAO (%)	growth (%)	Notes
<15.5	> .	<17.5	0.183	2.1	7.8	Taipan YI baseline
<15.0	none	<17.5	0.161	2.3	8.7	no J-K cut
<15.5	>1.0	<17.2	0.146	2.4	8.9	brighter r _{proxy}
<15.7	>1.2	<17.8	0.213	1.9	7.1	fainter r _{proxy}
<15.5	>1.05	<17.5	0.169	2.2	8.I	just extended
<15.5	>1.1	<17.5	0.238	1.9	7.1	adding in 6dFGS

 Start from Ned's combined 2MASS all-sky catalogue "Taipan_InputCat_v0.101_20151125.fits"

• Baseline selection cuts

Cut	Explanation	Number
none	Taipan_InputCat_v0.101_20151125	2,413,252
dec<10, b <10	Visibility, avoid Galactic plane	1,020,721
r _{proxy} <17.5	Approximate observational Taipan limit	902,073
J<15.5	NIR limit [not much effect given r _{proxy}]	860,880
K>12.75	Do not re-observe 6dFGS sources	747,376
J-K>1.1	J-K>1.1 Preferentially restrict to high-z	

[Note : 15% point sources, 3% fainter than fibre limit, ??% stars]

• Selection box in (J, K) magnitudes

• Sky distribution of baseline selection

• Redshift distribution of baseline selection

Next steps

- Apply tiling code to baseline Taipan YI cosmology catalogue, what is the efficiency of target allocation?
- To what extent does the YI cosmology catalogue allow the Taipan peculiar velocity science to be completed?
- Generate first version of mock catalogues
- Apply tiling code to mocks, investigate clustering systematics due to correlation of allocation with density
- Develop curved-sky BAO reconstruction code
- Continue cosmological science with 6dFGS

Conclusions

- Taipan survey will allow the ultimate low-redshift tests of cosmic expansion and gravity
- Baryon acoustic peak will measure H₀ to 1%, crosschecking CMB vs. local standard candles
- Redshift-space distortions in the galaxy sample will produce the best measurement of the z=0 growth rate, testing G.R. on intermediate scales
- Peculiar velocity sample will allow new tests of G.R. on the largest scales of 100s Mpc/h
- Year I survey will make major progress in these goals