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Cosmology with TAIPAN :
What could we learn?



Cosmological physics

What is “dark energy” ?

1) new, missing matter-
energy component

2) failure of the laws of 
gravity on cosmic scales

3) failure to correctly 
model inhomogeneity



How fast are structures 
growing within it?

Probes of the cosmological model

How fast is the Universe 
expanding with time?



Image credit : Lawrence Berkeley National Laboratory

• TAIPAN cosmology probes :

• (1) Baryon acoustic peak

• (2) Redshift-space distortions

• (3) Peculiar velocities

Probes of the cosmological model



Probe 1 : baryon acoustic peak

• Standard ruler in galaxy clustering pattern which allows 
the mapping out of cosmic distances



• Standard ruler in galaxy clustering pattern which allows 
the mapping out of cosmic distances

• Calibrated in units of Mpc using CMB physics with 
accuracy of 1.1% [WMAP] , 0.25% [Planck]

• Application to a low-z survey measures H0

Probe 1 : baryon acoustic peak



Existing low redshift measurement!
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D(z=0.1) = 456 +/- 27 Mpc

H0 = 67.0 +/- 3.2 km s-1 Mpc-1

6dF Galaxy Survey



Why measure H0?

• Local expansion rate is a fundamental cosmic parameter 
(e.g. important for determining the age of the Universe)

• Independent determination of H0 can improve the 
measurement of other parameters (e.g. dark energy, 
neutrino numbers/masses)

• Interesting systematic comparison with other local H0 
measurements (Cepheids, masers, supernovae)

• Is a TAIPAN baryon acoustic peak measurement of H0 
competitive with other techniques and probes?



Survey simulations

• Simulation from Beutler et al. (2011)
12 Florian Beutler et al.
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Figure 10. This plot shows the distribution of the parameter α
derived from the 200 log-normal realisations (black). The distri-
bution is well fit by a Gaussian with a mean of µ = 0.998± 0.004
and a width of σ = 0.057± 0.005. In blue we show the same dis-
tribution selecting only the log-normal realisations with a strong
BAO peak (> 2σ). The Gaussian distribution in this case gives a
mean of 1.007± 0.007 and σ = 0.041± 0.008.

model without a BAO signature. The best fit has χ2 = 21.4
with 14 degrees of freedom and is shown as the red dashed
line in Figure 2. The parameter values of this fit depend on
the parameter priors, which we set to 0.7 < α < 1.3 and
0.1 < Ωmh2 < 0.2. Values of α much further away from
1 are problematic since eq. 24 is only valid for α close to
1. Comparing the best pure CDM model with our previous
fit, we estimate that the BAO signal is detected with a sig-
nificance of 2.4σ (corresponding to ∆χ2 = 5.6). As a more
qualitative argument for the detection of the BAO signal we
would like to refer again to Figure 4 where the direction of
the degeneracy clearly indicates the sensitivity to the BAO
peak.

We can also use the log-normal realisations to deter-
mine how likely it is to find a BAO detection in a survey
like 6dFGS. To do this, we produced 200 log-normal mock
catalogues and calculated the correlation function for each
of them. We can now fit our correlation function model to
these realisations. Furthermore, we fit a no-baryon model to
the correlation function and calculate ∆χ2, the distribution
of which is shown in Figure 8. We find that 26% of all re-
alisations have at least a 2σ BAO detection, and that 12%
have a detection > 2.4σ. The log-normal realisations show a
mean significance of the BAO detection of 1.7± 0.7σ, where
the error describes the variance around the mean.

Figure 9 shows the 6dFGS data points together with
all 200 log-normal realisations (grey). The red data points
indicate the mean for each bin and the black line is the input
model derived as explained in Section 3.3. This comparison
shows that the 6dFGS data contain a BAO peak slightly
larger than expected in ΛCDM.

The amplitude of the acoustic feature relative to
the overall normalisation of the galaxy correlation func-
tion is quite sensitive to the baryon fraction, fb =
Ωb/Ωm (Matsubara 2004). A higher BAO peak could hence
point towards a larger baryon fraction in the local universe.
However since the correlation function model seems to agree
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Figure 11. Redshift distribution of 6dFGS, WALLABY and two
different versions of the proposed TAIPAN survey. See text for
details.

very well with the data (with a reduced χ2 of 1.12) and is
within the range spanned by our log-normal realisations, we
can not claim any discrepancy with ΛCDM. Therefore, the
most likely explanation for the excess correlation in the BAO
peak is sample variance.

In Figure 10 we show the distribution of the parameter
α obtained from the 200 log-normal realisations. The dis-
tribution is well described by a Gaussian with χ2/d.o.f. =
14.2/20, where we employed Poisson errors for each bin.
This confirms that α has Gaussian distributed errors in the
approximation that the 6dFGS sample is well-described by
log-normal realisations of an underlying ΛCDM power spec-
trum. This result increases our confidence that the appli-
cation of Gaussian errors for the cosmological parameter
fits is correct. The mean of the Gaussian distribution is at
0.998±0.004 in agreement with unity, which shows, that we
are able to recover the input model. The width of the dis-
tribution shows the mean expected error in α in a ΛCDM
universe for a 6dFGS-like survey. We found σ = 0.057±0.005
which is in agreement with our error in α of 5.9%. Figure 10
also contains the distribution of α, selecting only the log-
normal realisations with a strong (> 2σ) BAO peak (blue
data). We included this selection to show, that a stronger
BAO peak does not bias the estimate of α in any direc-
tion. The Gaussian fit gives χ2/d.o.f. = 5/11 with a mean of
1.007± 0.007. The distribution of α shows a smaller spread
with σ = 0.041±0.008, about 2σ below our error on α. This
result shows, that a survey like 6dFGS is able to constrain
α (and hence DV and H0) to the precision we report in this
paper.

8 FUTURE ALL SKY SURVEYS

A major new wide-sky survey of the local Universe will be
the Wide field ASKAP L-band Legacy All-sky Blind surveY
(WALLABY)2. This is a blind HI survey planned for the
Australian SKA Pathfinder telescope (ASKAP), currently

2 http://www.atnf.csiro.au/research/WALLABY

c© 0000 RAS, MNRAS 000, 000–000

• Create many clustered 
“lognormal realizations” to 
simulate the experiment

• Consider two TAIPAN 
scenarios (r<16.5, r<17)

• Use the ensemble of 
realizations to determine 
significance and accuracy of 
acoustic peak measurement

Simulation method :



Survey simulations
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Figure 12. Predictions for two versions of the proposed TAIPAN
survey. Both predictions assume a 2π steradian southern sky-
coverage, excluding the Galactic plane (i.e. |b| > 10◦). TAIPAN1
contains 406 000 galaxies while TAIPAN2 contains 221 000, (see
Figure 11). The blue points are shifted by 2h−1 Mpc to the right
for clarity. The black line is the input model, which is a ΛCDM
model with a bias of 1.6, β = 0.3 and k∗ = 0.17h Mpc−1. For
a large number of realisations, the difference between the input
model and the mean (the data points) is only the convolution
with the window function.

 Mpc]-1s [h
20 40 60 80 100 120 140 160 180 200

(s
)

!
2

s

-20

-15

-10

-5

0

5

10

15

20

25
WALLABY

Input

Figure 13. Prediction for the WALLABY survey. We have as-
sumed a 4π steradian survey with 602 000 galaxies, b = 0.7,
β = 0.7 and k∗ = 0.17h Mpc−1.

under construction at the Murchison Radio-astronomy Ob-
servatory (MRO) in Western Australia.

The survey will cover at least 75% of the sky with the
potential to cover 4π of sky if the Westerbork Radio Tele-
scope delivers complementary northern coverage. Compared
to 6dFGS, WALLABY will more than double the sky cov-
erage including the Galactic plane. WALLABY will contain
∼ 500 000 to 600 000 galaxies with a mean redshift of around
0.04, giving it around 4 times greater galaxy density com-
pared to 6dFGS. In the calculations that follow, we assume
for WALLABY a 4π survey without any exclusion around
the Galactic plane. The effective volume in this case turns
out to be 0.12h−3 Gpc3.

The TAIPAN survey3 proposed for the UK Schmidt
Telescope at Siding Spring Observatory, will cover a com-
parable area of sky, and will extend 6dFGS in both depth
and redshift (z " 0.08).

The redshift distribution of both surveys is shown in
Figure 11, alongside 6dFGS. Since the TAIPAN survey is
still in the early planning stage we consider two realisa-
tions: TAIPAN1 (406 000 galaxies to a faint magnitude limit
of r = 17) and the shallower TAIPAN2 (221 000 galax-
ies to r = 16.5). We have adopted the same survey win-
dow as was used for 6dFGS, meaning that it covers the
whole southern sky excluding a 10◦ strip around the Galac-
tic plane. The effective volumes of TAIPAN1 and TAIPAN2
are 0.23h−3 Gpc3 and 0.13h−3 Gpc3, respectively.

To predict the ability of these surveys to measure the
large scale correlation function we produced 100 log-normal
realisations for TAIPAN1 and WALLABY and 200 log-
normal realisations for TAIPAN2. Figures 12 and 13 show
the results in each case. The data points are the mean of
the different realisations, and the error bars are the diago-
nal of the covariance matrix. The black line represents the
input model which is a ΛCDM prediction convolved with
a Gaussian damping term using k∗ = 0.17h Mpc−1 (see
eq. 17). We used a bias parameter of 1.6 for TAIPAN and
following our fiducial model we get β = 0.3, resulting in
A = b2(1 + 2β/3 + β2/5) = 3.1. For WALLABY we used a
bias of 0.7 (based on the results found in the HIPASS sur-
vey; Basilakos et al. 2007). This results in β = 0.7 and
A = 0.76. To calculate the correlation function we used
P0 = 40 000h3 Mpc3 for TAIPAN and P0 = 5000h3 Mpc3

for WALLABY.
The error bar for TAIPAN1 is smaller by roughly a fac-

tor of 1.7 relative to 6dFGS, which is consistent with scal-
ing by

√
Veff and is comparable to the SDSS-LRG sample.

We calculate the significance of the BAO detection for each
log-normal realisation by performing fits to the correlation
function using ΛCDM parameters and Ωb = 0, in exactly
the same manner as the 6dFGS analysis described earlier.
We find a 3.5 ± 0.8σ significance for the BAO detection for
TAIPAN1, 2.1±0.7σ for TAIPAN2 and 2.1±0.7σ for WAL-
LABY, where the error again describes the variance around
the mean.

We then fit a correlation function model to the mean
values of the log-normal realisations for each survey, using
the covariance matrix derived from these log-normal real-
isations. We evaluated the correlation function of WAL-
LABY, TAIPAN2 and TAIPAN1 at the effective redshifts
of 0.1, 0.12 and 0.14, respectively. With these in hand, we
are able to derive distance constraints to respective preci-
sions of 7%, 6% and 3%. The predicted value for WAL-
LABY is not significantly better than that from 6dFGS.
This is due to the significance of the 6dFGS BAO peak in
the data, allowing us to place tight constraints on the dis-
tance. As an alternative figure-of-merit, we derive the con-
straints on the Hubble constant. All surveys recover the in-
put parameter of H0 = 70 km s−1Mpc−1, with absolute un-
certainties of 3.7, 3 and 2.2 km s−1Mpc−1 for WALLABY,
TAIPAN2 and TAIPAN1, respectively. Hence, TAIPAN1 is

3 TAIPAN: Transforming Astronomical Imaging surveys through
Polychromatic Analysis of Nebulae

c© 0000 RAS, MNRAS 000, 000–000

• Simulation from Beutler et al. (2011)
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Figure 12. Predictions for two versions of the proposed TAIPAN
survey. Both predictions assume a 2π steradian southern sky-
coverage, excluding the Galactic plane (i.e. |b| > 10◦). TAIPAN1
contains 406 000 galaxies while TAIPAN2 contains 221 000, (see
Figure 11). The blue points are shifted by 2h−1 Mpc to the right
for clarity. The black line is the input model, which is a ΛCDM
model with a bias of 1.6, β = 0.3 and k∗ = 0.17h Mpc−1. For
a large number of realisations, the difference between the input
model and the mean (the data points) is only the convolution
with the window function.
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Figure 13. Prediction for the WALLABY survey. We have as-
sumed a 4π steradian survey with 602 000 galaxies, b = 0.7,
β = 0.7 and k∗ = 0.17h Mpc−1.

under construction at the Murchison Radio-astronomy Ob-
servatory (MRO) in Western Australia.

The survey will cover at least 75% of the sky with the
potential to cover 4π of sky if the Westerbork Radio Tele-
scope delivers complementary northern coverage. Compared
to 6dFGS, WALLABY will more than double the sky cov-
erage including the Galactic plane. WALLABY will contain
∼ 500 000 to 600 000 galaxies with a mean redshift of around
0.04, giving it around 4 times greater galaxy density com-
pared to 6dFGS. In the calculations that follow, we assume
for WALLABY a 4π survey without any exclusion around
the Galactic plane. The effective volume in this case turns
out to be 0.12h−3 Gpc3.

The TAIPAN survey3 proposed for the UK Schmidt
Telescope at Siding Spring Observatory, will cover a com-
parable area of sky, and will extend 6dFGS in both depth
and redshift (z " 0.08).

The redshift distribution of both surveys is shown in
Figure 11, alongside 6dFGS. Since the TAIPAN survey is
still in the early planning stage we consider two realisa-
tions: TAIPAN1 (406 000 galaxies to a faint magnitude limit
of r = 17) and the shallower TAIPAN2 (221 000 galax-
ies to r = 16.5). We have adopted the same survey win-
dow as was used for 6dFGS, meaning that it covers the
whole southern sky excluding a 10◦ strip around the Galac-
tic plane. The effective volumes of TAIPAN1 and TAIPAN2
are 0.23h−3 Gpc3 and 0.13h−3 Gpc3, respectively.

To predict the ability of these surveys to measure the
large scale correlation function we produced 100 log-normal
realisations for TAIPAN1 and WALLABY and 200 log-
normal realisations for TAIPAN2. Figures 12 and 13 show
the results in each case. The data points are the mean of
the different realisations, and the error bars are the diago-
nal of the covariance matrix. The black line represents the
input model which is a ΛCDM prediction convolved with
a Gaussian damping term using k∗ = 0.17h Mpc−1 (see
eq. 17). We used a bias parameter of 1.6 for TAIPAN and
following our fiducial model we get β = 0.3, resulting in
A = b2(1 + 2β/3 + β2/5) = 3.1. For WALLABY we used a
bias of 0.7 (based on the results found in the HIPASS sur-
vey; Basilakos et al. 2007). This results in β = 0.7 and
A = 0.76. To calculate the correlation function we used
P0 = 40 000h3 Mpc3 for TAIPAN and P0 = 5000h3 Mpc3

for WALLABY.
The error bar for TAIPAN1 is smaller by roughly a fac-

tor of 1.7 relative to 6dFGS, which is consistent with scal-
ing by

√
Veff and is comparable to the SDSS-LRG sample.

We calculate the significance of the BAO detection for each
log-normal realisation by performing fits to the correlation
function using ΛCDM parameters and Ωb = 0, in exactly
the same manner as the 6dFGS analysis described earlier.
We find a 3.5 ± 0.8σ significance for the BAO detection for
TAIPAN1, 2.1±0.7σ for TAIPAN2 and 2.1±0.7σ for WAL-
LABY, where the error again describes the variance around
the mean.

We then fit a correlation function model to the mean
values of the log-normal realisations for each survey, using
the covariance matrix derived from these log-normal real-
isations. We evaluated the correlation function of WAL-
LABY, TAIPAN2 and TAIPAN1 at the effective redshifts
of 0.1, 0.12 and 0.14, respectively. With these in hand, we
are able to derive distance constraints to respective preci-
sions of 7%, 6% and 3%. The predicted value for WAL-
LABY is not significantly better than that from 6dFGS.
This is due to the significance of the 6dFGS BAO peak in
the data, allowing us to place tight constraints on the dis-
tance. As an alternative figure-of-merit, we derive the con-
straints on the Hubble constant. All surveys recover the in-
put parameter of H0 = 70 km s−1Mpc−1, with absolute un-
certainties of 3.7, 3 and 2.2 km s−1Mpc−1 for WALLABY,
TAIPAN2 and TAIPAN1, respectively. Hence, TAIPAN1 is

3 TAIPAN: Transforming Astronomical Imaging surveys through
Polychromatic Analysis of Nebulae
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BAO in SDSS-III BOSS DR9 galaxies 11

Figure 3. The CMASS correlation function before (left) and after (right) reconstruction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on similar scales are also correlated. The BAO feature is clearly evident, and well
matched to the best-fit model. The best-fit dilation scale is given in each plot, with the χ2 statistic giving goodness of fit.

Figure 4. Average of the mock correlation functions before and after recon-
struction showing that the average acoustic peak sharpens up significantly
after reconstruction. This indicates that, on average, our reconstruction tech-
nique effectively removes some of the smearing caused by non-linear struc-
ture growth, affording us the ability to more precisely centroid the acoustic
peak.

where !d is the measured correlation function and !m(α) is the best-
fit model at each α. C is the sample covariance matrix, and we use
a fitting range of 28 < r < 200h−1 Mpc. We therefore fit over 44
points using 5 parameters, leaving us with 39 degrees-of-freedom
(dof). Assuming a multi-variate Gaussian distribution for the fitted
data (this is tested and shown to be a good approximation in Manera
et al. 2012), the probability distribution of α is

p(α) ∝ e−χ2(α)/2. (28)

The normalisation constant is determined by ensuring that the dis-
tribution integrates to 1. In calculating p(α), we also impose a 15
per cent Gaussian prior on log(α) to suppress values of α " 1
that correspond to the BAO being shifted to the edge of our fit-
ting range at large scales. The sample variance is larger at these

scales, and the fitting algorithm is afforded some flexibility to hide
the acoustic peak within the larger errors.

The standard deviation of this probability distribution serves
as an error estimate on our distance measurement. The standard
deviation σα for the data and each individual mock catalog can be
calculated as σ2

α = 〈α2〉 − 〈α〉2, where the moments of α are

〈αn〉 =
∫

dα p(α)αn . (29)

Note that 〈α〉 refers to the mean of the p(α) distribution in this
equation only.

In reference to the mocks, 〈α〉 will denote the ensemble mean
of the α values measured from each individual mock, and α̃ will
denote the median. The term “Quantiles” will denote the 16th/84th

percentiles, which are approximately the 1σ level if the distribution
is Gaussian. The scatter predicted by these quantiles suffers less
than the rms from the effects of extreme outliers.

5.3 Results

Using the procedure described in §5.2, we measure the shift in the
acoustic scale from the CMASS DR9 data to be α = 1.016±0.017
before reconstruction and α = 1.024± 0.016 after reconstruction.
The quoted errors are the σα values measured from the probabil-
ity distributions, p(α). Plots of the data and corresponding best-
fit models are shown in Fig. 3 for before (left) and after (right)
reconstruction. We see that for CMASS DR9, reconstruction has
not significantly improved our measurement of the acoustic scale.
However, in the context of the mock catalogues, this result is not
surprising.

Fig. 5 shows the σα values measured from the mocks before
reconstruction versus those measured after reconstruction from the
correlation function fits. The CMASS DR9 point is overplotted as
the black star and falls within the locus of mock points. However,
we see that before reconstruction, our recovered σα for CMASS
DR9 is much smaller than the mean expected from the mocks. For
typical cases, reconstruction improves errors on α, but if one has a
“lucky” realisation that yields a low error to begin with, then recon-
struction does not produce much improvement. The mock catalog
comparison in Figure 5 shows that the BOSS DR9 data volume

c© 2011 RAS, MNRAS 000, 2–33

Average galaxy correlation functions :



Survey simulations

• Simulation from Beutler et al. (2011)

Survey Ngal
Sky

fraction
Veff

(Gpc/h)3
BAO 

significance
Distance 

error

6dFGS 80,000 half 0.08
1.7+/-0.7

[2.4!] 6%

TAIPAN 
(r<16.5)

220,000 half 0.13 2.1+/-0.7 6%

TAIPAN 
(r<17)

410,000 half 0.23 3.5+/-0.8 3%

WALLABY 600,000 full 0.12 2.1+/-0.7 7%

• TAIPAN r<17 will provide 3% distance measurement



Survey simulations

• Can we do better?  Yes!

• We can select galaxies to fill space more uniformly [e.g. photo-z]

• We can use “reconstruction” of the acoustic peakA 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h−1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ξ(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ≡ d lnD/d ln a ∼Ω0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ΩM is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are sufficiently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field Ψ within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by −Ψ. Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional −f(Ψ · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by −Ψ. Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c© 0000 RAS, MNRAS 000, 000–000

Padmanabhan
et al. (2012)



Survey simulations
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Figure 1: Error on the shift parameter α, which corresponds to the error on H0 as a function
of number density and number of galaxies. The axis on the top shows nP with P being
the power spectrum amplitude taken at k = 0.2hMpc−1. The solid line correspond to the
constraints from before density field reconstruction and the dashed lines correspond to the
constraints after density field reconstruction.
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• Can we do better?  Yes!

Fisher matrix 
prediction from Florian 

Beutler for constant 
number-density surveys 

with and without 
reconstruction :

No reconstruction

Reconstruction

500,000
galaxies

• 1% distance 
measurement 
with optimal pre-
selection and 
reconstruction

r=17.5

r=18.5
r=18.0

Rough
mag limit



Is this competitive?

10 K. Mehta et al.
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Figure 12. Measurement of H0 for various cosmological
models with the CMB+BAO+SN dataset. Also included is
the Riess et al. (2011) H0 measurement. We see that not only
do we get a consistent and precise measurement of H0 from
CMB+BAO+SN dataset, this measurement is slightly lower than
the H0 measurement from the nearby Universe.
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Figure 13. 1σ contours of H0 in km/s/Mpc vs Ωm for vari-
ous cosmological models using the CMB+BAO+SN dataset. Also
plotted is the H0 value measured by Riess et al. (2011). We see
that we get a robust measurement of H0 and Ωm regardless of
the cosmological model.

2009; Freedman & Madore 2010). A precise value of H0 =
73.8 ± 2.4 km/s/Mpc was recently obtained by the SHOES
project (Riess et al. 2011) using the NGC 4258 water maser
(Argon et al. 2007; Humphreys et al. 2008) and Cepheid
variable stars measured in the near-infrared. We plot this
measurement in Figure 12 and 13. One sees that the di-
rect measurement lies about 5% higher than our inference
from CMB+BAO+SN. However, this discrepancy only has
a statistical significance of 1.5σ and hence is not unusual.
Nevertheless, we will return to this in the next subsection.

We note that the CMB+BAO+SN combination con-
sistent favors H0 values around 71, while CMB+BAO alone
give slightly lower best-fit values of 69. The latter is not inde-
pendent of the model for the expansion history; without SN,
we are extrapolating the z = 0.35 distance to z ≈ 0 using the
cosmological model rather than an empirical measurement.
Similarly, Beutler et al. (2011) measure H0 = 67.2 ± 3.2
km/s/Mpc using a BAO detection at z = 0.1. While this
is all well within statistical uncertainties, apparently there
is a small difference between the SN distance-redshift rela-
tion and that predicted from the combination of CMB and
BAO data.

3.9 Energy Density of Relativistic Species

The measurements of H0 and Ωm discussed in the previ-
ous section depend on knowledge of cosmological physics
at z ! 1000. Further, we found a small tension between
the CMB+BAO+SN measurement of H0 and the direct
measurement by Riess et al. (2011). Hence, we are moti-
vated to consider altering the standard cosmological model
by adding additional relativistic particles with negligible
interaction cross-section. These would be in addition to
the usual cosmic background of the three neutrino species,
and hence the new energy density is parameterized by al-
tering the number of neutrino species from 3 to a new
value NREL. We note that the particles need not actu-
ally be neutrinos, simply highly relativistic and negligibly
interacting at late times. This possibility has a long his-
tory in cosmology, including constraints from Big Bang
nucleosynthesis (Steigman et al. 1977; Hansen et al. 2002;
Dolgov 2002; Bowen et al. 2002). Eisenstein & White (2004)
pointed out that extra density in relativistic particles would
cause CMB and BAO measurements to underestimate the
value of Ωmh2 and H0. Numerous recent papers have con-
strained the density of relativistic particles with modern
cosmology data (Seljak et al. 2006; Ichikawa et al. 2007;
Mangano et al. 2007; Hamann et al. 2010; Reid et al. 2010b;
Riess et al. 2011; Giusarma et al. 2011; Komatsu et al.
2011; Calabrese et al. 2011; Archidiacono et al. 2011).

We therefore consider cosmological models that vary
the relativistic density. In our MCMC chains, we use
a prior of NREL " 3. Figure 14 shows the 68% and
95% confidence level contours for NREL vs H0 using the
CMB+BAO+H0+SN dataset with a ΛCDM + NREL cos-
mology model. Table 3 gives the values of NREL and other
cosmological parameters for three different models of the ex-
pansion history of the Universe. From Figure 14 and Table 3,
we see that the best-fit value for NREL is around 4. Models
with extra relativistic particle density increase the values of
Ωmh2 and H0, allowing a better fit to the Riess et al. (2011)
measurement of H0 = 73.8± 2.4 km/s/Mpc. In terms of the
inverse distance ladder, the added relativistic species affects
Ωmh2, which moves the acoustic scale, and therefore changes
the calibration of the distance ladder to larger values of H0.
Hence, it is not surprising to find that the other cosmolog-
ical parameters such as Ωm, w, and ΩK remain unaffected
by the addition of a new relativistic species.

From Figure 14, we see that the shift away fromNREL =
3 is not statistically significant. Table 3 shows this shift to
be about 2σ. This is larger than the 1.5σ tension between
the H0 measurements; this is likely due to the NREL " 3
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Mehta et al. (2012) • Other probes already measure 
H0 to 1-2% [N.B. assuming a 
cosmological model]

• If w(z) is an unknown function, 
then a local H0 measurement is 
the only way to determine the 
age of the Universe

• An interesting tension exists 
with local standard candle 
measurements [Riess et al. 
2011, Freedman et al. 2012]

• Does this help current measurements of dark energy?



Weinberg et al. (2012) • Assuming (w0, wa) model, 
1% H0 measurement adds 
about 40% to Stage III dark 
energy experiments [e.g. 
BOSS, DES, etc.]

• Adds very little to Stage IV 
experiments [e.g. LSST, 
SKA, etc.]

Figure 45 Dependence of the DETF FoM on the accuracy of additional measurements of the Hubble
constant for Stage III and IV forecasts from §8.3. The fiducial Stage IV program with FoM= 664
is marked by an open circle.

In Figure 45, we show the effect on the DETF FoM of adding a prior on H0 to the fiducial Stage
III and IV forecasts. In all cases, adding a prior with precision that matches the uncertainty one
would have in the absence of the prior increases the FoM by ∼ 40%. The uncertainties in other
parameters are affected little by the inclusion of an independent H0 measurement, as discussed in
§7.1.

For a more general dark energy parameterization such as the binned wi values, predictions
for σh can be orders of magnitude weaker than they are for w0–wa or ΛCDM (see Figs. 36–37).
In this case an independent, local measurement of H0 is vital for accurate determination of the
Hubble constant. However, H0 priors do not significantly improve dark energy constraints in this
case; an H0 constraint limits the range of w(z) in the lowest-redshift bin, but since w(z = 0) is
only weakly correlated with the equation of state at higher redshifts by SN, BAO, WL, and CMB
data, the impact of an additional H0 measurement on the equation of state at z > 0 is small.
The improvement in the DETF FoM in Fig. 45 is largely a consequence of the restrictions that
the w0–wa parameterization places on the evolution of w(z) between z = 0 and higher redshifts.
Of course, a discrepancy between directly measured H0 and a w0 − wa prediction would already
provide the crucial insight that w0 −wa is inadequate; it just wouldn’t give further direction about
the evolution of w(z).

8.5.2. The Alcock-Paczynski Test

For the AP test (§7.3), we consider the observableH(z)DA(z). Since Stage IV BAO data provide
tight constraints on both H(z) and DA(z), which are further strengthened by the SN, WL, and
CMB measurements, it is not surprising that the productH(z)DA(z) is predicted very precisely in
the combined forecasts. The left panel of Figure 46 shows that the uncertainty in the AP observable
is ∼ 0.2% at 0 < z < 3 for Stage IV data, and it is still predicted to sub-percent accuracy with Stage
III data. Independent measurements of the AP observable that are significantly less precise than
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• Does this help future measurements of dark energy?

Adding H0 prior

Is this competitive?



• Does this help measure other parameters?

Is this competitive?
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Figure 2. The 68% and 95% CL contours in the Neff -
∑

mν pa-
rameter space of fitting a ΛCDM+

∑
mν+Neff model to a selection

of data combinations.
4. METHOD

We fit the data to a standard flat ΛCDM cosmol-
ogy with the following parameters: the physical baryon
density (Ωbh2), the physical cold dark matter density
(Ωdmh2) the Hubble parameter at z = 0 (H0) the optical
depth to reionisation (τ), the amplitude of the primordial
density fluctuations (As), and the primordial power spec-
trum index (ns). In addition we vary the effective num-
ber of relativistic degrees of freedom (Neff = Nν+∆Neff)
and the sum of neutrino masses (

∑
mν = Nνmν) where

Nν is the number of massive neutrinos usually taken to
be Nν = 3.046 and the 0.046 accounts for the neutrino
energies that arise due to the residual heating provided
by the e+e−-annihilations after the neutrino decoupling
(Mangano et al. 2005).
We sample the parameter space using the Markov

Chain Monte Carlo sampler6 CosmoMC (Lewis & Bri-
dle 2002). Details on the specific modules can be found
in Parkinson et al. (2012) and on the WiggleZ website5.
The probability distributions are calculated by

marginalising over the density of points in the chains.
Because the distributions can be non-Gaussian, the 2σ
uncertainties can be larger than the 2×1σ uncertainties.

5. RESULTS AND DISCUSSION

From fitting ΛCDM+
∑

mν+Neff to CMBWMAP +
CMBSPT + WiggleZ + H(z) + BAO + SN we obtain
Neff = 3.58+0.15

−0.16(68%CL)+0.55
−0.53(95%CL) and

∑
mν <

0.60 eV(95%CL) shown in Fig. 2 and Fig. 3. This not
represents a preference for more than three neutrino
species at 95% confidence.

5.1. Comparison to ΛCDM

Fig. 4 shows the resulting contours from fitting
ΛCDM+

∑
mν+Neff to CMBWMAP + CMBSPT + Wig-

gleZ + H(z) + BAO + SN (solid black), compared to fit-
ting a pure ΛCDM model (dashed red), ΛCDM+

∑
mν

(dotted blue), and ΛCDM+Neff (dot-dashed green) to
the same data. Naturally the constraints are tighter for
pure ΛCDM, since there are fewer parameters to con-
strain, but overall the constraints are consistent for all

6 http://cosmologist.info/

Figure 3. The one dimensional probability distributions for Neff
and

∑
mν of fitting a ΛCDM+

∑
mν+Neff model to a selection of

data combinations (same colours as in Fig. 2). The grey shaded
area indicates the probability distribution when correlations are
neglected by fixing

∑
mν=0 (left) and Neff=3.046 (right).

Figure 4. The 68% and 95% CL contours for fitting
ΛCDM+

∑
mν+Neff (solid black), ΛCDM+

∑
mν (dotted blue),

ΛCDM+Neff (dot-dashed green), and ΛCDM (dashed red) mod-
els to CMBWMAP + CMBSPT + WiggleZ + H(z) + BAO + SN
data. The resulting contours are consistent with each other for all
parameters.

parameters. Adding
∑

mν to the fit does not change the
ΛCDM parameters or uncertainties significantly whereas
adding Neff increases the values and uncertainties of H0.
Adding both parameters increases the preferred values of
H0 and ns but also the uncertainties, so the values remain
consistent with the pure ΛCDM case. The shift can be
understood as follows: Increasing H0 changes the height
of the peaks in the CMB, as it corresponds to increasing
the physical matter density. Changing Neff recovers the
details of the CMB peaks (because the original ratio of
matter to radiation is recovered, restoring the details of
Silk damping), but with too much power on large scales
due to ISW. This shifts the primordial power spectrum
from very red (ns = 0.96) to slightly less red (0.98−1.0).

5.2. Combinations and degeneracies

It is clear from the
∑

mν-Neff contours in Fig. 2 that
unless all data sets are included, the two parameters are
correlated. The tightest constraints come from the com-
bination of CMBWMAP + CMBSPT + WiggleZ + H(z)
+ BAO + SN. Fig. 5 demonstrates the degeneracies be-

Number and mass of relativistic species 5

Figure 5. Results of fitting a ΛCDM+
∑

mν+Neff model to a
selection of data combinations (same colours as in Fig. 2).

tween
∑

mν & Neff , and H0 & Ωm. When all the data is
combined, there is a significant correlation between H0
and Neff , and a mild correlation between

∑
mν and Ωm.

Lowering H0 shifts Neff back towards the expected value
of three.
At the present, large scale structure (e.g. WiggleZ

and SDSS) does not constrain Neff uniquely because the
turnover of the power spectrum is not well measured,
which leaves some correlation between Ωm,

∑
mν , and

Neff (see Fig. 1), but inclusion of the power spectrum
improves on

∑
mν from the small scale suppression.

The H(z) data does not add much to the neutrino
mass constraints, but because it constrains the expansion
history, it improves on the limits on Neff as discussed in
Moresco et al. (2012a).

5.3. Nucleosynthesis

There have been a number of recent attempts to derive
Neff from BBN alone (e.g. Mangano & Serpico 2011; Pet-
tini & Cooke 2012) which all seem to be consistent with
Neff = 3. Analyses combining BBN and CMB seem to
prefer N > 3 (e.g. Nollett & Holder 2011; Hamann et al.
2011). It is concerning that the preference for Neff> 3 is
present in all analyses including CMB, but not preferred
by BBN alone. This could indicate a systematic error
in one of the data sets. However, BBN alone relies on
very few and notoriously difficult measurements of the
deuterium and helium fractions.
The difference between the results could also be in-

terpreted as potential tension between Neff measured at
two different epochs (BBN and recombination), where we
naively would expect Neff to be the same. A temporal
variation can be explained theoretically by a decaying
particle (Boehm et al. 2012) but currently there is no
experimental evidence for the existence of such particle.

5.4. Beyond ΛCDM+
∑

mν+Neff

Other physical effects such as curvature, varying equa-
tion of state, running of the spectral index etc. could
mimic Neff> 3 if not properly accounted for in the mod-
elling. Joudaki (2012) demonstrated that the deviation
from Neff = 3.046 is diminished if allowing for curva-
ture, varying equation of state, running of the spectral in-
dex, and/or the helium fraction by fitting to CMBWMAP,

CMBSPT, BAO scale from SDSS and 2dFGS, H0 from
HST, and SN from Union2. However, for all parameter
combinations the preferred value of Neff was still above
three, and only when more than one extra extension of
the ΛCDM cosmology (e.g. curvature and varying equa-
tion of state in addition to Neff and

∑
mν) were consid-

ered, did the preferred value of Neff become consistent
with three within one standard deviation. We take this
as an indication that one extension alone does not ex-
plain the preference for Neff != 3.

5.5. Future

Measuring the position of the peak of the matter power
spectrum (the turnover) would give another handle on
Neff . Poole et al. (2012) predicts that a Euclid-like galaxy
survey will be able to constrain Neff to approx. 20% in-
dependently of the CMB. However, the position of the
turnover can be degenerate with neutrino hierarchy ef-
fects (Wagner et al. 2012). The degeneracies between∑

mν , Neff , and the hierarchy allows for a measurement
of either of them if the remaining parameters can be
“fixed” by independent data.
If Neff can be measured with sufficiently high precision,

eventually it will be possible to measure the thermal dis-
tortion of the neutrino spectrum (the 0.046).
Any neutrino-like behaving particle, including sterile

neutrinos and axions etc., which decouple early when
relativistic and become non-relativistic, can mimic the
effect of the neutrinos. If the value of Neff > 3 is due
to a particle, the result points towards physics beyond
the Standard Model, and its existence it will have to be
confirmed by a particle physics laboratory experiment.
If no sterile neutrinos are found in laboratory experi-
ments, the cosmological preference for additional species
may indicate a lack of understanding of early Universe
physics.

6. CONCLUSION

Due to imperfect measurements of the ΛCDM parame-
ters

∑
mν and Neff are not entirely independent param-

eters and should be fitted simultaneously in cosmologi-
cal analyses. Performing such fit of ΛCDM+

∑
mν+Neff

to a combination of cosmological data sets, leads to a
2σ preference for Neff> 3.58+0.55

−0.53(95%(CL) and
∑

mν <
0.60 eV, which are currently the strongest constraints on
Neff from cosmology simultaneously fitting for Neff and∑

mν .
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• Number of neutrinos and H0 are currently correlated

• Intriguing hints from cosmological data that Neff > 3 [95% confidence]

• Unfortunately other datasets (Planck) are more powerful here ... 

Riemer-Sorensen et al. (2012)



• Interesting discrepancies between H0 measurements?

Is this competitive?

Method H0 [km/s/Mpc] Reference

Cepheids / 
masers / SNe 73.8 +/- 2.4 Riess et al. (2011)

Cepheids 74.3 +/- 2.1 Freedman et al. (2012)

Baryon 
acoustic peak 67.0 +/- 3.2 Beutler et al. (2011)

All cosmology 68.9 +/- 1.1 Samushia et al. (2012)



Is this competitive?

• Could be a signature of gravitational physics driven by 
inhomogeneity / backreaction ?  [speculation]

• Interesting discrepancies between H0 measurements?
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Figure 2. The 2D correlation function of 6dFGS using a density
weighting with P0 = 1600h3 Mpc−3. For reasons of presentation
we binned the correlation function in 0.5h−1 Mpc bins, while in
the analysis we use larger bins of 2h−1 Mpc. Both redshift-space
distortion effects are visible: the “finger-of-God” effect at small
angular separation rp, and the anisotropic (non-circular) shape
of the correlation function at large angular separations.

There is a possible bias in the estimation of the correla-
tion function due to the fact that we estimate both the mean
density and the pair counts from the same survey. This leads
to a non-zero difference between the true correlation func-
tion estimate of an ensemble of surveys and the ensemble
average of ξ(s) from each survey. This is commonly known
as the integral constraint (e.g. Peebles 1980), which can be
calculated as (see e.g. Roche et al. 2002)

ic =

∑

ξmodelRR
∑

RR
(8)

and enters our correlation function estimate as

ξdata = ξ′data + ic, (9)

where ξ′data is the redshift-space correlation function from
eq. 5 and ξmodel is the model for the correlation function.
In 6dFGS ic is typically around 6 × 10−4 and so has no
significant impact on the final result.

In Figure 2 we show the 2D correlation function calcu-
lated from the 6dFGS dataset. In this Figure we use bins
of 0.5h−1 Mpc, while for the analysis later on we use larger
bins of 2h−1 Mpc (see Figure 6). The figure shows clearly
the two effects of redshift-space distortions which we will
discuss later in section 5, the “finger-of-God” effect at small
rp, and the linear infall effect at larger rp which gives the
correlation function a non-circular shape.

3.1 Density weighting

In Fourier space the error in measuring the amplitude of a
mode of the linear power spectrum1 is given by

σP (k) = (b+ fµ2)2P (k) + 〈N〉, (10)

where b is the linear bias, f is the growth rate, µ is the
cosine of the angle to the line of sight and P (k) is the matter
power spectrum. The first term on the right hand side of
this equation represents the sample-variance error, while the
second term (〈N〉) represents the Poisson error.

If the sample-variance error is dominant we can reduce
the power spectrum error by employing a weighting scheme
which depends upon the galaxy density n(z), such as the
one suggested by Feldman, Kaiser & Peacock (1994)

wi(z) =
1

1 + n(z)P0
, (11)

where P0 describes the amplitude of the weighting. A
stronger weighting (larger value of P0) yields a smaller
sample-variance error since it increases the survey volume
by up-weighting sparsely sampled regions. However, such a
weighting scheme also increases the Poisson error because it
shifts the effective redshift to larger values with a smaller
galaxy number density. This is illustrated in Figure 3(a)
and 3(b). Such a weighting scheme is standard for large scale
structure analyses.

In a magnitude-limited sample such as 6dFGS, up-
weighting higher redshift galaxies also has the effect of shift-
ing the galaxy bias to larger values. The sample-variance
error is proportional to the clustering amplitude, and so a
larger bias results in a larger error. However, the weight-
ing will still ensure that the relative error of the power
spectrum, σP (k)/P (k), is minimised. The redshift-space dis-
tortion signal is inversely proportional to the galaxy bias,
β $ Ωγ

m(z)/b. If weighting increases the bias b, it also re-
duces the signal we are trying to measure. We therefore must
investigate whether the advantage of the weighting (the re-
duced relative error) outweighs the disadvantage (increasing
galaxy bias).

The situation is very different for measuring a signal
that is proportional to the clustering amplitude, such as the
baryon acoustic peak. In this case the error and the sig-
nal are proportional to the bias, and so weighting will al-
ways be beneficial. We stress that an increasing bias with
redshift is expected in almost all galaxy redshift surveys.
Therefore redshift-space distortion studies should first test
whether galaxy weighting improves the measurement. The
6dF Galaxy Survey is quite sensitive to the weighting scheme
employed because it has a high galaxy density, making the
sample-variance error by far the dominant source of error.

Finally, we have to consider the correlation between the
bins in the measured power spectrum or correlation func-
tion. If the error is sample-variance dominated, the bins will
show large correlation (especially in the correlation func-
tion), while in the case of Poisson-noise dominated errors,
the correlation is much smaller. Weighting will always in-
crease the Poisson noise and hence reduce the correlation
between bins.

1 As the correlation function and power spectrum are related by
a Fourier transform, the following discussion also holds true for a
correlation function measurement.
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Figure 7. The value of gθ(zeff ) = f(zeff )σ8(zeff ) as a function of
the cut-off scale rcutp , obtained by fitting the 6dFGS 2D correla-
tion function with two different models (as described in section 5.3
and 5.4). At large scales the two models converge to similar val-
ues, while on small scales the models deviate from each other
because of the different descriptions of non-linear evolution. For
the final parameter measurements in Table 1 we chose model 2,
ξSc(rp, π), with a conservative cut-off scale of rcutp = 16h−1 Mpc.
In the lower panel we plot the reduced χ2 as an indicator of the
quality of the fit.

We can also express our results in terms of β which
is given by β = gθ/gb = 0.373 ± 0.054. We summarise all
measured and derived parameters in Table 1.

6.2 Derivation of σ8 and Ωm

In this section we use redshift-space distortions to directly
measure σ8. The angular dependence of the redshift-space
distortion signal in the 2D correlation function allows us
to measure β, which quantifies the amplitude of redshift-
space distortions. Together with Ωm(z) and γ = 0.55, this
constrains the linear bias b through the equation

b ! Ωγ
m(z)
β

. (44)

Knowing b we can use the absolute amplitude of the
correlation function, [bσ8(z)]

2, to constrain σ8(z=0) =
[D(z=0)/D(zeff )]× σ8(zeff).

For computational reasons we use our first model,
ξst(rp,π), in this sub-section and fit the five parameters
σ8, Ωm, b, H0 and σp using an MCMC approach. Since
the shape of the correlation function is only sensitive to
Γ = Ωmh, we cannot constrain Ωm and H0 at the same
time. For the final results we include a prior on the Hubble
constant (H0 = 73.8 ± 2.4 kms−1 Mpc−1, Riess et al. 2011,
from now on referred to as HST prior) and marginalise over
it. We use the same binning and fitting ranges as in the
previous section.

The best-fitting model results in χ2/d.o.f = 1.35. We
find σ8 = 0.76 ± 0.11, Ωm = 0.250 ± 0.022, b = 1.48 ± 0.27
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Figure 8. Likelihood distribution of gθ and gb derived from the
fit to the 2D correlation function. The solid black contours show
model ξSc(rp,π), while the dashed contours show the streaming
model (see section 5.3 and 5.4 for details of the modelling). The
fitting range is 0 < π < 30h−1 Mpc and 10 < rp < 30h−1 Mpc
for ξst(rp,π) and 0 < π < 30h−1 Mpc and 16 < rp < 30h−1 Mpc
for ξSc(rp,π). The black cross indicates the best-fitting value for
the solid black contours.
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Figure 9. This plot shows the likelihood distribution of the
galaxy bias b and σ8, which we obtained by fitting the 6dFGS
2D correlation function assuming γ = 0.55. The solid black
line shows the result using a prior on the Hubble constant of
H0 = 73.8±2.4 km s−1 Mpc−1 from Riess et al. (2011), while the
dashed black line uses a prior of H0 = 67 ± 3.2 kms−1 Mpc−1

from Beutler et al. (2011). Although the detection of redshift-
space distortions can partially break the degeneracy between b

and σ8 which exists in the 1D correlation function, there is still a
significant residual degeneracy. The black cross marks the maxi-
mum likelihood value for the solid black lines.

c© 0000 RAS, MNRAS 000, 000–000

• 6dFGS measurement from Beutler et al. (2012)
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Why measure RSD at low redshift?

• Advantage : local growth rate is very sensitive to dark 
energy or modified gravity model

• Advantage : high number density of galaxies may be 
observed, allowing multiple-tracer techniques

• Disadvantage : structure becomes “non-linear” at low 
redshift and difficult to model

• Disadvantage : is difficult to cover a sizable volume

• Is a TAIPAN RSD survey competitive?



Survey simulations

• Simulation from Beutler et al. (2012)

Survey
Galaxy

bias
Growth error 
(k < 0.1 h/Mpc)

Growth error
(k < 0.2 h/Mpc)

6dFGS 1.4 23% 8%

TAIPAN (r<17) 1.4 11% 4%

WALLABY 0.7 13% 5%

overlap 1.4 & 0.7 10% 5%

• TAIPAN / WALLABY should increase the accuracy in 
the z=0 growth rate by a factor of 2 



Is this competitive?
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Figure 2. 68.3 and 95.4 per cent confidence contours in the w, γ plane for the γ+wCDM model from cl+CMB+gal (gold contours in both
panels) and the following combinations of data (right panel): cl+CMB (purple contours), cl+gal (magenta contours), CMB+gal (turquoise
contours). The platinum contours in the left panel correspond to adding SNIa+BAO+SH0ES to the combination of cl+CMB+gal. The
horizontal, dashed lines mark γ = 0.55, the growth history for GR. The vertical, dot-dashed lines mark w = −1, the expansion history
for ΛCDM. This figure shows that the results are simultaneously consistent with GR and ΛCDM.

5.2 Constraints on the γ+wCDM model

The left panel of Figure 2 shows the joint constraints in
the w, γ plane for the γ+wCDM model. For the combina-
tion of our primary data sets, cl+CMB+gal, we obtain the
gold contours. For these, we find marginalized constraints
on w = −0.950+0.069

−0.070 and γ = 0.533± 0.080 at the 68.3 per
cent confidence level. These results are simultaneously con-
sistent with GR and ΛCDM. The platinum contours in this
panel show the joint constraints on the w, γ plane when we
add SNIa+BAO+SH0ES to the cl+CMB+gal data24. We
find marginalized constraints on w = −0.968± 0.049, which
represent an improvement of ∼ 30 per cent compared to not
using them.

In the right panel of the figure, the purple contours
correspond to cl+CMB, the magenta contours to cl+gal, the
turquoise contours to CMB+gal and the gold contours again
to the combination of the three data sets. The horizontal,
dashed and vertical, dot-dashed lines mark γ = 0.55 (GR)
and w = −1 (ΛCDM), respectively.

Comparing the cl+CMB with the cl+CMB+gal results,
we find 46 and 62 per cent improvements in the constraints
on γ and σ8, respectively. It is also worth noting that the
improvement in the joint measurement of w and γ is larger
than that for each individual parameter. We find more than

24 From Table 1, note that the main additional constraint on this
plane comes from the SNIa data and only smaller contributions
come from the SH0ES and BAO data. The latter two, though,
significantly help constraining the combination of parameters Ωm

and H0.

a factor 3 reduction in the area enclosed by the 95.4 per cent
confidence contour of the joint w, γ constraints. Note that
the correlation between w and γ increases from ρ = −0.47,
for cl+CMB, to ρ = −0.66, for cl+CMB+gal, which sug-
gests that additional constraints on w might also help im-
proving those on γ. In fact, even though SNIa, BAO and
SH0ES data provide direct additional constraints on only
cosmic expansion parameters, the combined, marginalized
constraints on γ represent an improvement of 11 per cent
due to the correlation between w and γ. For all the data
sets combined, we obtain γ = 0.546+0.071

−0.072. For this, the cor-
relation in the w, γ plane is still of ρ = −0.63. Interestingly,
the correlation between γ and Ωch

2 is also relatively large,
ρ = 0.69, which indicates that improvements in the con-
straints on this parameter by e.g. CMB measurements from
the Planck satellite25, which are expected to be significant,
would also help with constraining γ.26

Figure 3 shows constraints for the same model and sub-
sets of the data for three different planes: the growth plane
σ8, γ (left panel) and the expansion planes Ωm, w (middle
panel) and Ωm, H0 (right panel). The left panel of this fig-
ure shows that the correlation between σ8 and γ reduces
dramatically from cl+CMB (purple contours), ρ = −0.56,
to cl+CMB+gal (gold contours), a negligible ρ = 0.08. The
reduction in the area enclosed by the 95.4 confidence con-

25 http://www.esa.int/Planck
26 Note that the correlations between γ and Ωm(= Ωb + Ωc),
ρ = 0.14, γ and Ωbh

2, ρ = 0.20, and γ and H0, ρ = 0.39, are
significantly smaller. However, the correlation between Ωm and
H0 is also large, ρ = −0.72 (see Figure 3).

c© 2011 RAS, MNRAS 000, 1–13

• Galaxy surveys / CMB / 
clusters together 
demonstrate consistency 
with gamma=0.55 (G.R.), 
w=-1 (Lambda)

• 6dFGS measurement 
significant help here, so 
improved precision would 
have benefit ... 

Rapetti et al. (2012)



• Direct measurement of galaxy velocities using “standard 
candle” techniques such as fundamental plane

• The amplitude of the local bulk flow has been claimed 
as inconsistent with the standard cosmological model

• Velocity and density measurements can be powerfully 
combined to test models

Probe 3 : peculiar velocities



• Advantage : improved measurements of the growth rate 
from the information added by velocities

• Advantage : greatly improved measurements of (f/b) from 
cancelling cosmic variance between density and velocity

• Advantage : information contained on large scales

• Disadvantage : large velocity errors, limited maximum 
redshift, systematics?

• Are peculiar velocities competitive with redshift-space 
distortions?

Why are peculiar velocity surveys useful?



Survey simulations

Survey Growth error
(k < 0.1 h/Mpc)

Growth error
(k < 0.2 h/Mpc)

6dFGS 13% 10%

TAIPAN (r<16.5) 8% 6%

TAIPAN (r<17) 7% 5%

WALLABY 4% 3%

• Fisher matrix forecasts for density+velocity field:

• 20% distance accuracy assumed and realistic N(z) for each survey

• Few per cent error in growth is achievable (competitive with RSD!)

• Information is concentrated at low k !

Koda et al.
(in prep)
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Pv(k) = H2 f2 a2 Pm(k)
k2



• TAIPAN can provide 3% measurement of H0 (1% with 
optimal selection) but this may not be competitive 
with other cosmological data by 2020?

• Local H0 measurements could trace gravitation and 
curvature in a clumpy Universe?

• TAIPAN redshift survey can improve the z=0 growth 
rate by a factor of 2, resulting in stronger tests of GR

• TAIPAN peculiar velocity survey can produce similar 
gains using larger-scale modes

Conclusions


