Cosmology with TAIPAN : What could we learn?

Chris Blake, Swinburne

Credits : Florian Beutler , Jun Koda , Chris Springob , Christina Magoulas , Andrew Johnson , Morag Scrimgeour , Tamara Davis

Cosmological physics

What is "dark energy"?

 new, missing matterenergy component

2) failure of the laws of gravity on cosmic scales

3) failure to correctly model inhomogeneity

Probes of the cosmological model

How fast is the Universe expanding with time?

How fast are structures growing within it?

Probes of the cosmological model

- TAIPAN cosmology probes :
- (I) Baryon acoustic peak
- (2) Redshift-space distortions
- (3) Peculiar velocities

Image credit : Lawrence Berkeley National Laboratory

Probe I : baryon acoustic peak

• Standard ruler in galaxy clustering pattern which allows the mapping out of cosmic distances

Probe I : baryon acoustic peak

- Standard ruler in galaxy clustering pattern which allows the mapping out of cosmic distances
- Calibrated in units of Mpc using CMB physics with accuracy of 1.1% [WMAP], 0.25% [Planck]

• Application to a low-z survey measures H_0

Existing low redshift measurement!

D(z=0.1) = 456 +/- 27 Mpc

Why measure H₀?

- Local expansion rate is a fundamental cosmic parameter (e.g. important for determining the age of the Universe)
- Independent determination of H₀ can improve the measurement of other parameters (e.g. dark energy, neutrino numbers/masses)
- Interesting systematic comparison with other local H₀ measurements (Cepheids, masers, supernovae)
- Is a TAIPAN baryon acoustic peak measurement of H₀ competitive with other techniques and probes?

• Simulation from Beutler et al. (2011)

Simulation method :

- Create many clustered "lognormal realizations" to simulate the experiment
- Consider two TAIPAN scenarios (r<16.5, r<17)
- Use the ensemble of realizations to determine significance and accuracy of acoustic peak measurement

).9

• Simulation from Beutler et al. (2011)

Survey	N _{gal}	Sky fraction	V _{eff} (Gpc/h) ³	BAO significance	Distance error
6dFGS	80,000	half	0.08	l.7+/-0.7 [2.4!]	6%
TAIPAN (r<16.5)	220,000	half	0.13	2.1+/-0.7	<mark>6</mark> %
TAIPAN (r<17)	410,000	half	0.23	3.5+/-0.8	3%
WALLABY	600,000	full	0.12	2.1+/-0.7	7%

• TAIPAN r<17 will provide 3% distance measurement

• Can we do better? Yes!

- We can select galaxies to fill space more uniformly [e.g. photo-z]
- We can use "reconstruction" of the acoustic peak

Padmanabhan et al. (2012)

• Does this help current measurements of dark energy?

- Other probes already measure H₀ to I-2% [N.B. assuming a cosmological model]
- If w(z) is an unknown function, then a local H₀ measurement is the only way to determine the age of the Universe
- An interesting tension exists with local standard candle measurements [Riess et al. 2011, Freedman et al. 2012]

• Does this help future measurements of dark energy?

Weinberg et al. (2012)

- Assuming (w₀, w_a) model, I% H₀ measurement adds about 40% to Stage III dark energy experiments [e.g. BOSS, DES, etc.]
- Adds very little to Stage IV experiments [e.g. LSST, SKA, etc.]

- Does this help measure other parameters?
- Number of neutrinos and H₀ are currently correlated
- Intriguing hints from cosmological data that N_{eff} > 3 [95% confidence]
- Unfortunately other datasets (Planck) are more powerful here ...

• Interesting discrepancies between H₀ measurements?

Method	H ₀ [km/s/Mpc]	Reference	
Cepheids / masers / SNe	73.8 +/- 2.4	Riess et al. (2011)	
Cepheids	74.3 +/- 2.I	Freedman et al. (2012)	
Baryon acoustic peak	67.0 +/- 3.2	Beutler et al. (2011)	
All cosmology	68.9 +/- 1.1	Samushia et al. (2012)	

- Interesting discrepancies between H₀ measurements?
- Could be a signature of gravitational physics driven by inhomogeneity / backreaction ? [speculation]

Probe 2 : redshift-space distortions

Probe 2 : redshift-space distortions

6dFGS measurement from Beutler et al. (2012)

Probe 2 : redshift-space distortions

Why measure RSD at low redshift?

- Advantage : local growth rate is very sensitive to dark energy or modified gravity model
- Advantage : high number density of galaxies may be observed, allowing multiple-tracer techniques
- Disadvantage : structure becomes "non-linear" at low redshift and difficult to model
- Disadvantage : is difficult to cover a sizable volume
- Is a TAIPAN RSD survey competitive?

• Simulation from Beutler et al. (2012)

Survey	Galaxy bias	Growth error (k < 0.1 h/Mpc)	Growth error (k < 0.2 h/Mpc)
6dFGS	1.4	23%	8%
TAIPAN (r<17)	1.4	11%	4%
WALLABY	0.7	13%	5%
overlap	1.4 & 0.7	10%	5%

 TAIPAN / WALLABY should increase the accuracy in the z=0 growth rate by a factor of 2

Probe 3 : peculiar velocities

- Direct measurement of galaxy velocities using "standard candle" techniques such as fundamental plane
- The amplitude of the local bulk flow has been claimed as inconsistent with the standard cosmological model
- Velocity and density measurements can be powerfully combined to test models

$$\vec{v}(\vec{r}) = \frac{\Omega_{\rm m}^{0.55}}{4\pi} \int d^3 \vec{r'} \, \delta_{\rm m}(\vec{r'}) \, \frac{(\vec{r'} - \vec{r})}{|\vec{r'} - \vec{r}|^3}$$

Why are peculiar velocity surveys useful?

- Advantage : improved measurements of the growth rate from the information added by velocities
- Advantage : greatly improved measurements of (f/b) from cancelling cosmic variance between density and velocity
- Advantage : information contained on large scales
- Disadvantage : large velocity errors, limited maximum redshift, systematics?
- Are peculiar velocities competitive with redshift-space distortions?

• Fisher matrix forecasts for density+velocity field:

Koda et al. (in prep)	Survey	Growth error (k < 0.1 h/Mpc)	Growth error (k < 0.2 h/Mpc)
	6dFGS	13%	10%
	TAIPAN (r<16.5)	8%	6%
	TAIPAN (r<17)	7%	5%
	WALLABY	4%	3%

- 20% distance accuracy assumed and realistic N(z) for each survey
- Few per cent error in growth is achievable (competitive with RSD!)
- Information is concentrated at low k !

Conclusions

- TAIPAN can provide 3% measurement of H₀ (1% with optimal selection) but this may not be competitive with other cosmological data by 2020?
- Local H₀ measurements could trace gravitation and curvature in a clumpy Universe?
- TAIPAN redshift survey can improve the z=0 growth rate by a factor of 2, resulting in stronger tests of GR
- TAIPAN peculiar velocity survey can produce similar gains using larger-scale modes