Lecture 2 : Searching for correlations

These lectures

• Lecture I : basic descriptive statistics

• Lecture 2 : searching for correlations

• Lecture 3 : hypothesis testing and model-fitting

• Lecture 4 : Bayesian inference

Lecture 2 : searching for correlations

- Correlation coefficient and its error
- How to quantify the significance of a correlation
- Bootstrap error estimates
- Non-parametric correlation tests
- Common pitfalls when searching for correlations
- Comparing two distributions

- Two variables are correlated if they share a statistical dependence / relationship
- For example, measurements of temperature at noon and Ipm every day are correlated, because they both lie consistently above the mean daily temperature
- Correlations between variables are important because they indicate some underlying physical relationship between those variables

Х

• Example in astronomy : black-hole / bulge relation

Correlation coefficient

- Describes the strength of the correlation between (x, y)
- Means : (μ_x, μ_y)
- Standard deviations : (σ_x, σ_y)
- Definition of correlation coefficient :

$$\rho = \frac{\langle (x - \mu_x)(y - \mu_y) \rangle}{\sigma_x \sigma_y} = \frac{\langle xy \rangle - \mu_x \mu_y}{\sigma_x \sigma_y}$$
$$\langle xy \rangle = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy P(x, y) \, dx \, dy$$

Correlation coefficient

$$\rho = \frac{\langle (x - \mu_x)(y - \mu_y) \rangle}{\sigma_x \sigma_y} = \frac{\langle xy \rangle - \mu_x \mu_y}{\sigma_x \sigma_y}$$

No correlation [P(x,y) separable into f(x) g(y)] :

$$\langle xy \rangle = \langle x \rangle \langle y \rangle = \mu_x \mu_y \qquad \rho = 0$$

- Complete correlation :
 - $y = C x \qquad \qquad \rho = +1$

 $\rho = -1$

- Complete anti-correlation : y = -C x
- Possible range is $-1 \le \rho \le +1$

Lies, damn lies and statistics

Watch One-Minute World News

News Front Page

Last Updated: Tuesday, 22 July, 2003, 10:28 GMT 11:28 UK E-mail this to a friend Printable version Eating pizza 'cuts cancer risk'

Italian researchers say Africa eating pizza could protect Americas against cancer. Asia-Pacific

Researchers claim eating pizza Europe regularly reduced the risk of Middle East developing oesophageal cancer South Asia by 59%. UK

Business Health Medical notes Science & Environment

The risk of developing colon cancer also fell by 26% and mouth cancer by 34%, they claimed.

Pizzas are covered with a potentially protective tomato sauce

Why was this poor statistics? Correlation is not the same as causation. Other dietary or lifestyle habits could be a third variable! [... more examples later ...]

Example 3

• We can estimate the Pearson product-moment correlation coefficient as :

$$r = \frac{\sum_{i=1}^{N} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \overline{x})^2 \sum_{i=1}^{N} (y_i - \overline{y})^2}}$$
$$r = \frac{\sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y}}{(N-1)\sqrt{\operatorname{Var}(x)\operatorname{Var}(y)}} \quad \text{c.f.} \quad \rho = \frac{\langle xy \rangle - \mu_x \mu_y}{\sigma_x \sigma_y}$$

• The possible range of values is

$$-1 \le r \le +1$$

• If the correlation is statistically significant :

- 0 < |r| < 0.3 is a "weak correlation"
- 0.3 < |r| < 0.7 is a "moderate correlation"
- 0.7 < |r| < 1.0 is a "strong correlation"

• Assumption : (x,y) are drawn from a bivariate Gaussian distribution about an underlying linear relation :

$$P(x,y) = \frac{\exp\left\{-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\mu_x)^2}{\sigma_x^2} + \frac{(y-\mu_y)^2}{\sigma_y^2} - \frac{2\rho(x-\mu_x)(y-\mu_y)}{\sigma_x\sigma_y}\right]\right\}}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}}$$

• If this model is true, then the uncertainty in the measured value of r is

$$\sigma(r) = \sqrt{\frac{1 - r^2}{N - 2}}$$

• Example I : who discovered the distance-redshift relation, Lemaitre (1927) or Hubble (1929)?

arXiv:1106.3928 etc.

"A Hubble Eclipse: Lemaître and Censorship"

David L. Block, School of Computational & Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

Abstract. One of the greatest discoveries of modern times is that of the expanding Universe, almost invariably attributed to Hubble (1929). What is not widely known is that the original treatise by Lemaître (1927) contained a rich fusion of both theory and of observation. The French paper was meticulously censored when printed in English - all discussions of radial velocities and distances (and the very first empirical determination of "H") were omitted. Fascinating insights are gleaned from a letter recently found in the Lemaître archives. An appeal is made for a Lemaître Telescope, to honour the discoverer of the expanding universe.

• Example I : who discovered the distance-redshift relation, Lemaitre (1927) or Hubble (1929)?

• Part (a) : For each dataset, find the Pearson productmoment correlation coefficient and its error

• What is the probability of obtaining the measured value of r if the true correlation is zero? (also depends on N)

- In order to determine whether the correlation is significant, calculate $t = r \sqrt{\frac{N-2}{1-r^2}}$
- This obeys the Student's t probability distribution with number of degrees of freedom $\nu = N 2$

• Consult tables (2-tailed test) with these two numbers

 Standard tables list the critical values that t must exceed, as a function of nu, for the hypothesis that the two variables are unrelated to be rejected at a particular level of statistical significance (e.g. 95%, 99%)

"Two-tailed test":
correlation or anti-correlation

Two-tailed test

	One tail, α	0.25	0.10	0.05	0.025	0.01	0.005	1
d.f.	Two tails, α	0.50	0.20	0.10	0.05	0.02	0.01	-
1		1.000	3.078	6.314	12,706	31.821	63.657	1
2	A Constant of Long and	.816	1.886	2.920	4.303	6.965	9.925	
3		.765	1.638	2.353	3.182	4.541	5.841	
4	the second second second	.741	1.533	2.132	2.776	3.747	4.604	
5		.727	1.476	2.015	2.571	3.365	4.032	
6		.718	1.440	1.943	2.447	3.143	3.707	
7		.711	1.415	1.895	2.365	2.998	3.499	
8		.706	1.397	1.860	2.306	2.896	3.355	
9		.703	1.383	1.833	2.262	2.821	3.250	
10	NY STATE CARLING STATE	.700	1.372	1.812	2.228	2.764	3.169	
11		.697	1.363	1.796	2.201	2.718	3.106	
12	all said and share the said	.695	1.356	1.782	2.179	2.681	3.055	
13		.694	1.350	1.771	2.160	2.650	3.012	
14	EN CONSTRUCTION OF	.692	1.345	1.761	2,145	2.624	2.977	
15		.691	1.341	1.753	2.131	2.602	2.947	
16		.690	1.337	1.746	2.120	2.583	2.921	
17		.689	1.333	1.740	2.110	2.567	2.898	

- Part (b) : Determine the statistical significance of the correlation
- Lemaitre : t=2.60 , nu=40, prob=1.3e-2 (2.5 sigma)
- Hubble : t=6.03 , nu=22 , prob=4.5e-6 (4.6 sigma)

Linear regression line

- The regression line is the linear fit that minimizes the sum of the squares of the y-residuals
- With intercept [y = a + b x]:

$$b = \frac{\sum_{i=1}^{N} x_i y_i - N \overline{x} \overline{y}}{(N-1) \sigma_x^2} = r \frac{\sigma_y}{\sigma_x}$$
$$a = \mu_y - b \mu_x$$

• Without intercept [y = b x] :

$$b = \frac{\sum_{i=1}^{N} x_i y_i}{\sum_{i=1}^{N} x_i^2}$$

Linear regression line

- Part (c) : Determine linear least-squares regression lines of the form V = HD and v = H'D + C
- Lemaitre : H=414.9 , H'=221.7 , C=316.5 Hubble : H=423.9 , H'=453.9 , C=-40.4

Linear regression line

- Aside : Hubble and Lemaitre both found values of H₀ ~ 420 km/s/Mpc with independent techniques ! How could they both be wrong? [Example of statistical bias]
- Today would probably indicate confirmation bias, but Hubble didn't even cite Lemaitre's result!
- Lemaitre : assumed galaxy apparent magnitude was standard candle scuppered by Malmquist bias
- Hubble : used "brightest stars" as standard candles, but could not distinguish brightest star from HII region (systematic error bias due to aperture effect)

Bootstrap errors and probabilities

- Bootstrap statistics allow us to determine parameter errors and probability distributions using just the data
- If we have N data points, repeatedly draw at random samples of N points (with replacement)
- Re-compute the parameter of interest for each bootstrap sample
- The distribution of the re-computed parameters estimates the uncertainty in the measurement from the original sample

Bootstrap errors and probabilities

• Applied to our example : create 1000 bootstrap samples and measure the correlation coefficients

Bootstrap errors and probabilities

 Applied to our example : create 1000 bootstrap samples and do a linear regression fit

Non-parametric correlation coefficient

-		$D \; [\mathrm{Mpc}]$	Rank
	If we do not want to assume (x,y) are drawn	0.03	1.0
	from a bivariato Gaussian wa can uso a non	0.03	2.0
	ITOTT à Divariale Gaussian we can use à non-	0.21	3.0
	parametric correlation test	0.26	4.0
	parametric correlation test	0.28	5.5
		0.28	5.5
		0.45	7.0
	Let (X, Y) be the rank of (x, y) in the everall	0.50	8.5
	Let (Λ_i, Γ_i) be the rank of (X_i, y_i) in the overall	0.50	8.5
	order such that $1 < (X, V) < N$	0.63	10.0
	order such that $1 \leq (X_i, T_i) \leq N$	0.80	11.0
		0.90	13.5
		0.90	13.5
	Find Speakman kank correlation coefficient	0.90	13.5
	Find spearman rank correlation coefficient	0.90	13.5
		1.00	16.0
	N 2	1.10	17.5
	$\sum_{i=1}^{N} (X_i - Y_i)^2$	1.10	17.5
	$r - 1 - 6 \frac{\sum_{i=1}^{r} (\sum_{i=1}^{r} \sum_{i=1}^{r} \sum_{$	1.40	19.0
	$N_{s} = 1 0 M^{3} = N$	1.70	20.0
	$I \mathbf{v} = I \mathbf{v}$	2.00	22.5
		2.00	22.5
	Compare to standard tables with $\nu = N - 2$	2.00	22.5
		2.00	22.5

Non-parametric correlation coefficient

 Standard tables list the critical values that rs must exceed, as a function of nu, for the hypothesis that the two variables are unrelated to be rejected at a particular level of statistical significance (e.g. 95%, 99%)

1.2.2.2								
	LEVEL OF SIGNIFICANCE FOR TWO-TAILED TEST							
df	.10	.05	.02	.01				
5	.900	1.000	1.000					
6	.829	.886	.943	1.000				
7	.714	.786	.893	.929				
8	.643	.738	.833	.881				
9	.600	.683	.783	.833				
10	.564	.648	.746	.794				
12	.506	.591	.712	.777				
14	.456	.544	.645	.715				
16	.425	.506	.601	.665				
18	.399	.475	.564	.625				
20	.377	.450	.534	.591				
22	.359	.428	.508	.562				
24	.343	.409	.485	.537				
26	.329	.392	.465	.515				
28	.317	.377	.448	.496				
30	.306	.364	.432	.478				

Non-parametric correlation coefficient

- Part (e) : Determine the Spearman rank crosscorrelation coefficient and its statistical significance
- Lemaitre : r_s=0.42 , nu=40 , prob=6.0e-3 (2.8 sigma)
- Hubble : r_s=0.80 , nu=22 , prob=3.4e-6 (4.7 sigma)
- [Results very similar to Pearson product-moment correlation coefficient, but fewer assumptions]

Issues with correlations

 Selection effects leading to spurious correlations, for example Malmquist bias

Issues with correlations

 Is the correlation driven by a small number of outliers, so is not robust?

.....

 X_3

y₃

 X_4

Issues with correlations

- Correlation does not necessarily imply causation
- Sleeping in your shoes causes you to wake up with a headache! [third variable - you were probably having a few drinks the night before...]
- Ice cream sales cause drowning! [third variable hotter weather means more people are at the beach...]
- Having grey hair causes cancer! [third variable age...]
- Obesity causes global warming! [third variable everyone is getting richer...]

Lies, damn lies and statistics

Example 4

"We don't accept the idea that there are harmful agents in tobacco" [Phillip Morris, 1964]

Why was this poor statistics? Cigarette companies were attempting to invoke a "third variable". But correlation does sometimes imply causation, if it can be demonstrated by independent lines of evidence

Comparing two distributions

- Are two samples drawn from the same distribution?
- Example 2 : samples of flux densities measured at random positions [A] and galaxy positions [B]

Comparing two distributions

- Part (a) : Are their means consistent?
- Calculate t statistic and no. of degrees of freedom :

- Compare to Student's t distribution
- t = 0.31, nu = 661.5, prob of consistency = 0.76
- Small print : assumes (x,y) are normally-distributed populations

Comparing two distributions

- Part (b) : Are the full distributions consistent?
- The Kolmogorov-Smirnov test considers the maximum value of the absolute difference between the cumulative probability distributions

