Testing the laws of gravity with combined probes of cosmology

Chris Blake, Ixandra Achitouv, Caitlin Adams, Alexandra Amon, Andrew Johnson, Shahab Joudaki, Jun Koda

Cosmological observations

Homogeneous expansion of the Universe

Growth of perturbations within the expanding background

Cosmological observations

- The cosmic expansion history has been measured with $\sim 1\%$ accuracy using supernovae and baryon acoustic oscillations
- The cosmic growth history has not yet been measured as accurately, but is crucial for distinguishing physics

Cosmological observations

- There are a rich variety of observable signatures of the clumpy Universe ...
- Clustering of galaxies
- Velocities of objects
- Gravitational lensing
- Abundance/properties of objects
- Environmental effects

Combined probes

- Different probes are sensitive to different projections of the model (i.e. break degeneracies)
- Statistical errors can be improved (through extra information, or correlated sample variance)
- Systematic errors can be cross-checked or mitigated

Combined Probes I: Velocities and large-scale structure

Credit: Pomarede et al. (2017) – arXiv:1702.01941

Direct peculiar velocities

• Radial peculiar velocity estimates **for individual galaxies** from distance measurements (e.g. standard candles)

Credit: Christina Magoulas (arXiv:1206.0385)

- Fundamental plane of elliptical galaxies: correlation between velocity dispersion σ , size R_e and surface brightness I_e
- ~25% distance measurements
- Obtain radial velocity v_r from $(1 + z_{obs}) = \left(1 + \frac{v_r}{c}\right)(1 + z_{cos})$
- Alternatively: SNe, Tully-Fisher

Direct peculiar velocities

- Direct PVs improve growth rate measurements due to direct relationship between velocity and density
- Common sample variance imprinted in density/velocity fields improves constraints
- Velocities driven by largestscale density modes,

$$P_{v_r v_r}(k) \sim \left(\frac{a H f \mu}{k}\right)^2 P_m(k)$$

Fisher matrix forecast in Koda et al. (2014) – arXiv:1312.1022

6-degree Field Galaxy Survey

- Southern-sky survey carried out at the UK Schmidt Telescope, 2001-2006
- **125,000 redshifts** with $\bar{z} \sim 0.05$
- 9,000 direct peculiar velocities from fundamental plane distances (still the largest single sample)

Fits to 6dFGS peculiar velocity data

- First consider fitting to radial peculiar velocities alone
- **Peculiar velocities are correlated** by an amount depending on the growth rate of structure (and orientation, scale)

Fits to 6dFGS peculiar velocity data

 Model the likelihood in terms of the observed radial velocities v_i and a covariance matrix C_v

$$L = \frac{1}{\sqrt{2\pi |C_v|}} e^{-\frac{1}{2}\sum_{ij} v_i (C_v^{-1})_{ij} v_j}$$

- The covariance matrix C_v depends on the velocity power spectrum $P_{\theta\theta}(k) = f^2 P_m(k)$ and the errors in the data
- We do an MCMC fit for the **amplitudes of** $P_{\theta\theta}(k)$ in k-bins, i.e. the growth rate $f\sigma_8(k)$

Johnson et al. (2014) – arXiv:1404.3799

Fits to 6dFGS peculiar velocity data

• The amplitude of the velocity power measures the growth rate on $k \sim 0.01 h \text{ Mpc}^{-1}$ (~Gpc) scales

Phenomenological test of gravity

• Modify gravitational physics for matter and light with phenomenological functions $G_{matter}(k, z)$ and $G_{light}(k, z)$

$$\nabla^2 \psi = 4\pi G_N a^2 \rho_m \delta_m \times \boldsymbol{G}_{\text{matter}}(\boldsymbol{k}, \boldsymbol{z})$$
$$\nabla^2 (\boldsymbol{\phi} + \boldsymbol{\psi}) = 8\pi G_N a^2 \rho_m \delta_m \times \boldsymbol{G}_{\text{light}}(\boldsymbol{k}, \boldsymbol{z})$$

- Use **two scale and redshift bins** ($k = 0.01 h \text{ Mpc}^{-1}$, z = 1) to fit for 8 MG parameters – implement using ISITGR code
- Fit to a **range of datasets** sensitive to ψ (PVs, RSD), $\phi + \psi$ (lensing, ISW) and background cosmology (CMB, BAO, SNe)

Phenomenological test of gravity

• We find no significant evidence for $G_{matter} \neq 1$ or $G_{light} \neq 1$

> Green: CMB+BAO+SNe Grey: +peculiar velocities Red: +RSD Blue: +CMB cross-correlation

> > Johnson et al. (2015) – arXiv:1504.06885

 As well as correlations between radial velocities, we wish to include cross-correlations of velocities with the galaxy density field and RSD in the density field

Hence obtain optimal constraints on growth across scales

• Visualize the cross-correlation information by plotting $\langle \delta, v \rangle$ against angle to the line-of-sight – **the velocities are produced by the gravitational effect of the densities**!

Adams & Blake (2017) – arXiv:1706.05205

• Add the density-velocity cross-correlations in the fit for the growth rate (fit for $f\sigma_8$, $\beta = f/b$, σ_v) – excluding RSD for now

Adams & Blake (2017) – arXiv:1706.05205

• Growth rate measurement $f\sigma_8(z=0) = 0.42 \pm 0.06$ from vv- and δv -correlations – excluding RSD for now

Taipan Galaxy Survey

Credit: Michael Childress

Credit: David Brown, AAO

Southern-sky survey (20,000 deg²), 2018-2022
~10⁶ galaxy redshifts (z < 0.3)
~10⁵ direct peculiar velocities (z < 0.1)

Taipan Galaxy Survey

Distance scale science

- ~1% measurement of D_V/r_d using baryon acoustic peak as a standard ruler (~2% with Phase 1 data, end-2019)
- Accurate distance constraint may inform H_0 "tension"

Taipan Galaxy Survey

Gravitational growth science

Credit: Cullan Howlett (arXiv:1706.01246)

- $\sim\!3\%$ measurement of $f\sigma_8$ using RSD and direct peculiar velocities ($\sim 5\%$ with Phase 1 data, end-2019)
- Direct PVs tracing large-scale growth ($k < 0.05 h \text{ Mpc}^{-1}$) •

Combined Probes II: Lensing and large-scale structure

Lensing and large-scale structure

- Compare the effect of density fluctuations on galaxy velocities and the lensing of distant galaxy light
- Lensing and velocities test different modifications to gravitational physics
- Overlapping surveys allow measurement of new statistics (i.e. galaxy-galaxy lensing)
- Overlapping surveys allow mitigation of systematics (e.g. photo-z calibration, galaxy bias, intrinsic alignments)

Kilo-Degree Survey (KiDS)

- Multi-band (*ugri*) imaging survey of 1500 deg² using the VST's OmegaCAM instrument (450 deg² released)
- Optimized for weak gravitational lensing measurements

2-degree Field Lensing Survey (2dFLenS)

- Spectroscopic follow-up of KiDS and other lensing surveys over 50 AAT nights (Sep 2014 – Jan 2016)
- Sample of 70,000 LRGs/bright galaxies for crosscorrelations with weak lensing and photo-z calibration

Combined probes: RSD+lensing

• Analyse lensing/clustering measurements in **overlap areas**

Combined probes: RSD+lensing

- Cosmological fits to cosmic shear (ξ₊, ξ₋), galaxy-galaxy lensing (γ_t) and power spectrum multipoles (P₀, P₂) in overlap areas
- Combined probes help
 determine systematics
 (intrinsic alignments, bias)
- Some evidence that lensing prefers lower $\sigma_8 \sqrt{\Omega_m}$
- Will improve as datasets expand! (e.g. KiDS-1000)

Combined probes: gravitational slip

• Overlapping surveys allows tests such as the "gravitational slip", using galaxy-galaxy lensing and RSD of lens galaxies

N(z)'s from cross-correlations

- Determining the source redshift distribution is one of the principal systematics for cosmic shear cosmology
- Direct measurement is challenging due to lack of sufficiently deep and complete spec-z samples
- Cross-correlation with brighter spec-z samples offers an alternative approach

N(z)'s from cross-correlations

• Inference of $b_s(z)P_s(z)$ from angular cross-correlations of KiDS sources in 4 tomographic bins with 2dFLenS spec-z's, using optimal quadratic estimation technique

Summary

- Apparent existence of dark energy motivates new tests of large-scale gravitational physics
- Combined probe analyses are pivotal for breaking degeneracies and improving statistics/systematics
- Tests for gravity can be constructed using large-scale structure, peculiar velocities and lensing
- All measurements are so far consistent with the standard cosmological model, but the accuracy will improve significantly in the near future

Credit: Greg Poole