# Galaxy-galaxy lensing tests for KiDS-1000 vs. BOSS/2dFLenS

Chris Blake

20 December 2018

#### Goals

## Investigate implementation of galaxy-galaxy lensing component of KiDS-1000 Phase 1

- Can galaxy-galaxy lensing around BOSS and 2dFLenS be consistently combined?
- What are the key systematics to address?
- Should any weights be applied to reduce systematic bias, or optimize statistical error?

### Default galaxy-galaxy lensing analysis

- Use KiDS-1000 source catalogues downloaded 29/10/18 (K1000\_N/S\_9band\_mask\_BLINDED.cat)
- Measure galaxy-galaxy lensing  $\Delta\Sigma(R)$  around BOSS/2dFLenS LRGs in redshift ranges 0.15 < z < 0.43 and 0.43 < z < 0.7. Note: I call these LOWZ/CMASS and 2dFLoZ/2dFHiZ
- Cut sources to  $0.1 < z_B < 1.2$  and source/lens samples to KiDS tiles which contain lenses
- Default analysis: subtract  $\Delta\Sigma_{rand}(R)$  using random lenses, include boost correction, no multiplicative bias correction, use jack-knife errors with KiDS tiles as JK regions
- Default linear bias fits: use KV-450 source N(z), Planck-like fiducial cosmology, fit to scales  $R>3\ h^{-1}$  Mpc

#### Overlap (KiDS-1000)

Blue=2dFLenS Red=BOSS Grey=KiDS tiles



#### Overlap (KiDS-450)

#### Blue=2dFLenS Red=BOSS Grey=KiDS tiles



#### Are BOSS and 2dFLenS consistent?

- These are measurements of  $\Delta\Sigma(R)$  for BOSS/2dFLenS LRGs, in redshift ranges 0.15-0.43 and 0.43-0.7
- There is evidence for some differences on 1-halo scales  $(R < 3 \ h^{-1} \ \text{Mpc})$ , particularly for 0.43-0.7, but on larger scales the amplitudes are consistent
- Note: not much GGL signal on scales  $R > 10 \ h^{-1}$  Mpc



#### Are BOSS and 2dFLenS consistent?

• Here are the posterior probability distributions of the linear bias fits to  $\Delta\Sigma(R)$  (the fits are to scales  $R>3~h^{-1}$  Mpc)



#### Are BOSS and 2dFLenS consistent?

- I have matched BOSS and 2dFLenS galaxies to the KiDS-1000 source catalogue (use "MAG\_GAAP" values?)
- Key colours/magnitudes for LRG selection are: g-r, r-i, i. This plot compares their distributions for CMASS/2dFHiZ. (Could weight sources to match these distributions).
- Note: there are almost no matches for LOWZ selection



#### Methods for measuring $\Delta\Sigma(R)$

 My code agrees closely with SWOT (similar methods) and with the Leiden KiDS-GGL pipeline (different method) although this latter shows some large-scale fluctuations (?)



### Errors in the $\Delta\Sigma(R)$ measurements

 JK generally agrees with SLICS60 errors on small scales, SLICS60 predicts a smaller error on large scales. I am working on analytic covariance (with Leiden help!)



#### Dependence on seeing?

- Does  $\Delta\Sigma(R)$  depend on the seeing (PSF\_FWHM) of the target imaging from which BOSS LRGs are selected?
- These plots show  $\Delta\Sigma(R)$  for LOWZ/CMASS sub-samples, above and below the median PSF\_FWHM
- I find no evidence for a variation of  $\Delta\Sigma(R)$  with seeing



#### Dependence on seeing?

• I therefore don't reproduce the 20% effect seen in Alex's slide (below). I have not yet succeeded in obtaining Alex's data to test this result further.



#### Dependence on seeing?

 In any case, the distribution of PSF\_FWHM is only slightly different between the full BOSS area and the K1000 area



#### Dependence on BOSS weights?

- BOSS provides various possible galaxy weights
- These plots are  $\Delta\Sigma(R)$  for LOWZ/CMASS sub-samples, using completeness weights [default case], all weights=1, completeness and FKP weights
- Whether or not we use completeness weights does not have a significant effect on  $\Delta\Sigma(R)$



#### Effective galaxy bias

- Here are measurements of the projected clustering  $w_p(R)$  of BOSS and 2dFLenS (using the whole BOSS NGP region, errors from mock catalogues)
- The smaller errors reveal some more differences in the large-scale clustering amplitude, although this will not affect the intended analysis (since 2dFLenS clustering will not be used)



#### Effective galaxy bias

• The key test is whether the same galaxy bias or effective redshift can describe both  $\Delta\Sigma(R)$  and the projected clustering  $w_p(R)$  for BOSS, here is that comparison:



#### Effective galaxy bias

- The comparison between these bias measurements is acceptable, given the noise in the  $\Delta\Sigma(R)$  measurements
- This investigation could be extended using simulations –
  Buzzard, MICE or SLICS mocks? (example below for Buzzard)



#### Summary so far

- KiDS-1000 offers significantly improved overlap with both BOSS and 2dFLenS lenses
- BOSS and 2dFLenS show consistent amplitudes (errors are  $\sim 10\%$ ) of galaxy-galaxy lensing on scales  $R>3~h^{-1}$  Mpc
- No current evidence in my measurements for a systematic due to PSF\_FWHM in the BOSS LRG target selection
- BOSS completeness weights do not have a strong effect
- Same linear bias can describe both  $\Delta\Sigma(R)$  and the projected clustering  $w_p(R)$  for BOSS (errors are  $\sim 10\%$ , driven by  $\Delta\Sigma$ )