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reconstruction in WiggleZ



The WiggleZ Dark Energy Survey

• 1000 sq deg , 0.2 < z < 1.0

• 200,000 redshifts

• blue star-forming galaxies

• Aug 2006 - Jan 2011



• Follow up UV-selected sources 
from GALEX imaging

• Colour cuts select high-
redshift galaxies

• Star-forming galaxies : redshifts 
from emission lines, SFR 
10-100 solar masses per year

• Short 1-hr exposures - 
maximize numbers with 70% 
redshift completeness

Survey design



Line fluxes

• Mean [OII] line flux 
= 3 x 10-16 erg/s/cm2

• Detect some at the 
1 x 10-16 level

Credit : Rob Sharp



Redshift distribution



Standard ruler : baryon acoustic peak

• Preferred co-moving separation 
of 105 h-1 Mpc between clumps 
imprinted at recombination 

• We observe a preferred angular 
separation between galaxies at 
some redshift

• Allows distance determination 
by simple geometry

rs
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BAO Hubble diagram



BAO Hubble diagram



BAO Hubble diagram



WiggleZ cosmology results
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FIG. 4. Marginalised probability of
�

m� for various
data combinations. The Planck+BAO combination leads to�

m� < 0.30 whereas Planck+BAO+WiggleZ results in the
tightest robust constraint of

�
m� < 0.15, a 50% improve-

ment on Planck+BAO alone.

shows that including the matter power spectrum of large
scale structure, gives much stronger constraints on the
neutrino mass and number of relativistic species than
achieved by using only the BAO in addition to the Planck
data. This bodes very well for potential constraints from
future large scale structure surveys [14–16]. Given the
lower limit from particle physics, the allowable range for
the sum of neutrino masses is 0.05 eV <

�
m� < 0.15 eV,

and we may soon be able to determine the neutrino hi-
erarchy. If there are two heavy and one light neutrino
(inverted hierarchy)

�
m� > 0.1 eV. So if the next gen-

eration of large scale structure surveys push the mass
limit below

�
m� < 0.1, the inverted hierarchy can be

excluded.
The issue of high Ne� remains an open question.
The combination of Planck+BAO+WiggleZ data prefers
more than three neutrino species, and when adding HST
data the e�ect is at the 3� level.
Even stronger constraints on both

�
m� and Ne� would

be achievable if we were able to use the whole observed
matter power spectrum in the non-linear regime. Cur-
rently we are not data-limited, but theory-limited in this
area. Improved theoretical models and simulations of the
non-linear structure formation and redshift space distor-
tions are crucial not only for future data sets, but also if
we are to fully utilise the large scale structure data we
already have in hand.
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• Baryon acoustic peak is blurred by movement of 
galaxies over the age of the Universe

• Reconstruction uses the observed density field to 
approximately compute these motions

• Galaxies are shifted to their near-original positions, 
sharpening peak and improving standard ruler accuracy

• WiggleZ dataset provides an application with relatively 
low completeness and high shot noise

Reconstruction of the acoustic peak



Reconstruction of the acoustic peak
A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function �(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⇤ d lnD/d ln a ⌅�0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and �M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su⇤ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field � within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by ��. Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f(� · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by ��. Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

Padmanabhan et al. (2012)



Reconstruction works for WiggleZ !

Distance measurement improves from ~6% to ~3%

Credit : Eyal Kazin



Credit : Eyal Kazin

Theoretical Challenges in LSS, Ascona, July 4th 2013 Eyal Kazin

Reconstructed WiggleZ yields
substantial improvements

before
2.7σ

after
3.8σ
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Reconstructed WiggleZ yields
substantial improvements
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• Reconstruction improves significance of detection:

Reconstruction works for WiggleZ !
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Figure 4. The minimum χ2 as a function of α before (left) and after reconstruction (center) for the ∆zNear (top), ∆zMid (center),
∆zFar volumes. The thick blue lines are the results when using a physical template, and the thin red line when using a no-wiggle template.
The significance of detection of the baryonic acoustic feature is quantified as the square root of the difference between the minimum
values of χ2 for each template. The boundaries are the |1 − α|= 0.3 prior. In all cases there is an improvement in detection, where the
most dramatic is in ∆zFar from 2.0σ to 2.9σ. The right panels compare these data results (yellow squares) with 600 mock ∆χ2 results
pre- (x−axis) and post- (y−axis) reconstruction. The classification of detection of the significance of the baryonic acoustic feature is
color coded as indicated in the legend and explained in §4.1. A summary of significance of detection values for the data and mocks in all
redshift bins is given in Table 2.

Table 2. Significance of detection of the baryonic acoustic feature

Volume
√

∆χ2 χ2
phys, χ

2
nw Expected (All mocks) Expected (> 2σ subsample)

∆zNear no recon 0.5 18.0, 18.3 1.4±0.8 (600) 2.0±0.8 (197)
∆zNear w/ recon 1.3 24.3, 26.0 1.6±0.9 (600) 2.4±0.5 (197)

∆zMid no recon 2.1 20.5, 25.1 1.7±0.9 (600) 2.1±0.8 (278)
∆zMid w/ recon 2.1 9.1, 13.5 1.9±0.9 (600) 2.6±0.6 (278)

∆zFar no recon 2.0 24.3, 28.5 1.5±0.8 (600) 2.0±0.7 (228)
∆zFar w/ recon 2.9 24.0, 32.4 1.7±0.8 (600) 2.5±0.5 (228)

All columns, except the second to the left (χ2
phys,χ

2
nw), are in terms of σ detection.

The significance of detection in each volume is determined by
√

∆χ2, where ∆χ2 ≡ χ2
nw − χ2

phys and dof = 18.

∆zNear: 0.2 < z < 0.6, ∆zMid: 0.4 < z < 0.8, ∆zFar: 0.6 < z < 1
The > 2σ subsample is based on results of the post-reconstruction case.

c© 0000 RAS, MNRAS 000, 000–000

Reconstruction works for WiggleZ !
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Figure 5. The DV
(

rfids /rs
)

posterior probability distributions of the three WiggleZ ∆z volumes (as indicated), for both pre- (dashed red)
and post-reconstruction (solid blue). Gaussian approximations based on the mode and standard deviation values of the post-reconstruction
cases are shown in dot-dashed magenta. In each panel we quote DV

(

rfids /rs
)

and its 68% confidence region, the α ≡ (DV/rs)/(DV/rs)fid
value, and plot the orange vertical line at the fiducial value α = 1 for comparison. The sharp cut-off in some of the results is due to the
|1− α|< 0.2 prior. The improvement due to reconstruction is apparent in all ∆z bins. These results are summarized in Table 3.

Table 3. Distance measurment summary

effective z data α (%) data DV
(

rfids /rs
)

[Mpc] mock α results mock σα results (# mocks)

0.44 no recon 1.065 (7.9%) 1723+122
−151 1.005±0.067 0.051±0.027 (197)

0.44 w/ recon 1.061 (4.8%) 1716+73

−93
1.005±0.048 0.034±0.010 (197)

0.60 no recon 1.001 (6.0%) 2087+156
−95 1.002±0.051 0.049±0.023 (278)

0.60 w/ recon 1.065 (4.5%) 2221+97

−104
1.003±0.037 0.032±0.010 (278)

0.73 no recon 1.057 (7.2%) 2560+215
−157 1.0004±0.059 0.050±0.022 (228)

0.73 w/ recon 1.039 (3.4%) 2516+94

−78
1.003±0.050 0.037±0.013 (228)

The columns marked by ‘data’ are the WiggleZ results, and those by ‘mock’ are simulated.
The effective z are for volumes ∆zNear: 0.2 < z < 0.6, ∆zMid: 0.4 < z < 0.8, ∆zFar: 0.6 < z < 1
α ≡ (DV/rs)/(DV/rs)fid
The figures in brackets in the ‘data α’ column is the half-width of the 68% confidence region.
For the DV

(

rfids /rs
)

column we use fiducial values of Dfid
V for the three ∆z are in Mpc: 1617.7, 2085.2, 2421.7, respectively.

The +
− values for the DV

(

rfids /rs
)

column are the 68% confidence region, as calculated from the edges inwards.

The cross-correlation of the DV
(

rfids /rs
)

results is indicated in Table 4.
The mock median and std results for α and σα are from the > 2σ detection subsamples, as indicated. These are not Gaussian.

and σα and find the p−values to be negligible. In the regime
where the baryonic acoustic feature is being just resolved,
there is a steep non-linear relation between the significance
of detection of the baryonic acoustic feature and the un-
certainty in α, which is demonstrated in Figure 7. Here we
display the significance of detection of the baryonic acoustic
feature and the resulting σα of all realizations for the post-
reconstruction case in all three ∆z volumes. We see a tran-
sition from a somewhat linear relationship for the > 2.5σ
significance of detection realizations to a more non-linear
relationship below this threshold.

The values of the uncertainties of DV

(

rfids /rs
)

ob-
tained for the WiggleZ data in each redshift slices lie within
the range covered by the mocks in both pre- and post-
reconstruction cases.

We next briefly discuss cosmological implications of
these improved measurements.

4.3 Distance-redshift relation summary

Figure 8 summarizes the model-independent DV/rs results
obtained here pre- (red; left panel) and post-reconstruction
(blue; both panels). All results are divided by the distance-

redshift relation for the fiducial cosmology used for analysis.
These new WiggleZ measurements (blue and red) are also
indicated in Table 3.

Also plotted in the left panel of Figure 8 are the Wig-
gleZ dz ≡ rs/DV results from the Blake et al. (2011) anal-
ysis: (0.0916 ± 0.0071, 0.0726 ± 0.0034, 0.0592 ± 0.0032) for
zeff = 0.44, 0.6, 0.73, respectively. There are a few differences
in methodology between our pre-reconstruction analysis and
theirs. The most important difference is that they focus on
the information in the full shape of ξ, where we marginal-
ize over shape and focus only on the peak position, making
our results model-independent. However, despite these dif-
ferences, the results of the two analyses are consistent.

For comparison in the right panel of Figure 8 we plot
DV/rs measurements by Padmanabhan et al. (2012) (8.88±
0.17; z = 0.35), Anderson et al. (2013a) (DV

(

rfids /rs
)

=1264±25 Mpc, 2056±20 Mpc at z = 0.32, 0.57, respec-
tively) and dz(z = 0.106) = 0.336±0.015 from Beutler et al.
(2011). As pointed out by Mehta et al. (2012), there are
discrepancies in the literature regarding the calculation of
rs. A common approximation is using Equations 4-6 in
Eisenstein & Hu (1998). A more generic treatment is ob-
tained by using the full Boltzmann equations as used in the
camb package (Lewis et al. 2000) (e.g, this takes into account

c© 0000 RAS, MNRAS 000, 000–000
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Figure 8. Both panels display the volume-average-distance to sound-horizon ratios DV/rs normalized by the fiducial value, where the
post-reconstruction results are indicated by the large blue circles. In the left panel, the no reconstruction BAO-only results (red circles)
and the ξ shape analysis results (Blake et al. 2011, orange squares) are slightly shifted for clarity. In the right panel we compare with
two results from the SDSS-II (cyan star, 0.2 < z < 0.44; Padmanabhan et al. 2012) and SDSS-III (magenta triangles 0.2 < z < 0.43
0.43 < z < 0.7; Anderson et al. 2013a), as well as the result obtained by the 6dFGS (z ∼ 0.1; Beutler et al. 2011). In both panels the
cosmology prediction lines are best-fit flat ΛCDM results (ΛCDM) obtained by: Planck (Planck Collaboration et al. 2013; solid) where
the yellow band is the 68% confidence region, SDSS-BOSS (Sánchez et al. 2013; dashed), WMAP (Komatsu et al. 2009; dot-dashed).
The y−axis uncertainty bars are the 68% confidence region, and those on the x−axis indicate the redshift range of analysis.

(2013) rather than the lower value obtained by WMAP (dot-
dashed) of h ∼ 0.71.

4.4 Covariance matrix of DV/rs

Before presenting cosmological implications, we first discuss
the calculation of the covariance between measurements in
different redshift slices. Due to the overlap between ∆zMid

(0.4 < z < 0.8) and the other redshift bins, we calculate the
correlation coefficients between the α results obtained using
the 300 stitched ∆zMid mock catalogs (see §2.2) and the cor-
responding ∆zNear and ∆zFar catalogs. We apply the same
α fitting algorithm as before and present comparisons of the
results in Figure 9. The top two panels are before reconstruc-
tion and the bottom panels are after reconstruction. For all
panels, the x−axis values are the α results when using the
stitched ∆zMid volume, and the y−axis values are for the
corresponding ∆zNear (left column) and ∆zFar (right) vol-
umes. As before, we color-code the results according to the
significance of detection of the baryonic acoustic feature,
where the reference subsample for this classification is the
stitched ∆zMid case.

Focusing on the > 2σ subsample in each case we find
that the correlation coefficient between the stitched ∆zMid

and its overlapping neighbors is r ∼ 0.35 − 0.45. We verify
that between ∆zNear and ∆zFar r ∼ 0. We use these and
the uncertainties in Table 3 to construct the covariance ma-
trix of the WiggleZ post-reconstruction DV/rs. The inverse
covariance matrix is presented in Table 4.

4.5 Cosmological Implications

We next examine cosmological implications of the new
distance-redshift measurements. In this analysis we use the

Table 4. The inverse covariance matrix of the DV
(

rfids /rs
)

measurements from the reconstructed WiggleZ survey data. The
volume-average distance is defined in Equation 14 and rs is the
sound horizon at zdrag, and the fiducial cosmology assumed is
given in §1. These measurements are performed in three overlap-
ping redshift slices 0.2 < z < 0.6, 0.4 < z < 0.8, 0.6 < z < 1 with
effective redshifts of 0.44, 0.6, 0.73 respectively. The data vector
is DV

(

rfids /rs
)

= [1716.4, 2220.8, 2516.1] Mpc as listed in Table
3. As the matrix is symmetric we quote the upper diagonal, and
for brevity multiply by a factor of 104Mpc2. I.e, the user should
multiply each element by this factor, e.g, the first element would
be 2.17898878 10−4 Mpc−2.

Redshift Slice 0.2 < z < 0.6 0.4 < z < 0.8 0.6 < z < 1

0.2 < z < 0.6 2.17898878 -1.11633321 0.46982851
0.4 < z < 0.8 1.70712004 -0.71847155
0.6 < z < 1.0 1.65283175

reconstructed WiggleZ DV

(

rfids /rs
)

results listed in Table
3, and their inverse covariance matrix (Table 4).

Our base model corresponds to an energy budget con-
sisting of baryons (b), radiation (r), cold dark matter
(CDM), and the so-called dark energy. The primordial den-
sity fluctuations are adiabatic and Gaussian with a power
law-spectrum of Fourier amplitudes.

We investigate four models. The first is the flat cos-
mological constant cold dark matter paradigm, where the
equation of state of dark energy is set to w = −1 (ΛCDM).
We then relax the assumption of flatness (oΛCDM). We also
investigate the variation of w both when assuming flatness
(wCDM), as well as without (owCDM)

The main advantage of using information from low red-
shift surveys z < 1 is their ability to constrain the equation

c© 0000 RAS, MNRAS 000, 000–000
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• Determine data covariance (e.g. after reconstruction) 
using many (hundreds?) realizations

• Test model fits for systematic errors (e.g. due to non-
linear effects)

• End-to-end survey pipelines to calibrate effects from 
fibre collisions, redshift blunders, etc.

• Very demanding task for full N-body simulations

• Explore approximation techniques (e.g. 2LPT, COLA) 
for low-mass galaxies

Mock catalogues



2LPT COLA Gadget
⇠ 3 timesteps 10 timesteps ⇠ 2000 timesteps

Figure 1: We show slices through three N-body simulations evolving the same initial conditions up
to z = 0. The particles (each of mass 4.6⇥109M�/h) are shown as red points. Each slice is 20Mpc/h
on the side (the full simulation box is 100Mpc/h on the side), and about 3Mpc/h thick. The left
panel shows the 2LPT approximation used for building mock catalogs using the PTHalos approach
[7, 8]. Calculating the 2LPT particle positions requires an equivalent of roughly 3 timesteps performed
by an N-body code. The middle panel shows the result obtained with our modified N-body code with
as few as 10 timesteps. The rightmost panel shows the “true” result obtained from GADGET-2 [10]
after ⇠ 2000 timesteps starting with 2LPT initial conditions at z = 49.

To illustrate the performance of COLA, we ran a simulation with a box size of 100Mpc/h,
with 2563 particles with forces calculated on a PM grid4 of 7683. The initial conditions were
calculated at z

initial

= 9 using the 2LPTic code5.
In Figure 1 we show a slice at z = 0 through a set of three N-body simulations evolving

the same initial conditions. The left panel shows the result performed entirely using 2LPT,
which currently used mock catalogs are based upon [8]. The central panel shows the snapshot
obtained using COLAcode with 10 timesteps; and the right panel shows the result from
GADGET-2 [10] with ⇠2000 timesteps.

The computational cost of our code is only about three times larger than calculating
2LPT initial conditions with standard Fourier techniques [11], which cost approximately as
much as 3 force evaluations in a Particle Mesh (PM) code. The speed-up compared to Gadget
that we achieve is entirely due to the fact that we calculate exactly the large-scale behavior
in LPT, while letting the N-body code solve for the small-scale dynamics, without requiring
it to capture exactly the internal dynamics of halos.

4Let us briefly explain our choice of PM grid size. If the average comoving interparticle distance is d,
then the mass per particle is (⇢̄d3), where ⇢̄ is the mean comoving density. For a halo with N particles
(e.g. as detected by a friends-of-friends (FOF) algorithm), the halo mass is (N ⇢̄d3), which roughly equals
M� = (4⇡/3)R3

� ⇢̄ �, where � is the fractional overdensity at which the halos stop percolating. Thus, we find

R�/d =

✓
4⇡�
3N

◆�1/3

⇡ 0.4⇥ (N/50)1/3 , (2.3)

where the last equality holds for � = 200. Therefore, the ratio of the halo radius (and hence the force softening)
to the mean interparticle distance, should be about 0.4 for a simulation designed for halo mock catalogs, since
one needs at least ⇠ 50 particles per halo to obtain a reasonable radial profile for instance. In our N-body
example, we chose a PM grid which is 3 times finer than the mean particle separation, thus satisfying the
above requirement.

5We used the serial version of the code developed by R. Scoccimarro. It can be found here: http:

//cosmo.nyu.edu/roman/2LPT/
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Mock catalogues
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Figure 5: We show the ratio between the COLA and true halo-halo power-spectra in three mass bins
(after the correction of 1.04 has been applied to the COLA halos). We include again the ratio between
the COLA and true matter-matter power spectra for comparison. We see that COLA recovers the
halo power spectrum to within several percent for this particular realization. Since the FOF algorithm
detects only halos, and not subhalos, the halo power spectra contain only the 2-halo term, and not
the 1-halo term, while the matter power spectrum contains both. Thus, we see that the matter power
spectrum deviates from unity because we do not recover the correct 1-halo term. This is due to the
fact that COLA halos (after 10 timesteps) are generally pu�er than the true ones. See the text for
further discussion.

In Figure 5 we show the ratio between the halo-halo power spectra from the COLA and
Gadget snapshots for three halo mass bins. One can see that unlike the corresponding ratio
between the matter power spectra, COLA recovers the true halo power spectra to several
percent accuracy. To explain that di↵erence, one should note that the FOF algorithm detects
only halos and not subhalos. Thus, the halo power spectrum contains only the 2-halo piece
and not the 1-halo piece. Since the matter power spectrum contains both, we can conclude
that with COLA we do not recover the correct 1-halo term, even though we find the correct
distribution of halos. As we will see below, the 1-halo term is not correct since COLA halos
(after 10 timesteps) are generally pu�er than the truth.

Next we ran an algorithm to detect the 1-to-1 correspondence between halos from the
Gadget snapshot on the one hand and the non-COLA and COLA snapshots on the other.
The algorithm takes two N-body snapshots which have evolved the same initial conditions.
Starting from the heaviest halo in one snapshot the code runs over a given number (in
our case 15) of the most bound halo particles trying to find the halo, which most of those
particles belong to in the other snapshot. The algorithm is run on both snapshots (thus
symmetrized), and the 1-to-1 matched halos are selected. We will compare their properties
below. But before we proceed, in Figure 4 we show the fraction of halos missed (i.e. halos for
which no counterpart is found between the snapshots) in the 1-to-1 matching. Clearly, the
COLA method again outperforms the non-COLA PM run by having roughly 4 times fewer
missed halos. We can see from that figure that over most of the mass range, the comparisons
below cover more than 95% of the halos.

In Figure 6 we show the mass correspondence between one and the same halos found in
the COLAcode and Gadget snapshots. We also show the di↵erence in center-of-mass positions
and velocities for those halos. Due to the larger number of particles, more massive halos
have better determined CM positions and velocities. The errors for both those quantities as
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• Halo clustering matches full N-body and data

Tassev et al. (2013) Koda et al. (2014)



• Baryon acoustic peak measurements will continue to 
be important for testing the cosmological model

• Reconstruction is now a mature technique offering 
significant improvements in the results

• WiggleZ analysis demonstrates that reconstruction 
can be effective in sparse / incomplete samples   

• Emission-line galaxy mocks can be constructed using 
Comoving Lagrangian Acceleration (COLA) methods

Summary


