Class 9 : Computing the Magnetic Field

- Ampere's Law
- Application of Ampere's Law to a long-straight wire
- Solenoids

Recap

- Magnetic forces are a fundamental phenomenon of nature generated by electric currents
- We say that a current (or magnet) sets up a magnetic field B around it, which causes another current (or magnet) to feel a force
- The **Biot-Savart Law** describes how magnetic fields \vec{B} are generated by a current *I*

- Because of its vector nature, the Biot-Savart law is complicated to apply! Luckily there is a simpler formulation (analogous to Gauss's Law)
- Ampere's Law states that the line integral of the magnetic field \vec{B} around a closed loop is equal to the current enclosed multiplied by μ_0
- In mathematical terms : $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}$

Please note in workbook

What is meant by a line integral $\int \vec{B} \cdot d\vec{l}$ of a vector field \vec{B} ?

- Along a curve joining two points, sum up the elements $\vec{B} \cdot d\vec{l} =$ $B \ dl \ \cos \theta$
- If the line forms a **closed loop** (i.e. has no beginning or end) then we write the integral as $\oint \vec{B} \cdot d\vec{l}$

Why does Ampere's law $\oint \vec{B} \cdot d\vec{l} = \mu_0 I$ work?

- Consider a current *I* which sets up magnetic field $B = \frac{\mu_0 I}{2\pi r}$
- Draw any closed loop around *I*
- Consider the bit of the loop passing between two radii separated by angle $d\theta$
- The contribution $\vec{B} \cdot d\vec{l} = \frac{\mu_0 I}{2\pi r} \cdot r \ d\theta$

• Total
$$\oint \vec{B} \cdot d\vec{l} = \frac{\mu_0 I}{2\pi} \int d\theta = \mu_0 I$$

• What is the \vec{B} -field around a wire? $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$

- By symmetry, \vec{B} has the same strength around L
- \vec{B} and $d\vec{l}$ are parallel around *L*, such that $\oint \vec{B} \cdot d\vec{l} = B \times 2\pi d$
- The current enclosed by *L* is *I*
- Ampere's Law: $B \times 2\pi d = \mu_0 I$

$$B = \frac{\mu_0 I}{2\pi d}$$

Electric fields

- The electric field around a charge is given by **Coulomb's** $Law \ d\vec{E} = \frac{Q}{4\pi\varepsilon_0 r^2} \vec{\hat{r}}$
- The equivalent **Gauss's Law** $\int \vec{E} \cdot d\vec{A} = \frac{Q_{enc}}{\varepsilon_0}$ is easier to apply in practice
- This integral is over a closed surface enclosing charge Q_{enc}

Magnetic fields

- The magnetic field around a current is given by the **Biot**-**Savart Law** $d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{l} \times \vec{r}}{r^2}$
- The equivalent **Ampere's** Law $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$ is easier to apply in practice
- The integral is around a closed loop enclosing current I_{enc}

Solenoids

• We now introduce the **wire coil of** *N* **turns** (or solenoid), which is equivalent to a bar magnet

• A solenoid concentrates the \overrightarrow{B} -field inside it

Solenoids

• Now, consider a solenoid of length l with N turns carrying current I. What is the \vec{B} -field in the middle?

• Apply Ampere's Law $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$ to the closed loop shown

•
$$\oint \vec{B} \cdot d\vec{l} = B \times l$$
,
neglecting \vec{B} outside coil

•
$$I_{enc} = N \times I$$

• Hence $B = \frac{\mu_0 N I}{l}$

Clicker question

What is the easiest way to compute the magnetic field near a **long current-carrying wire**?

C. Either

Clicker question

What is the easiest way to compute the magnetic field at the **centre of a circular current loop**?

- A. Ampere's Law
- B. Biot-Savart Law
- C. Either

Clicker question

What is the easiest way to compute the magnetic field **inside a solenoid**?

- A. Ampere's Law
- B. Biot-Savart Law
- C. Either

Summary

- The magnetic field around a symmetric current distribution can be conveniently determined using **Ampere's Law** $\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$ evaluated around a closed loop
- In particular, Ampere's Law allows us to compute the magnetic field inside a coil of wire or solenoid

