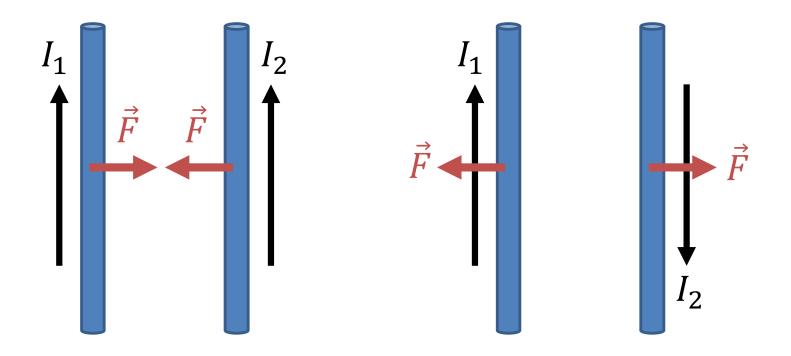

Class 8 : Magnetic Fields and Forces

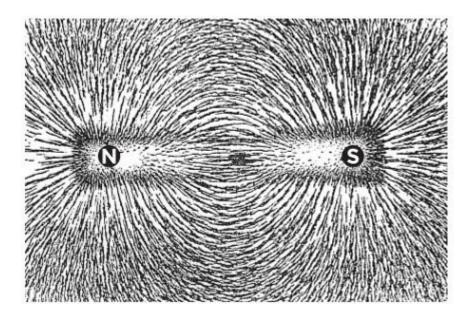
- Phenomenon of magnetism produced by currents
- Magnetic force between wires
- Computing the magnetic field using the Biot-Savart Law
- Shape of the magnetic field in some simple cases

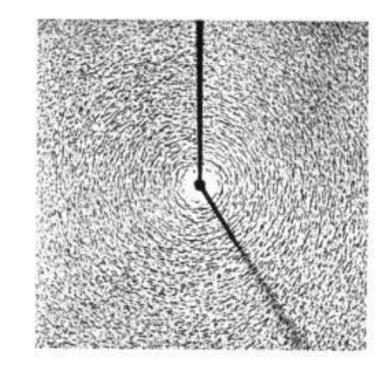
Recap

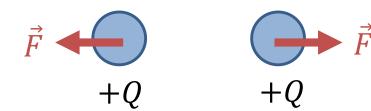
- We have so far focussed on how charges give rise to electric fields, which exert forces on other charges
- Moving charge constitutes a current, and creates new phenomena not described by electric forces : magnetism
- We will now begin to explore *deep connections* between these different phenomena



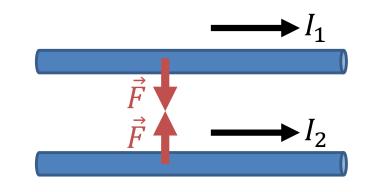
 Magnetism makes us think of a "classical magnet" with a north and south pole


 However, more fundamentally it is a phenomenon produced by electrical currents


• There are **forces between current-carrying wires** – even though those wires are electrically neutral!



• These are known as magnetic forces


 We say that a current (or magnet) sets up a magnetic field in the space around it. This field causes another current (or magnet) to feel a force.

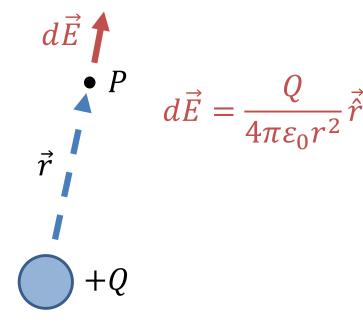
- **Charges** set up an electric field \vec{E} in the space around them
- An electric field \vec{E} is a region of space in which a *charge* experiences a force

- **Currents** set up a magnetic field \vec{B} in the space around them
- A magnetic field \overrightarrow{B} is a region of space in which a *current* experiences a force

 The force felt by the current is perpendicular to both the current and the magnetic field

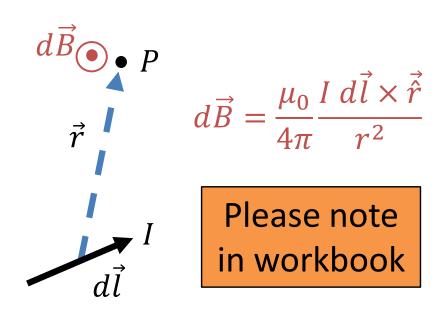
• $I d\vec{l}$ is known as a **current element**

- Uses the concept of a cross product of two vectors, which is a vector perpendicular to each
- The mathematical definition:



How do we determine the strength of the magnetic field from a given current?

Units: magnetic field strength is measured in **Tesla** (T)


Biot-Savart Law

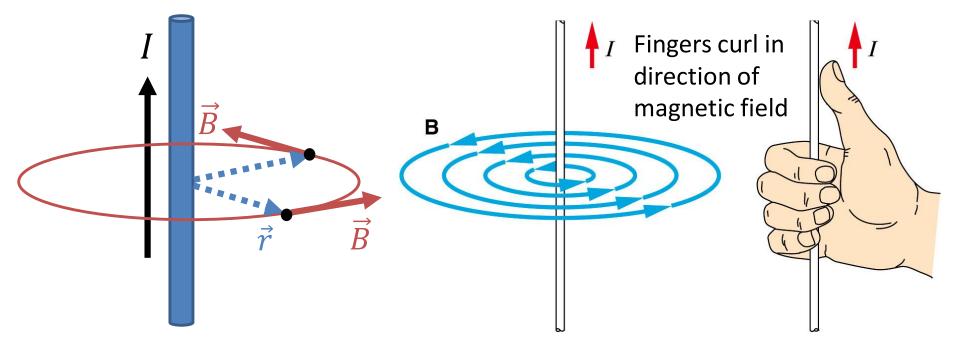
Coulomb's Law for \vec{E}

- \vec{E} is parallel to \vec{r}
- Force depends on the *permittivity of* free space ε_0 where $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9$
- Principle of superposition applies

Biot-Savart Law for \vec{B}

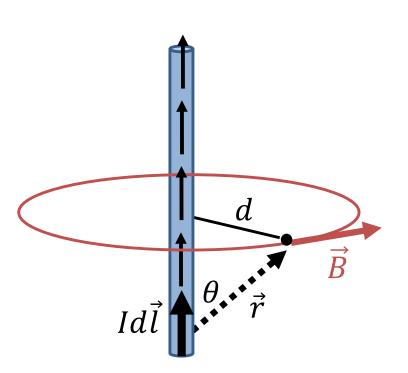
- \vec{B} is perpendicular to both $d\vec{l}$ and \vec{r}
- Force depends on the *permeability* of free space $\mu_0 = 4\pi \times 10^{-7}$
- Principle of superposition applies

Biot-Savart Law


• What is the \vec{B} -field around a wire?

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{\hat{r}}}{r^2}$$

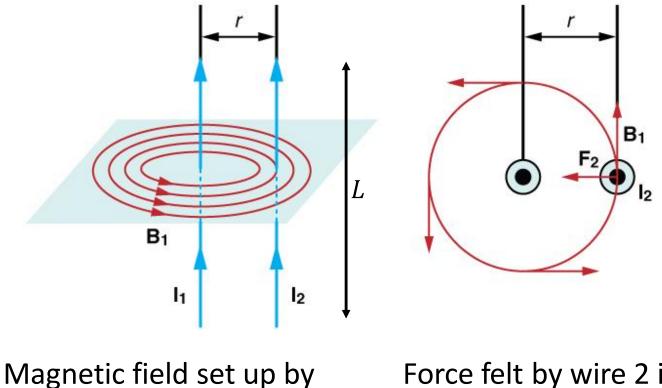
What's the direction of the field?


Direction can be recalled using the right-hand rule ...

Thumb points in direction of current flow

Biot-Savart Law

• What is the \vec{B} -field around a wire? $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{\hat{r}}}{r^2}$



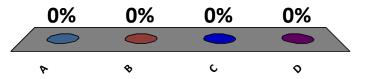
- We apply the Biot-Savart Law by splitting the wire into chunks $d\vec{l}$
- $d\vec{B}$ from each chunk is parallel, so we can sum up the magnitudes $\int dB$
- Biot-Savart : $dB = \frac{\mu_0}{4\pi} \frac{Idl \sin \theta}{r^2}$ from this chunk, where $d = r \sin \theta$ and $l = r \cos \theta$
- Substituting in for r and l and integrating over θ from 0° to 180°, we find

$$B = \frac{\mu_0 I}{2\pi d}$$

Force between currents

• Force between 2 current-carrying wires:

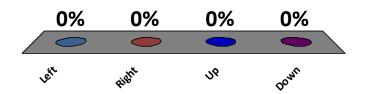
Magnetic field set up by wire 1 is $B_1 = \frac{\mu_0 I_1}{2\pi r}$


Force felt by wire 2 is $F = B_1 I_2 L = \frac{\mu_0 I_1 I_2 L}{2\pi r}$

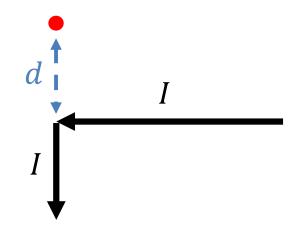
A magnetic field is created by two parallel currents flowing in opposite directions. At what point is the field strongest?

A. A B. B

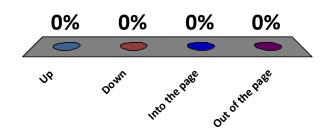
D

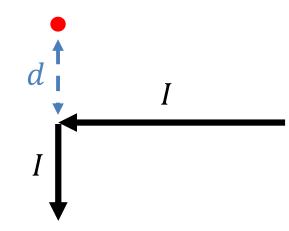

What is the direction of the net magnetic field at B?

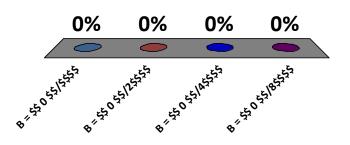
A • () C • (•) E •


В

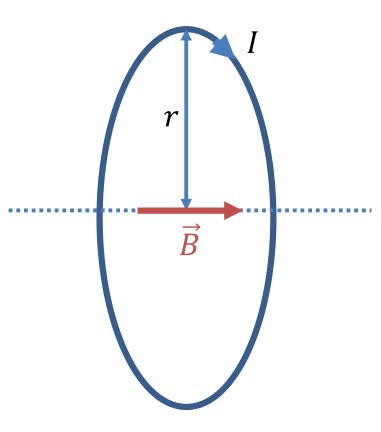
A. Left


- B. Right
- C. Up
- D. Down


What is the magnetic field direction at the point shown?


- A. Up
- B. Down
- C. Into the page
- D. Out of the page

What is the magnetic field strength *B* at the point shown?



A. $B = \mu_0 I / \pi d$ B. $B = \mu_0 I / 2\pi d$ C. $B = \mu_0 I / 4\pi d$ D. $B = \mu_0 I / 8\pi d$

Determining magnetic fields

• What is the \vec{B} field at the centre of a current loop?

• Biot-Savart Law :
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{\hat{r}}}{r^2}$$

- The contribution $d\vec{B}$ from all current elements reinforce
- Hence $B = \int dB = \frac{\mu_0}{4\pi} \frac{I}{r^2} \int dl$ where $\int dl = 2\pi r$

• We find:
$$B = \frac{\mu_0 I}{2 r}$$

Summary

- An electric current I (or magnet) sets up a **magnetic field** \vec{B} around it; this causes another current (or magnet) to feel a force
- A current element $Id\vec{l}$ in a magnetic field \vec{B} feels a force $\vec{F}_B = I d\vec{l} \times \vec{B}$
- The magnetic field $d\vec{B}$ due to a current element $Id\vec{l}$ is given by the **Biot-Savart Law** $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^2}$

