
Class	7:	Geodesics

In	this	class	we	will	discuss	the	equation	of	a	
geodesic	in	a	curved	space,	how	particles	and	

light	rays	move	in	a	curved	space-time,	and	how	
this	motion	connects	to	Newton’s	Laws



Class	7:	Geodesics

At	the	end	of	this	session	you	should	be	able	to	…

• … recognize	the	geodesic	equation,	which	connects	the	
motion	of	particles	to	the	space-time	metric,	using	Christoffel
symbols

• … calculate	the	Christoffel symbols	in	some	simple	cases,	
such	as	in	2D	spaces	or	the	weak-field	limit

• … recognize	that	different	parameters	can	be	used	to	
describe	the	world	line	of	particles	and	light	rays

• … understand	how	GR	connects	to	Newton’s	Laws	for	weak	
fields,	and	how	the	time	co-ordinate	behaves	in	this	limit



Geodesics

• A	fundamental	question	for	General	Relativity	to	answer	is,	
how	does	an	object	move	in	a	gravitational	field?

• How	can	we	find	an	object’s	world	line	𝑥"(𝜏) in	terms	of	its	
proper	time	𝜏,	when	freely	falling	in	the	Earth’s	frame	𝑥"?

https://mathspig.wordpress.com/2014/01/23/2-one-rule-aerial-skiers-cannot-break/



Geodesics

• A	“straight	line	on	a	curved	surface”	is	called	a	geodesic,	
which	minimizes	the	distance	between	2	points

• e.g.,	geodesics	on	a	spherical	surface	are	“great	circles”

• In	GR,	objects	travel	on	a	geodesic	in	curved	space-time,	
which	extremizes the	proper	time	between	2	points



Geodesics

• The	same	mathematics	hence	describes	both the	geometry	
of	curved	spaces	and the	geometry	of	space-time

• This	maths	was	Einstein’s	biggest	challenge	in	developing	GR!

https://www.pinterest.com.au/pin/407083253789581007/



Geodesic	equation

• Objects	move	on	a	path	which	extremizes the	proper	time

• Since	𝑑𝑠( = −𝑐(𝑑𝜏(,	the	proper	time	along	a	path	is	given	in	
terms	of	the	metric	by	,

- ∫ −𝑑𝑠(��
� = ,

- ∫ −𝑔"1	𝑑𝑥"	𝑑𝑥1��
�

• We	can	mathematically	find	the	path	𝑥"(𝜏) that	extremizes
the	value	of	this	integral.		The	result	is	the	geodesic	equation:
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Geodesic	equation

• What’s	the	physical	meaning	of	;
<=>
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+ Γ56
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;?
= 0?

• It’s	the	equation	of	motion	of	freely-falling	particles	in	a	
curved	space-time.		Particles	travelling	on	a	geodesic	feel	no	
forces	

https://www.quantum-bits.org/?p=963



Geodesic	equation

• What’s	the	physical	meaning	of	;
<=>
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• The	indices	𝜅 and	𝜆 are	summed	over,	hence	this	relation	
represents	4	differential	equations,	which	can	be	solved	to	
determine	the	path	of	a	particle	through	space-time,	𝑥"(𝜏)

• If	Γ56
" = 0,	then	the	particle	has	zero	acceleration	;

<=>

;?<
= 0

and	is	moving	uniformly	in	an	inertial	frame	– so	𝜞 = 𝟎 in	the	
absence	of	gravity

• Hence	𝜞𝜿𝝀
𝝁 represents	a	“force”	due	to	gravity,	which	is	

curving	the	path	of	the	particle	through	space-time



Christoffel symbols

• The	values	of	Γ56
" are	determined	by	the	space-time	metric	

𝑔"1,	as	Γ56
" = ,

(
𝑔"1 𝜕6𝑔15 + 𝜕5𝑔61 − 𝜕1𝑔56

• This	object	Γ56
" is	so	important	that	it	has	a	name	– the	

Christoffel symbols

• What	is	𝒈𝝁𝝂?		If	𝑔"1 is	written	as	a	matrix,	then	𝑔"1 is	the	
inverse	of	the	matrix

• 𝜕" =
,
-
K
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is	differentiating	the	metric	elements

• The	index	𝜈 is	summed	over



Christoffel symbols

• The	problem	is	that,	since	each	index	can	take	on	4	values,	
Γ56
" consists	of	4×4×4 = 64 different	functions	in	general!

• However,	it	is	easier	for	the	special	cases	we’ll	consider

https://www.edvardmunch.org/the-scream.jsp



Christoffel symbols

• Space-time	curvature	tells	matter	how	to	move

Metric	
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"
Geodesic	
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Christoffel symbols

• There	is	a	calculational trick	which	can	make	it	easier	to	
determine	the	Christoffel symbols	in	some	cases	…

• The	geodesic	equation	is:	 ;
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• A	mathematically	equivalent	version	of	the	geodesic	

equation	is:		𝑔"1
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• Sometimes	it’s	easier	to	evaluate	the	second	equation	and	
determine	Γ56

" by	comparison	with	the	first	equation,	rather	
than	to	evaluate	Γ56

" = ,
(
𝑔"1 𝜕6𝑔15 + 𝜕5𝑔61 − 𝜕1𝑔56



Motion	in	a	weak	field

• An	important	special	case	is	a	particle	moving	slowly	in	a	
weak,	static	gravitational	field

• In	this	case,	the	space-time	metric	can	be	written	in	the	

form	𝑔"1(𝑥U) = 𝜂"1 + ℎ"1(𝑥U),	where	𝜂"1 =
−1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

is	

the	Minkowski metric,	and	 ℎ"1 ≪ 1 is	a	small	perturbation	
which	depends	only	on	spatial	co-ordinates	𝑥U,	not	time

• For	a	slow-moving	particle,	;=
Y
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;?
where	𝑖 = 1,2,3



Motion	in	a	weak	field

• Using	these	approximations,	the	geodesic	equations	imply	

that	;
<=Y
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• We	can	compare	this	relation	to	Newton’s	laws	in	a	

gravitational	potential	𝜙,	;
<=⃗
;L<

= −𝛻𝜙(�⃗�)

• We	hence	deduce	that	𝑔LL = −1 − 2𝜙/𝑐(

• For	a	clock	at	rest	in	a	weak	field,	co-ordinate	and	proper	
time	are	related	by	𝑑𝜏 = −𝑔LL� 	𝑑𝑡 = 1 + 2𝜙/𝑐(� 	𝑑𝑡



Geodesics	for	light	rays

• For	a	light	ray,	there	is	a	subtlety	which	wrecks	our	previous	
derivation	– 𝑑𝑠 = 𝑑𝜏 = 0.		We	cannot	describe	the	path	as	a	
function	of	𝜏,	since	𝜏 = 0 always!	(it’s	a	“null	geodesic”)

• We	need	to	parameterize	the	world	line	by	a	different	co-
ordinate	called	the	“affine	parameter”,	𝑥"(𝑝)

• We	end	up	with	the	same	equation,	;
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Geodesics	for	light	rays

• It’s	useful	to	consider	the	wavevector 𝑘" = ;=>

;e
,	in	terms	of	

which	;g
>

;e
+ Γ56

" 	𝑘5	𝑘6 = 0

• In	physical	terms,	the	wavevector 𝑘" gives	the	frequency	
(𝑘h)	and	direction	of	motion	(𝑘U)	of	the	light	ray

• In	the	absence	of	a	gravitational	field,	Γ = 0,	hence	;g
>

;e
=

0,	hence	𝑘" = constant

• The	gravitational	field	“bends”	the	light	ray	according	to	Γ,	
changing	its	direction	of	travel


