## Class 7: Geodesics

In this class we will discuss the equation of a geodesic in a curved space, how particles and light rays move in a curved space-time, and how this motion connects to Newton's Laws

## Class 7: Geodesics

At the end of this session you should be able to ...

- ... recognize the geodesic equation, which connects the motion of particles to the space-time metric, using Christoffel symbols
- ... calculate the Christoffel symbols in some simple cases, such as in 2D spaces or the weak-field limit
- ... recognize that different parameters can be used to describe the world line of particles and light rays
- ... understand how GR connects to Newton's Laws for weak fields, and how the time co-ordinate behaves in this limit


## Geodesics

- A fundamental question for General Relativity to answer is, how does an object move in a gravitational field?

https://mathspig.wordpress.com/2014/01/23/2-one-rule-aerial-skiers-cannot-break/
- How can we find an object's world line $x^{\mu}(\tau)$ in terms of its proper time $\tau$, when freely falling in the Earth's frame $x^{\mu}$ ?


## Geodesics

- A "straight line on a curved surface" is called a geodesic, which minimizes the distance between 2 points
- e.g., geodesics on a spherical surface are "great circles"

- In GR, objects travel on a geodesic in curved space-time, which extremizes the proper time between 2 points


## Geodesics

- The same mathematics hence describes both the geometry of curved spaces and the geometry of space-time
- This maths was Einstein's biggest challenge in developing GR!


> Do not worry about your difficulties in mathematics, I assure you that mine are greater.
(Albert Einstein)

## Geodesic equation

- Objects move on a path which extremizes the proper time
- Since $d s^{2}=-c^{2} d \tau^{2}$, the proper time along a path is given in terms of the metric by $\frac{1}{c} \int \sqrt{-d s^{2}}=\frac{1}{c} \int \sqrt{-g_{\mu \nu} d x^{\mu} d x^{v}}$
- We can mathematically find the path $x^{\mu}(\tau)$ that extremizes the value of this integral. The result is the geodesic equation:

$$
\begin{gathered}
\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\kappa \lambda}^{\mu} \frac{d x^{\kappa}}{d \tau} \frac{d x^{\lambda}}{d \tau}=0 \\
\Gamma_{\kappa \lambda}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\lambda} g_{\nu \kappa}+\partial_{\kappa} g_{\lambda v}-\partial_{\nu} g_{\kappa \lambda}\right)
\end{gathered}
$$

## Geodesic equation

- What's the physical meaning of $\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\kappa \lambda}^{\mu} \frac{d x^{\kappa}}{d \tau} \frac{d x^{\lambda}}{d \tau}=0$ ?
- It's the equation of motion of freely-falling particles in a curved space-time. Particles travelling on a geodesic feel no forces



## Geodesic equation

- What's the physical meaning of $\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\kappa \lambda}^{\mu} \frac{d x^{\kappa}}{d \tau} \frac{d x^{\lambda}}{d \tau}=0$ ?
- The indices $\kappa$ and $\lambda$ are summed over, hence this relation represents 4 differential equations, which can be solved to determine the path of a particle through space-time, $x^{\mu}(\tau)$
- If $\Gamma_{\kappa \lambda}^{\mu}=0$, then the particle has zero acceleration $\frac{d^{2} x^{\mu}}{d \tau^{2}}=0$ and is moving uniformly in an inertial frame - so $\Gamma=0$ in the absence of gravity
- Hence $\Gamma_{\kappa \lambda}^{\mu}$ represents a "force" due to gravity, which is curving the path of the particle through space-time


## Christoffel symbols

- The values of $\Gamma_{\kappa \lambda}^{\mu}$ are determined by the space-time metric

$$
g_{\mu \nu}, \text { as } \Gamma_{\kappa \lambda}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\lambda} g_{\nu \kappa}+\partial_{\kappa} g_{\lambda \nu}-\partial_{\nu} g_{\kappa \lambda}\right)
$$

- This object $\Gamma_{\kappa \lambda}^{\mu}$ is so important that it has a name - the Christoffel symbols
- What is $\boldsymbol{g}^{\boldsymbol{\mu} \nu}$ ? If $g_{\mu \nu}$ is written as a matrix, then $g^{\mu \nu}$ is the inverse of the matrix
- $\partial_{\mu}=\left(\frac{1}{c} \frac{\partial}{\partial t}, \frac{\partial}{\partial x}, \frac{\partial}{d y}, \frac{\partial}{d z}\right)$ is differentiating the metric elements
- The index $v$ is summed over


## Christoffel symbols

- The problem is that, since each index can take on 4 values, $\Gamma_{\kappa \lambda}^{\mu}$ consists of $4 \times 4 \times 4=64$ different functions in general!

https://www.edvardmunch.org/the-scream.jsp
- However, it is easier for the special cases we'll consider


## Christoffel symbols

- Space-time curvature tells matter how to move



## Christoffel symbols

- There is a calculational trick which can make it easier to determine the Christoffel symbols in some cases ...
- The geodesic equation is: $\frac{d^{2} x^{\mu}}{d \tau^{2}}+\Gamma_{\kappa \lambda}^{\mu} \frac{d x^{\kappa}}{d \tau} \frac{d x^{\lambda}}{d \tau}=0$
- A mathematically equivalent version of the geodesic equation is: $g_{\mu \nu} \frac{d^{2} x^{\nu}}{d \tau^{2}}+\left(\partial_{\lambda} g_{\mu \kappa}-\frac{1}{2} \partial_{\mu} g_{\kappa \lambda}\right) \frac{d x^{\kappa}}{d \tau} \frac{d x^{\lambda}}{d \tau}=0$
- Sometimes it's easier to evaluate the second equation and determine $\Gamma_{\kappa \lambda}^{\mu}$ by comparison with the first equation, rather than to evaluate $\Gamma_{\kappa \lambda}^{\mu}=\frac{1}{2} g^{\mu \nu}\left(\partial_{\lambda} g_{\nu \kappa}+\partial_{\kappa} g_{\lambda v}-\partial_{\nu} g_{\kappa \lambda}\right)$


## Motion in a weak field

- An important special case is a particle moving slowly in a weak, static gravitational field
- In this case, the space-time metric can be written in the form $g_{\mu \nu}\left(x^{i}\right)=\eta_{\mu \nu}+h_{\mu \nu}\left(x^{i}\right)$, where $\eta_{\mu \nu}=\left(\begin{array}{cccc}-1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$ is the Minkowski metric, and $\left|h_{\mu \nu}\right| \ll 1$ is a small perturbation which depends only on spatial co-ordinates $x^{i}$, not time
- For a slow-moving particle, $\frac{d x^{i}}{d \tau} \ll \frac{d x^{0}}{d \tau}$ where $i=\{1,2,3\}$


## Motion in a weak field

- Using these approximations, the geodesic equations imply that $\frac{d^{2} x^{i}}{d t^{2}}=\frac{c^{2}}{2} \frac{\partial h_{t t}}{\partial x_{i}}$
- We can compare this relation to Newton's laws in a gravitational potential $\phi, \frac{d^{2} \vec{x}}{d t^{2}}=-\vec{\nabla} \phi(\vec{x})$
- We hence deduce that $g_{t t}=-1-2 \phi / c^{2}$
- For a clock at rest in a weak field, co-ordinate and proper time are related by $d \tau=\sqrt{-g_{t t}} d t=\sqrt{1+2 \phi / c^{2}} d t$


## Geodesics for light rays



- For a light ray, there is a subtlety which wrecks our previous derivation $-d s=d \tau=0$. We cannot describe the path as a function of $\tau$, since $\tau=0$ always! (it's a "null geodesic")
- We need to parameterize the world line by a different coordinate called the "affine parameter", $x^{\mu}(p)$
- We end up with the same equation, $\frac{d^{2} x^{\mu}}{d p^{2}}+\Gamma_{\kappa \lambda}^{\mu} \frac{d x^{\kappa}}{d p} \frac{d x^{\lambda}}{d p}=0$


## Geodesics for light rays

- It's useful to consider the wavevector $k^{\mu}=\frac{d x^{\mu}}{d p}$, in terms of which $\frac{d k^{\mu}}{d p}+\Gamma_{\kappa \lambda}^{\mu} k^{\kappa} k^{\lambda}=0$
- In physical terms, the wavevector $k^{\mu}$ gives the frequency $\left(k^{0}\right)$ and direction of motion $\left(k^{i}\right)$ of the light ray
- In the absence of a gravitational field, $\Gamma=0$, hence $\frac{d k^{\mu}}{d p}=$ 0 , hence $k^{\mu}=$ constant
- The gravitational field "bends" the light ray according to $\Gamma$, changing its direction of travel

