Class 6 : Insulating Materials

- What is an insulator?
- Electric dipoles
- Polarization of an insulator, and how it modifies electric field
- Electric displacement
- Boundary conditions for \vec{E}

Recap (1)

- **Maxwell's 1st equation** describes how the electric field \vec{E} is related to the free charge density ρ_f , via $\vec{\nabla} \cdot \vec{E} = \frac{\rho_f}{\varepsilon_0}$
- This is equivalent to **Gauss's Law**, $\int \vec{E} \cdot d\vec{A} = Q_{enclosed} / \varepsilon_0$
- \vec{E} -field lines start on +ve charges, end on –ve charges, and do not circulate (Maxwell's 2nd equation $\vec{\nabla} \times \vec{E} = \vec{0}$)

Recap (2)

• **Conductors** are materials in which electric charges can flow freely. Inside a conductor $\vec{E} = \vec{0}$, and outside the field lines are perpendicular to the surface.

Insulators

• Insulators or dielectrics are materials in which charge cannot flow freely

Insulators

 Atomic theory attributes this to whether or not free electrons are available to move within the atomic lattice to conduct electricity (or heat)

Electric dipoles

- An electric dipole consists of two charges +q and -q separated by distance d. It is neutral but produces an *E*-field
- A dipole is a good model for many molecules!

Electric dipoles

What is the electric field strength along the axis?

• Electric potential:
$$V_P = \frac{q}{4\pi\varepsilon_0(r-\frac{d}{2})} + \frac{-q}{4\pi\varepsilon_0(r+\frac{d}{2})} \approx \frac{p}{4\pi\varepsilon_0 r^2}$$

• Electric field
$$E_x = -\frac{dV}{dr} = \frac{2p}{4\pi\varepsilon_0 r^3}$$

• $E \propto \frac{1}{r^2}$ for a point charge, and $E \propto \frac{1}{r^3}$ for a dipole

Electric dipoles

• When a dipole \vec{p} is placed in an electric field \vec{E} , it feels no net force (since it is neutral) but it feels **a net torque** $\vec{\tau} = \vec{p} \times \vec{E}$

Clicker question

0%

Jet t

0%

Right

A dipole, free to rotate, is placed **above** a fixed dipole. In which direction does it point?

Clicker question

A dipole, free to rotate, is placed **beside** a fixed dipole. In which direction does it point?

- A. Up
- B. Down
- C. Left
- D. Right

• When a **conductor** is placed in an applied electric field, the *free charge moves to the surface to cancel the electric field inside the conductor*

• When an **insulator** is placed in an electric field, the electron cloud and nucleus around each atom minutely displace in opposite directions, creating **many electric dipoles**

• This effect is called **electric polarization** and the polarization vector \vec{P} is the *induced dipole moment per unit volume*

- These dipoles create an electric field in the opposite direction to the applied field, which reduces the total electric field inside the insulator
- The polarization \vec{P} is equivalent to a "bound charge" appearing within the insulator with charge density $-\vec{\nabla}.\vec{P}$
- (The next two slides are optional and explain this for students who would like to follow up)

Please note in workbook

• The displacement of positive and negative charges creates a **net charge on the surfaces** known as a "bound charge"

- How much charge crosses an area A normal to the surface?
- If the dipoles are charges ±q separated by distance d, with number density n, the net charge crossing area A is n × q × d × A = P × A (using P = np = nqd)
- Generalizing, the charge crossing an area element $d\vec{A}$ is \vec{P} . $d\vec{A}$

• We can use the fact that the net charge crossing area $d\vec{A}$ of a polarized medium is $\vec{P} \cdot d\vec{A}$ to derive a general formula

- The *charge leaving* volume V is equal to an integral over the surface $S, \int \vec{P} \cdot d\vec{A}$
- By the divergence theorem, this can also be written $\int \vec{\nabla} \cdot \vec{P} \, dV$
- Hence, the *charge density in the* volume reduces by $\overrightarrow{\nabla}$. \overrightarrow{P}
- We must modify Maxwell's Equation to $\vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} (\rho_f \vec{\nabla} \cdot \vec{P})$ where we include both free charge ρ_f and "bound charge"

- In an insulator with polarization \vec{P} , Maxwell's 1st equation including the bound charge is $\vec{\nabla} \cdot \vec{E} = \frac{1}{\varepsilon_0} (\rho_f \vec{\nabla} \cdot \vec{P})$
- We can re-arrange this in the form $\vec{\nabla} \cdot (\varepsilon_0 \vec{E} + \vec{P}) = \rho_f$
- Now let us define a new quantity called the **electric** displacement field, $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$
- In terms of this quantity, Maxwell's 1st Equation can be written in the general form $\vec{\nabla} \cdot \vec{D} = \rho_f$ (or $\int \vec{D} \cdot d\vec{A} = Q_{enc}$), which now applies in all materials

- In many materials the polarization is proportional to the applied electric field, $\vec{P} \propto \vec{E}$, which also implies $\vec{D} \propto \vec{E}$
- We can write $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E}$, where ε_r is the **relative permittivity**, which takes the value $\varepsilon_r = 1$ in a vacuum
- In this case, the polarization $\vec{P} = (\varepsilon_r 1)\varepsilon_0 \vec{E}$

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$$

Please note in workbook

- To clarify the different roles of \vec{D} and \vec{E} :
- The electric displacement \vec{D} is produced by free charges with density ρ_f (we can ignore the polarized medium)
- It is computed from Maxwell's 1st Equation $\vec{\nabla}. \vec{D} = \rho_f$ (or the equivalent Gauss's Law, $\int \vec{D}. d\vec{A} = Q_{enc}$)
- The **medium** determines how the electric field \vec{E} is computed from \vec{D} : via $\vec{E} = \vec{D} / \varepsilon_r \varepsilon_0$, where $\varepsilon_r =$ **relative permittivity**
- \vec{E} determines the force \vec{F} on a test charge q, via $\vec{F} = q\vec{E}$

• Insulators have a **maximum electrical field** they can sustain before "electrical breakdown" occurs, leading to sparking!

Clicker question

The space inside a charged capacitor is filled by an insulator. What can we say about the \vec{D} and \vec{E} -fields?

- A. D and E are both unchanged
- B. D decreases, E is unchanged
- C. D and E both decrease
- D. D is unchanged, E decreases

Clicker question

The space inside a charged capacitor is filled by an insulator. What can we say about the capacitance?

- A. It goes up
- B. It goes down
- C. It doesn't change

Boundary conditions

- Lines of \vec{E} end on both free charges and bound charges, so there is a **discontinuity in** \vec{E} **at the surface of a dielectric**
- Lines of \vec{D} only end on free charges, so the \vec{D} -field is continuous across the surface of a dielectric

Boundary conditions

• A parallel-plate capacitor of area A and width d has capacitance $C = \frac{\varepsilon_0 A}{d}$. How is C changed if a slab of dielectric of relative permittivity ε_r and width t is inserted?

- If σ is the charge density on the plates, then applying Gauss's Law to a cylinder of area ΔA , we find $D \times$ $\Delta A = \sigma \times \Delta A$ or $D = \sigma$
- The electric field is $E = \sigma/\varepsilon_0$ in vacuum, and $E = \sigma/\varepsilon_r \varepsilon_0$ in dielectric
- The potential difference is $V = \frac{\sigma}{\varepsilon_0}(d-t) + \frac{\sigma}{\varepsilon_r\varepsilon_0}t$
- The capacitance $C = \frac{Q}{V} = \frac{\sigma A}{V} = \frac{\varepsilon_0 A}{d t + t/\varepsilon_r}$

Boundary conditions

- The normal component of \overrightarrow{D} is continuous across the boundary of a dielectric (in the absence of free charge)
- The tangential component of \vec{E} is continuous across the boundary of a dielectric

- The first condition comes from applying Gauss's law $\int \vec{D} \cdot d\vec{A} = 0$ to a short cylinder crossing the surface
- The second condition comes from applying $\oint \vec{E} \cdot d\vec{l} = 0$ to a short loop crossing the surface

Summary

- Two charges $\pm q$ separated by distance \vec{d} form an **electric dipole** $\vec{p} = q\vec{d}$, which produces an electric field $E \propto 1/r^3$
- Insulators are materials in which *charges cannot move freely*
- When an electric field \vec{E} is applied to an insulator, a **polarization** \vec{P} of the molecules is created
- This polarization is the same as a *bound charge density* $-\vec{\nabla} \cdot \vec{P}$
- If we define the **electric displacement** $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$, we can re-write Maxwell's 1st equation as $\vec{\nabla} \cdot \vec{D} = \rho_f$, which now applies in all materials