
Class 5 : Conductors and Capacitors

• What is a conductor?

• Field and potential around conductors

• Defining and evaluating capacitance

• Potential energy of a capacitor



Recap

• Gauss’s Law  𝐸. 𝑑  𝐴 =
𝑄𝑒𝑛𝑐

𝜀0
and 

Maxwell’s 1st equation 𝛻. 𝐸 =
𝜌

𝜀0
are 

equivalent integral and differential

formulations for the electric field 𝐸
produced by charge density 𝜌

• The electric field 𝐸 must also satisfy 

Maxwell’s 2nd equation  𝛻 × 𝐸 = 0.  This 
implies that the electric field can be 
generated by the gradient of an 

electrostatic potential 𝑉, 𝐸 = −𝛻𝑉



Conductors

• We’ll now consider the behaviour of 𝐸 in materials, 
which we divide into conductors and insulators 



Conductors

• In a conductor, charges can flow freely

• In practice, this usually involves free electrons 
moving within an ionic lattice



Conductors

• What can we say about the electric field in and 
around a charge-carrying conductor in equilibrium?

Place charge 𝑄 on a 
conducting sphere 



Conductors

• What can we say about the electric field in and 
around a charge-carrying conductor in equilibrium?

• First, all charge must be located on the surface 
(otherwise it would move due to forces from other charges)

• Hence from Gauss’s Law, 𝑬 = 𝟎 inside a conductor

• Hence, because 𝐸 = −𝛻𝑉, all points of the 
conductor are at constant electrostatic potential

Please note in workbook



Conductors

• An application of this effect is electrostatic shielding



Conductors

• An application of this effect is electrostatic shielding



Conductors

• What about the electric field just outside the 
conductor?

• There can be no component of 𝑬 parallel to 
the surface, otherwise charges would move

• Consider a Gaussian cylinder of cross-
sectional area 𝐴 crossing the surface

• 𝐸 is perpendicular to the surface and zero 

inside, such that  𝐸. 𝑑  𝐴 = 𝐸 × 𝐴

• Let the charge per unit area at the surface be 
𝜎, then 𝑄𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 = 𝜎𝐴

• Applying Gauss’s Law:   𝑬 =
𝝈

𝜺𝟎

𝐸

𝐸 = 0

𝐴



Conductors

• The electric field just outside a conductor is 
perpendicular to the surface and proportional to the 
charge density

Uncharged conductor 
in applied field

Electric field around 
charged conductor

Please note in workbook



If a hollow sphere is coated with 
charge, what can you say about the 

potential inside the sphere?

A. V=0 inside

B. V=non-zero constant inside

C. V=0 at the centre, and 
varies with position

D. None of these are true
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Clicker question

+𝑞



A point charge +𝑞 is placed near 
a neutral solid copper sphere.  
What is the electric field inside 

the sphere?

A. Zero

B. To the right

C. To the left
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A point charge +𝑞 is placed near 
a neutral hollow copper sphere.  
What is the charge density on 

the inside surface of the sphere?

A. Zero

B. Positive

C. Negative
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Capacitors

• A capacitor is a very useful circuit component formed by two 
parallel conductors separated by an insulator (or “dielectric”)

• When connected to a battery at potential 𝑉, charge ±𝑄 flows 

onto the plates.  The capacitance is 𝑪 = 𝑸/𝑽 [unit: Farads, F]

𝑉

+𝑄

-𝑄

Please note in workbook



Capacitors

• Capacitors are useful for storing charge (or, potential energy) 
and then releasing it



Capacitors

• What is the capacitance of a parallel-plate capacitor, where 
the plates have area 𝐴 and separation 𝑑?

• From Gauss’s Law (previous slides), electric field 𝐸 =
𝜎

𝜀0

• Capacitance 𝐶 =
𝑄

𝑉
=

𝜎×𝐴

𝐸×𝑑
=

𝜀0 𝐴

𝑑

Area 𝐴
+𝑄

−𝑄

𝐸 =
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Capacitors

• What is the capacitance per unit length of a pair of concentric 
cylinders of radii 𝑎 and 𝑏 > 𝑎?

• Suppose the charge per unit length 
on the cylinders is ±𝜆

• Applying Gauss’s Law to a cylinder of 
radius 𝑟 and length 𝐿, we find 𝐸 ×
2𝜋𝑟𝐿 = 𝜆𝐿/𝜀0 or 𝐸 = 𝜆/2𝜋𝜀0𝑟

• Potential difference between the 

cylinders is 𝑉 =  
𝑎

𝑏
𝐸 𝑑𝑟 =

𝜆

2𝜋𝜀0
 
𝑎

𝑏 1

𝑟
𝑑𝑟 =

𝜆

2𝜋𝜀0
𝑙𝑜𝑔𝑒

𝑏

𝑎

• Capacitance 𝐶 =
𝜆

𝑉
=

2𝜋𝜀0

𝑙𝑜𝑔𝑒
𝑏

𝑎



Potential energy

• Another example is the charging of a capacitor.  The 
capacitor 𝐶 reaches potential 𝑉 storing charge 𝑄 = 𝐶𝑉

• The potential energy stored in the capacitor is 𝑈 =
1

2
𝐶𝑉2

• Transporting additional charge 

𝑑𝑄 through potential 𝑉 =
𝑄

𝐶

requires work 𝑑𝑊 = 𝑉 𝑑𝑄

• Total work done 𝑊 =  𝑉 𝑑𝑄 =
1

𝐶
 𝑄 𝑑𝑄 =

𝑄2

2𝐶
=

1

2
𝐶𝑉2



A capacitor holds charge ±𝑄 and is 
disconnected from the battery.  If 

half the charge is drained away, how 
does the potential difference 𝑉

between the plates, and potential 
energy 𝑈, change? 

A. V and U both halve

B. V halves and U quarters

C. V and U are unchanged

D. V and U both double
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Potential energy

• It can be useful to think of this energy 𝑈 =
1

2
𝐶𝑉2 as being 

stored in the electric field

• We can think of the 𝑬-field as storing potential energy with 

density 
𝟏

𝟐
𝜺𝟎𝑬

𝟐

𝑥 𝐸

Area 𝐴 • Capacitance 𝐶 =
𝜀0𝐴

𝑥

• Potential difference 𝑉 = 𝐸 × 𝑥

• 𝑈 =
1

2

𝜀0𝐴

𝑑
𝐸𝑥 2 =

1

2
𝜀0𝐸

2 × 𝐴𝑥, 

where 𝐴𝑥 is the volume



Potential energy

• One application of this relation is to derive the force between 
two capacitor plates (for fixed charge 𝑄)

• How would this calculation change if the capacitor were 
connected to a fixed source of potential 𝑉?

𝑥

Area 𝐴
+𝑄

−𝑄

𝐹

𝐹

• Force 𝐹 = −
𝑑𝑈

𝑑𝑥

• 𝑈 =
1

2
𝐶𝑉2 =

𝑄2

2𝐶

• Capacitance 𝐶 =
𝜀0𝐴

𝑥

• Force 𝐹 = −
𝑑

𝑑𝑥

𝑄2𝑥

2𝜀0𝐴
= −

𝑄2

2𝜀0𝐴



Summary

• Conductors are materials in which 
charges can flow freely.  All charge will 

reside on the surface, and 𝐸 = 0 inside

• Two separated conductors storing 
charge ±𝑄 form a capacitor 𝐶.  If the 

potential difference is 𝑉, then 𝐶 =
𝑄

𝑉

• We can consider this energy stored in 

the 𝐸-field with density 
1

2
𝜀0𝐸

2


