Class 4 : Maxwell's Equations for Electrostatics

- Concept of charge density
- Maxwell's 1st and 2nd Equations
- Physical interpretation of divergence and curl
- How do we check whether a given vector field could be an electric field?

Recap

- The electric field \vec{E} around a charge distribution can be determined by **Gauss's Law** $\int \vec{E} \cdot d\vec{A} = Q_{enclosed}/\varepsilon_0$
- The \vec{E} -field may be described as the gradient of an **electrostatic potential** V, where $\vec{E} = -\vec{\nabla}V$
- The **potential difference** is the work done in moving a unit charge between 2 points, $\Delta V = -\int \vec{E} \cdot d\vec{l}$

Charge density

- We often want to merge point charges together, and think of a **continuous distribution** of charge
- We define the **charge density** at position \vec{x} , or charge per unit volume, as $\rho(\vec{x})$

- Consider a volume element δV
- Charge in this volume element $\delta Q = \rho \ \delta V$
- Total charge $Q = \int \rho \ \delta V$

Vector divergence

- We can apply $\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$ to a vector function $\vec{E} = (E_x, E_y, E_z)$ using either a **dot product** or a **cross product**
- We will first consider the dot product. Using the usual dot product rule, we have $\vec{\nabla} \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$
- This is known as the divergence of a vector field (we will explain why shortly!)
- We will meet the cross product version soon!

Divergence theorem

- A powerful result of vector calculus, which links a surface integral with the divergence, is the vector divergence theorem
- If S is a closed surface around a volume V, then for any vector field \vec{E} we can say:

$$\int \vec{E} \, d\vec{A} = \int \left(\vec{\nabla} \, \vec{E} \right) \, dV$$

Physical meaning of divergence

• The divergence of a vector field at a point *P* measures **how** much it is flowing out of, or into, that point

- Divergence Divergence
- We can see this from $\int \vec{E} \cdot d\vec{A} = \int (\vec{\nabla} \cdot \vec{E}) dV$ the divergence $\vec{\nabla}$. \vec{E} creates an outward flux $\int \vec{E} \cdot d\vec{A}$

Clicker question

Consider the following vector field. What is the divergence in the box?

- A. Zero everywhere
- B. Non-zero everywhere
- C. Zero some places, non-zero other places
- D. Impossible to tell

Clicker question

Consider the following vector field. What is the divergence in the box?

- A. Zero everywhere
- B. Non-zero everywhere
- C. Zero some places, non-zero other places
- D. Impossible to tell

Maxwell's 1st Equation

• Apply the vector divergence theorem to Gauss's Law:

- Re-arranging: $\int \left(\vec{\nabla} \cdot \vec{E} \frac{\rho}{\varepsilon_0} \right) dV = 0$ (for any volume)
- This implies: $\overrightarrow{\pmb{V}}.\overrightarrow{\pmb{E}}=rac{
 ho}{arepsilon_0}$

Maxwell's 1st Equation

• Maxwell's beautiful equation $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$ is describing mathematically how electric field lines flow away from positive charges and toward negative charges

Please note in workbook

Maxwell's 1st Equation

• Consider the following electric field:

• What is the corresponding charge density and electrostatic potential?

Vector curl

- We have already met the **divergence** of a vector field, $\vec{\nabla} \cdot \vec{E} = \frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} + \frac{\partial E_z}{\partial z}$ where $\vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$
- We now consider applying the $\vec{\nabla}$ operator to a vector using the cross product \times , which is known as a **vector curl** $\vec{\nabla} \times \vec{E}$
- The curl is evaluated as a cross product and is a vector, e.g.

$$\nabla \times \vec{F} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix}$$

Stokes' Theorem

- A fundamental result in vector calculus called **Stokes' Theorem** relates the vector curl to a line integral
- If S is any surface bounded by a closed loop L, then for any vector field \vec{E} we can say: dÁ closed path $\oint \vec{E} \, d\vec{l} = \int (\vec{\nabla} \times \vec{E}) \, d\vec{A}$ surface bounded by path Integral around Integral over surface closed loop

Physical meaning of vector curl

- The **divergence** $(\vec{V}.)$ describes the amount of *outflow or inflow* of a vector field at a point
- The curl (\$\vec{\mathcal{P}}\$ \times) describes the circulation of a vector field about a point (and the axis of the circulation)

Physical meaning of vector curl

- The **divergence** $(\vec{V}.)$ describes the amount of *outflow or inflow* of a vector field at a point
- The **curl** $(\vec{\nabla} \times)$ describes the *circulation* of a vector field about a point (and the axis of the circulation)
- We can see this is the case using Stokes' Theorem : if $\vec{\nabla} \times \vec{E} > 0$, then there will be a non-zero integral around a closed loop, $\oint \vec{E} \cdot d\vec{l} > 0$, corresponding to a circulation

Clicker question

Consider the vector field shown. What can we say about its curl?

- A. Zero everywhere
- B. Non-zero everywhere
- C. Zero in some places and non-zero in other places
- D. Impossible to tell

Maxwell's 2nd equation

- We can use the above results to deduce Maxwell's 2nd equation (in electrostatics)
- If we move an electric charge in a closed loop we will do zero work : $\oint \vec{E} \cdot d\vec{l} = 0$
- Using Stokes' Theorem, this implies that for any surface in an electrostatic field, $\int (\vec{\nabla} \times \vec{E}) d\vec{A} = 0$
- Since this is true for any surface, then $\vec{\nabla} \times \vec{E} = \vec{0}$

Maxwell's 2nd equation

- We could have deduced the same result using the fact that the electric field can be expressed as a potential, $\vec{E} = -\vec{\nabla}V$
- Applying the curl operator to both sides, we find $\vec{\nabla} \times \vec{E} = -\vec{\nabla} \times \vec{\nabla} V = \vec{0}$ (which can be shown by multiplying out the components of $\vec{\nabla} \times \vec{\nabla} V$)
- $\vec{\nabla} \times \vec{E} = \vec{0}$ is Maxwell's 2nd equation as applied to electrostatics
- (It must be modified for time-varying fields as we will describe in later lectures)

Maxwell's 2nd equation

• In physical terms, the fact that $\vec{\nabla} \times \vec{E} = \vec{0}$ is describing that electric field lines **do not circulate into loops** – they always look like diagram (a) below, not diagram (b)

Please note in workbook

Clicker question

Which of the following could be an electrostatic field in the region shown?

- A. Both
- B. Only I
- C. Only II
- D. Neither

Summary

- Vector calculus is a powerful mathematical tool based on the vector operator $\vec{\nabla} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right)$
- **Maxwell's 1st Equation** expresses Gauss's Law in the differential form $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\epsilon_0}$ (field lines end on charges)
- Maxwell's 2nd Equation for electrostatics is $\vec{\nabla} \times \vec{E} = \vec{0}$ (field lines do not circulate)
- This is equivalent to defining an electrostatic potential V as $\vec{E} = -\vec{\nabla}V$