Class 15 : Electromagnetic Waves

- Wave equations
- Why do electromagnetic waves arise?
- What are their properties?
- How do they transport energy from place to place?

Recap (1)

• In a region of space containing no free charge $(\rho_f = 0)$ or current $(\vec{J}_f = \vec{0})$, Maxwell's equations can be written as

Recap (2)

- Work needs to be performed when creating an \vec{E} -field (e.g. by assembling charges), or a \vec{B} -field (e.g. by establishing a current against an inductance)
- This creates a **potential energy stored in the electromagnetic field** with energy densities $\frac{1}{2}\varepsilon_0 E^2$ and $\frac{B^2}{2\mu_0}$, respectively

 We will now explore how these equations lead to wave motion called light – an *electromagnetic wave*

- A wave is a propagating disturbance that carries energy from one point to another
- A wave is characterized by its **amplitude**, **wavelength** and **speed** and can be *longitudinal* or *transverse*

- To discover EM waves, consider evaluating $\vec{\nabla} \times (\vec{\nabla} \times \vec{E})$
- Substituting in Maxwell's equations, this equals $\vec{\nabla} \times \left(-\frac{\partial \vec{B}}{\partial t}\right) =$

$$-\frac{\partial}{\partial t}\left(\vec{\nabla}\times\vec{B}\right) = -\frac{\partial}{\partial t}\left(\mu_0\varepsilon_0\frac{\partial\vec{E}}{\partial t}\right) = -\mu_0\varepsilon_0\frac{\partial^2\vec{E}}{\partial t^2}$$

- Also by vector calculus, $\vec{\nabla} \times (\vec{\nabla} \times \vec{E}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{E}) \vec{\nabla}^2 \vec{E}$
- Using Maxwell's equation $\vec{\nabla} \cdot \vec{E} = 0$, this just equals $-\vec{\nabla}^2 \vec{E}$
- Putting the two sides together, we find $ec{
 abla}^2 ec{E} = \mu_0 arepsilon_0 rac{\partial^2 ec{E}}{\partial t^2}$

- The equation represents a travelling wave
- To see why, consider a 1D wave travelling along the x-axis with displacement $y(x, t) = A \sin(kx \omega t)$ in terms of its amplitude A, wavelength $\lambda = \frac{2\pi}{k}$, time period $T = \frac{2\pi}{\omega}$, velocity $v = \frac{\lambda}{T} = \frac{\omega}{k}$

- The displacement y(x, t) of a wave travelling with speed v satisfies the wave equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$
- To check this, substitute in $y(x, t) = A \sin(kx \omega t)$ where $v = \frac{\omega}{k}$
- On the left-hand side: $\frac{\partial^2 y}{\partial x^2} = -k^2 A \sin(kx \omega t)$
- On the right-hand side: $\frac{\partial^2 y}{\partial t^2} = -\omega^2 A \sin(kx \omega t)$
- Using $\frac{1}{v^2} = \frac{k^2}{\omega^2}$, we recover the wave equation!

• The equation $\frac{\partial^2 y}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 y}{\partial t^2}$ describes general waves

Clicker question

Two waves are described by the equations $y_1(x,t) = 2\sin(2x-t)$, $y_2(x,t) = 4\sin(x-0.8t)$. Which wave has the higher speed?

- A. Wave 1
- B. Wave 2
- C. Both have the same speed

- The relation $\nabla^2 \vec{E} = \mu_0 \varepsilon_0 \frac{\partial^2 \vec{E}}{\partial t^2}$ implies that **each** component of \vec{E} is a wave travelling at speed $v = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
- We obtain $v = c = 3 \times 10^8$ m/s : the **speed of light**

- Let's find out more about the properties of electromagnetic waves
- To simplify the case, suppose that the \vec{E} -field is along the yaxis, such that $E_y(x,t) = A \sin(kx - \omega t)$ and $E_x = E_z = 0$. This is a **linearly polarized wave**.

• From $E_y = A \sin(kx - \omega t)$, we can deduce the \vec{B} -field using $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$

• *x*-component:
$$-\frac{\partial B_x}{\partial t} = \frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z} = 0$$
, hence $B_x = 0$

• *y*-component:
$$-\frac{\partial B_y}{\partial t} = \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x} = 0$$
, hence $B_y = 0$

- z-component: $-\frac{\partial B_z}{\partial t} = \frac{\partial E_y}{\partial x} \frac{\partial E_x}{\partial y} = kA\cos(kx \omega t)$, hence $B_z(x, t) = \frac{A}{v}\sin(kx \omega t) = \frac{1}{v}E_y(x, t)$
- The magnetic field is perfectly in phase with the electric field and oriented at 90°!

• Form of a linearly-polarized electromagnetic wave:

• The changing \vec{E} -field causes a changing \vec{B} -field, which in its turn causes a changing \vec{E} -field

- For an electromagnetic wave **travelling in a medium** with permittivity ε_r and permeability μ_r we can use Maxwell's Equations to show that **speed** $v = \frac{c}{\sqrt{\varepsilon_r \mu_r}}$
- The quantity $\sqrt{\varepsilon_r \mu_r}$ is known as the **refractive index**

Why does this produce a spectrum of light?

Clicker question

The electric field for a plane wave is given by $\vec{E}(\vec{r},t) = \vec{E}_0 \cos(\vec{k}.\vec{r} - \omega t)$. The vector \vec{k} tells you ...

- A. The direction of the electric field
- B. The speed of the wave
- C. The direction the wave moves
- D. A direction perpendicular to the^{*}
 direction the wave moves

Clicker question

The wave propagates in the *x*direction, such that $\vec{E}(x,t) = E_0 \vec{\hat{y}} \cos(kx - \omega t)$. What is the direction of the magnetic field?

• Waves transport energy from one place to another

- Energy is stored in the electric field with density $\frac{1}{2}\varepsilon_0 E^2$ and the magnetic field with density $\frac{1}{2\mu_0}B^2$
- How do these values compare?

• Waves transport energy from one place to another

- Energy is stored in the electric field with density $\frac{1}{2}\varepsilon_0 E^2$ and the magnetic field with density $\frac{1}{2\mu_0}B^2$
- For a linearly polarized wave, B = E/v, where $v = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$, hence $\frac{1}{2}\varepsilon_0 E^2 = \frac{1}{2}\varepsilon_0 v^2 B^2 = \frac{1}{2\mu_0}B^2$
- The energy contained in the electric and magnetic fields is equal!

• What is the **rate of energy flow**?

- The energy flowing past area A in time t is contained in a volume Avt
- If the energy density is U, this energy is UAvt hence the energy flow per unit area per unit time is equal to Uv
- For linearly-polarized electromagnetic waves, $Uv = \frac{1}{\mu_0} B_z^2 v = \frac{1}{\mu_0} E_y B_z$
- The energy flow can be represented by the Poynting vector $\frac{1}{\mu_0}(\vec{E} \times \vec{B})$

• The Poynting vector, $\frac{1}{\mu_0} (\vec{E} \times \vec{B}) = \vec{E} \times \vec{H}$, is **oriented** in the direction of travel

• As an example, consider current *I* flowing along a cylindrical conductor driven by a potential *V*

- The energy flux is equal to the Poynting vector $\frac{1}{\mu_0} \left(\vec{E} \times \vec{B} \right)$
- This is non-zero at the surface of the conductor, flowing inward
- If the curved surface area is A, the power flowing in is $P = \frac{1}{\mu_0} EBA = \frac{1}{\mu_0} \frac{V}{L} \frac{\mu_0 I}{2\pi r} 2\pi r L = VI$
- We recover Joule heating!

Summary

- Maxwell's equations predict that the \vec{E} - and \vec{B} -fields satisfy linked wave equations with speed $\frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
- For a linearly-polarized wave, the \vec{E} and \vec{B} -fields are **in phase and oriented at 90**°
- The energy densities stored in the \vec{E} - and \vec{B} -fields is equal, and the energy flow per unit area per unit time is equal to the **Poynting vector** $\vec{E} \times \vec{H}$

