Class 15 : Electromagnetic Waves

- Wave equations
-Why do electromagnetic waves arise?
-What are their properties?
- How do they transport energy from place to place?

Recap (1)

- In a region of space containing no free charge ($\rho_{f}=0$) or current ($\vec{J}_{f}=\overrightarrow{0}$), Maxwell's equations can be written as

$$
\begin{array}{lc}
\vec{\nabla} \cdot \vec{E}=0 & \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\vec{\nabla} \cdot \vec{B}=0 & \vec{\nabla} \times \vec{B}=\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}
\end{array}
$$

Recap (2)

- Work needs to be performed when creating an \vec{E}-field (e.g. by assembling charges), or a \vec{B}-field (e.g. by establishing a current against an inductance)
- This creates a potential energy stored in the electromagnetic field with energy densities $\frac{1}{2} \varepsilon_{0} E^{2}$ and $\frac{B^{2}}{2 \mu_{0}}$, respectively

Wave equations

- We will now explore how these equations lead to wave motion called light - an electromagnetic wave

Wave equations

- A wave is a propagating disturbance that carries energy from one point to another
- A wave is characterized by its amplitude, wavelength and speed and can be longitudinal or transverse

Wave equations

- To discover EM waves, consider evaluating $\vec{\nabla} \times(\vec{\nabla} \times \vec{E})$
- Substituting in Maxwell's equations, this equals $\vec{\nabla} \times\left(-\frac{\partial \vec{B}}{\partial t}\right)=$

$$
-\frac{\partial}{d t}(\vec{\nabla} \times \vec{B})=-\frac{\partial}{\partial t}\left(\mu_{0} \varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right)=-\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}
$$

- Also by vector calculus, $\vec{\nabla} \times(\vec{\nabla} \times \vec{E})=\vec{\nabla}(\vec{\nabla} \cdot \vec{E})-\vec{\nabla}^{2} \vec{E}$
- Using Maxwell's equation $\vec{\nabla} \cdot \vec{E}=0$, this just equals $-\vec{V}^{2} \vec{E}$
- Putting the two sides together, we find $\vec{\nabla}^{2} \vec{E}=\boldsymbol{\mu}_{\mathbf{0}} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$

Wave equations

- The equation represents a travelling wave
- To see why, consider a 1D wave travelling along the x-axis with displacement $y(x, t)=A \sin (k x-\omega t)$ in terms of its amplitude A, wavelength $\lambda=\frac{2 \pi}{k}$, time period $T=\frac{2 \pi}{\omega}$, velocity $v=\frac{\lambda}{T}=\frac{\omega}{k}$

This wave is moving in this direction

Wave equations

- The displacement $y(x, t)$ of a wave travelling with speed v satisfies the wave equation $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$
- To check this, substitute in $y(x, t)=A \sin (k x-\omega t)$ where $v=\frac{\omega}{k}$
- On the left-hand side: $\frac{\partial^{2} y}{\partial x^{2}}=-k^{2} A \sin (k x-\omega t)$
- On the right-hand side: $\frac{\partial^{2} y}{\partial t^{2}}=-\omega^{2} A \sin (k x-\omega t)$
- Using $\frac{1}{v^{2}}=\frac{k^{2}}{\omega^{2}}$, we recover the wave equation!

Wave equations

- The equation $\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}$ describes general waves

Clicker question

Two waves are described by the equations $y_{1}(x, t)=2 \sin (2 x-t)$, $y_{2}(x, t)=4 \sin (x-0.8 t)$. Which wave has the higher speed?
A. Wave 1
B. Wave 2
C. Both have the same speed

Wave equations

- The relation $\nabla^{2} \vec{E}=\mu_{0} \varepsilon_{0} \frac{\partial^{2} \vec{E}}{\partial t^{2}}$ implies that each component of \vec{E} is a wave travelling at speed $v=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
- We obtain $v=c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$: the speed of light

Properties of the waves

- Let's find out more about the properties of electromagnetic waves
- To simplify the case, suppose that the \vec{E}-field is along the y axis, such that $E_{y}(x, t)=A \sin (k x-\omega t)$ and $E_{x}=E_{z}=0$. This is a linearly polarized wave.

- From $E_{y}=A \sin (k x-\omega t)$, we can deduce the \vec{B} field using $\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}$
- x-component: $-\frac{\partial B_{x}}{\partial t}=\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=0$, hence $B_{x}=0$
- y-component: $-\frac{\partial B_{y}}{\partial t}=\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=0$, hence $B_{y}=0$
- z-component: $-\frac{\partial B_{z}}{\partial t}=\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=k A \cos (k x-\omega t)$, hence $B_{z}(x, t)=$ $\frac{A}{v} \sin (k x-\omega t)=\frac{1}{v} E_{y}(x, t)$
- The magnetic field is perfectly in phase with the electric field and oriented at 90° !

Properties of the waves

- Form of a linearly-polarized electromagnetic wave:

- The changing \vec{E}-field causes a changing \vec{B}-field, which in its turn causes a changing \vec{E}-field

Properties of the waves

- For an electromagnetic wave travelling in a medium with permittivity ε_{r} and permeability μ_{r} we can use Maxwell's Equations to show that speed $v=\frac{c}{\sqrt{\varepsilon_{r} \mu_{r}}}$
- The quantity $\sqrt{\varepsilon_{r} \mu_{r}}$ is known as the refractive index

> Why does
> this produce
> a spectrum
> of light?

Clicker question

The electric field for a plane wave is
given by $\vec{E}(\vec{r}, t)=\vec{E}_{0} \cos (\vec{k} \cdot \vec{r}-\omega t)$.
The vector \vec{k} tells you ...
A. The direction of the electric field
B. The speed of the wave
C. The direction the wave moves
D. Adirection perpendicular to the
direction the wave moves

Clicker question

The wave propagates in the x direction, such that $\vec{E}(x, t)=$
$E_{0} \overrightarrow{\hat{y}} \cos (k x-\omega t)$. What is the direction of the magnetic field?
A. $+Z$
B. -z
C. +y
D. -y

Energy of the waves

- Waves transport energy from one place to another
- Energy is stored in the electric field with density $\frac{1}{2} \varepsilon_{0} E^{2}$ and the magnetic field with density $\frac{1}{2 \mu_{0}} B^{2}$
- How do these values compare?

Energy of the waves

- Waves transport energy from one place to another
- Energy is stored in the electric field with density $\frac{1}{2} \varepsilon_{0} E^{2}$ and the magnetic field with density $\frac{1}{2 \mu_{0}} B^{2}$
- For a linearly polarized wave, $B=$ E / v, where $v=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$, hence $\frac{1}{2} \varepsilon_{0} E^{2}=\frac{1}{2} \varepsilon_{0} v^{2} B^{2}=\frac{1}{2 \mu_{0}} B^{2}$
- The energy contained in the electric and magnetic fields is equal!

Energy of the waves

- What is the rate of energy flow?

$$
v \times t
$$

\qquad

- The energy flowing past area A in time t is contained in a volume $A v t$
- If the energy density is U, this energy is $U A v t$ hence the energy flow per unit area per unit time is equal to $U v$
- For linearly-polarized electromagnetic waves, $U v=\frac{1}{\mu_{0}} B_{z}^{2} v=\frac{1}{\mu_{0}} E_{y} B_{z}$
- The energy flow can be represented by the Poynting vector $\frac{1}{\mu_{0}}(\vec{E} \times \vec{B})$

Energy of the waves

- The Poynting vector, $\frac{1}{\mu_{0}}(\vec{E} \times \vec{B})=\vec{E} \times \vec{H}$, is oriented in the direction of travel

Energy of the waves

- As an example, consider current I flowing along a cylindrical conductor driven by a potential V

$$
B=\frac{\mu_{0} I}{2 \pi r}
$$

- The energy flux is equal to the Poynting vector $\frac{1}{\mu_{0}}(\vec{E} \times \vec{B})$
- This is non-zero at the surface of the conductor, flowing inward
- If the curved surface area is A, the power flowing in is $P=$

$$
\frac{1}{\mu_{0}} E B A=\frac{1}{\mu_{0}} \frac{V}{L} \frac{\mu_{0} I}{2 \pi r} 2 \pi r L=V I
$$

- We recover Joule heating!

Summary

- Maxwell's equations predict that the \vec{E} - and \vec{B}-fields satisfy linked wave equations with speed $\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$
- For a linearly-polarized wave, the \vec{E} - and \vec{B}-fields are in phase and oriented at 90°
- The energy densities stored in the \vec{E} - and \vec{B}-fields is equal, and the energy flow per unit area per unit time is equal to the Poynting vector $\vec{E} \times \vec{H}$

