Class 12 : Electromagnetic Forces

- Forces felt by charges and currents in \vec{E} - and \vec{B}-fields
- Motion of particle in a \vec{B}-field
- Applications

Recap

- Charges set up an electric field \vec{E}, in which other charges feel an electric force
- Currents (or magnets) set up a magnetic field \vec{B}, in which other currents (or magnets) feel a magnetic force
- In this lecture we will examine these electromagnetic forces in more detail

Forces felt in \vec{E} - and \vec{B}-fields

- A charge q in electric field \vec{E} feels force $\vec{F}_{E}=q \vec{E}$
- This causes acceleration parallel to the \vec{E}-field

Forces felt in \vec{E} - and \vec{B}-fields

- Other examples of electric forces!

Forces felt in \vec{E} - and \vec{B}-fields

- A current I or a charge \boldsymbol{q} moving with velocity $\overrightarrow{\boldsymbol{v}}$ in a magnetic field \vec{B} feels a force perpendicular to both the direction of current/motion and \vec{B}
- Force on a current element : $\vec{F}_{B}=I d \vec{l} \times \vec{B}$
- Force on a charge : $\vec{F}_{B}=q \vec{v} \times \vec{B}$
- (Recall, the cross product of two vectors is perpendicular to both)

Forces felt in \vec{E} - and \vec{B}-fields

- Direction of the force from "Fleming's left-hand rule"

$$
\vec{F}_{B}=q \vec{v} \times \vec{B}
$$

$$
\vec{F}_{B}=I d \vec{l} \times \vec{B}
$$

Forces felt in \vec{E} - and \vec{B}-fields

- Other examples of magnetic forces!

Poloidal field magnet

Toroidal field magnet

Vacuum
chamber

Forces felt in \vec{E} - and \vec{B}-fields

- What is the force \vec{F} on a charge $q=1 \mu C$ moving with velocity $\vec{v}=(1,2,3) \times 10^{5} \mathrm{~km} / \mathrm{s}$ in a region with electric field $\vec{E}=(0,100,200) \mathrm{V} / \mathrm{mm}$ and magnetic field $\vec{B}=(0.5,0,0) T$?

Clicker question

Two long parallel wires carry currents I_{1} and I_{2} in the same direction. In which direction is the force on I_{2} ?
A. Up
B. Down
C. Left
D. Right

Clicker question

An electron moving West
through a uniform magnetic field pointing East experiences:
A. A force perpendicular to

C. A force oriented South
D. No force

Motion of particle in a \vec{B}-field

- Consider a charge $+q$ injected into a magnetic field B (into the screen) with velocity v (to the right)

\times	\times	\times	\times	\times	Magnetic field \vec{B}
	\times	\times	\times	\times	\times

- What path will the charge follow?
- The charge will feel a magnetic force $\vec{F}_{B}=$ $q \vec{v} \times \vec{B}$ (i.e., upward)

Motion of particle in a \vec{B}-field

- Because the magnetic force is always perpendicular to \vec{v}, it will drive the charge in a circular orbit

- This is a centripetal force
- Hence $F_{B}=q v B=\frac{m v^{2}}{r}$, where m is the mass of the charge q, and r is the radius
- Radius of orbit $r=\frac{m v}{q B}$
- Time period $=\frac{2 \pi r}{v}=\frac{2 \pi m}{q B}$

Motion of particle in a \vec{B}-field

- What is the path if the charge also has a velocity component $v_{\|}$parallel to \vec{B} ?

- The motion will be a helix
- v_{\perp} drives a circular orbit with radius $\frac{m v_{\perp}}{q B}$ and time period $t=\frac{2 \pi m}{q B}$
- $\boldsymbol{v}_{\|}$drives a translational motion with helix
separation $v_{\|} t=\frac{2 \pi m v_{\|}}{q B}$

Motion of particle in a \vec{B}-field

- A consequence is that charged particles will tend to follow magnetic field lines (spiralling around them)

Motion of particle in a \vec{B}-field

- How does the energy of the charge moving in a \vec{B} field change?
- A charge moving in a \vec{B}-field feels a force but never increases its energy
- This is because the force is always perpendicular to the motion and so never does any work
- Mathematically, the force does work at a rate $\vec{F} \cdot \vec{v}=$ $q(\vec{v} \times \vec{B}) \cdot \vec{v}=0$ because $\vec{v} \times \vec{B}$ is always perpendicular to \vec{v}

Clicker question

A proton is released from rest in

 uniform \vec{E} and \vec{B}-fields. Which path will it follow?Electric field \vec{E} (up)

A. Up and bend to left
B. Up and bend to right
C. Down and bend to left
D. Down and bend to right

Clicker question

Particles with the same charge and speed, but different masses, enter a uniform magnetic field. The radius of the path they follow is:
A. Greater for the more massive particles
B. Smaller for the more massive particles
C. The same for all particles

D. Infinite, the path is a straight line

Applications

- How does a mass spectrometer work?

How does the motion in the magnetic field allow us to determine the mass of the ions?

Applications

- How does a mass spectrometer work?

The radius of orbit depends on the mass,

$$
r=m v / q B
$$

Applications

- What produces the aurorae?

What causes this emission?

Why does it occur at the poles?

Applications

- What produces the aurorae?

Charged particles in the solar wind collide with atmospheric atoms, exciting them to energy levels from where they decay, emitting radiation

The Earth's magnetic field funnels the charged particles towards the poles

Applications

- How does the Large Hadron Collider create a circular beam of particles?

Applications

- How does the Large Hadron Collider create a circular beam of particles?

Superconducting electromagnets are used to produce a magnetic field which guides charged particles (e.g. protons, nuclei) around the accelerator ring

Summary

- Magnetic forces : A charge q moving with velocity \vec{v} in a magnetic field \vec{B} feels force $\vec{F}_{B}=q \vec{v} \times \vec{B} ;$ a current element $I d \vec{l}$ feels force $\vec{F}_{B}=I d \vec{l} \times \vec{B}$

- A charged particle moving in a \vec{B}-field will trace out a helical path
- For general motion in crossed \vec{E} and \vec{B}-fields, $\vec{F}=q \vec{E}+q \vec{v} \times \vec{B}$

