Class 11 : Magnetic materials

- Magnetic dipoles
- Magnetization of a medium, and how it modifies magnetic field
- Magnetic intensity
- How does an electromagnet work?
- Boundary conditions for \vec{B}

Recap (1)

- Electric currents give rise to magnetic fields
- The magnetic field \vec{B} generated by current density \vec{J} satisfies the two Maxwell equations $\overrightarrow{\boldsymbol{\nabla}} \cdot \overrightarrow{\boldsymbol{B}}=\mathbf{0}$ and $\vec{\nabla} \times \overrightarrow{\boldsymbol{B}}=\boldsymbol{\mu}_{\mathbf{0}} \overrightarrow{\boldsymbol{J}}$

Recap (2)

- An external electric field \vec{E} causes polarization \vec{P} of insulators into electric dipoles, altering the electric field inside the material
- The combined field is described by the electric displacement $\vec{D}=\varepsilon_{0} \vec{E}+$ \vec{P}, which can be used to express Maxwell's $1^{\text {st }}$ Equation as $\vec{\nabla} \cdot \vec{D}=\rho_{f}$

- In many materials $\vec{D}=\varepsilon_{r} \varepsilon_{0} \vec{E}$, in terms of the relative permittivity $\varepsilon_{r} \gg 1$

Magnetization

- We often think of magnetism as a intrinsic property of certain materials. How can we model this phenomenon?

Magnetization

- The \vec{B}-field from a bar magnet (= magnetic dipole) is analogous to the \vec{B}-field from a current loop

Please note in workbook

Magnetization

- In this sense, we can model a magnetic material via the combined action of many tiny current loops

- We can think of these current loops as "electrons circulating within each atom" or "atomic spin" or "magnetic domains"

Magnetization

- When a material is magnetized, the current loops (or magnetic dipoles) align in a process of magnetic polarization

- We define the magnetization \vec{M} of the material as the magnetic dipole moment per unit volume

Magnetization

- Ferromagnets are materials in which these magnetic domains can readily align, such that the material becomes a permanent magnet

Magnetization

- This is similar to the polarization \vec{P} of an insulating material into electric dipoles by an applied \vec{E}-field (recall, \vec{P} is defined as the electric dipole moment per unit volume)

Unpolarized

Polarized by an applied electric field.

Magnetization

- This is similar to the polarization \vec{P} of an insulating material into electric dipoles by an applied \vec{E}-field (recall, \vec{P} is defined as the electric dipole moment per unit volume)
- However, note that magnetizing a medium increases the magnetic field (\vec{B} increases), whereas polarizing a dielectric medium reduces the electric field (\vec{E} decreases)

Please note in workbook

- Magnetization is equivalent to an effective current density $\overrightarrow{\boldsymbol{J}}_{\boldsymbol{m}}=\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{M}}$ (the next three slides are optional and explain this for students who would like to follow up)

Magnetization

- The magnetic dipole moment \vec{m} of a current loop I enclosing area \vec{A} is $\vec{m}=I \vec{A}$
- \vec{m} is analogous to the electric dipole
 moment \vec{p} in electrostatics
- In an external electric field \vec{E}, an electric dipole feels a torque $\vec{p} \times \vec{E}$
- In an external magnetic field \vec{B}, a magnetic dipole feels a torque $\vec{m} \times \vec{B}$

Magnetization

- What is the net effect of all these current loops?
- Consider current loops in $x y$-plane

- Magnetic dipole moment of $1^{\text {st }}$ element
$=I d x d y=M_{z} d x d y d z$
- Hence, $I=M_{z} d z$
- For $2^{\text {nd }}$ element, $I^{\prime}=\left(M_{z}+\frac{\partial M_{z}}{\partial x} d x\right) d z$
- Net current $I_{y}=I-I^{\prime}=-\frac{\partial M_{z}}{\partial x} d x d z$
- Apply the same argument to loops in the $y z$-plane : $I_{y}=\frac{\partial M_{x}}{\partial z} d x d z$
- Current density $J_{y}=\frac{I_{y}}{d x d z}=\frac{\partial M_{x}}{\partial z}-\frac{\partial M_{z}}{\partial x}=(\vec{\nabla} \times \vec{M})_{y}$

Magnetization

- The magnetization \vec{M} of a material may hence be modelled via an effective magnetization current $\vec{J}_{m}=\vec{V} \times \vec{M}$

Surface currents

- For constant magnetization, this results in an effective surface current
- This is analogous to the electric polarization \vec{P} of an insulator being represented by an effective bound charge density $\rho_{b}=-\vec{\nabla} \cdot \vec{P}$
- For constant electric polarization, this results in a layer of effective surface charge

Magnetic intensity

- We can use magnetization current to re-write Ampere's Law $\vec{\nabla} \times \vec{B}=\mu_{0} \vec{J}$ in a form that applies in all magnetic materials
- Including both free current \vec{J}_{f} and magnetization current \vec{J}_{m} : $\vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{J}_{f}+\vec{J}_{m}\right)=\mu_{0}\left(\vec{J}_{f}+\vec{\nabla} \times \vec{M}\right)$
- We define the magnetic intensity $\overrightarrow{\boldsymbol{H}}=\frac{\overrightarrow{\boldsymbol{B}}}{\mu_{0}}-\overrightarrow{\boldsymbol{M}}$
- Ampere's Law then takes the general form $\overrightarrow{\boldsymbol{\nabla}} \times \overrightarrow{\boldsymbol{H}}=\overrightarrow{\boldsymbol{J}}_{\boldsymbol{f}}$ (in differential form) or $\oint \overrightarrow{\boldsymbol{H}} \cdot \boldsymbol{d} \overrightarrow{\boldsymbol{l}}=\boldsymbol{I}_{\boldsymbol{e n c}}$ (in integral form)
- By working in terms of \vec{H}, we can ignore the effects of magnetization and only consider free current

Magnetic intensity

- In many materials the magnetization \vec{M} is proportional to the applied field \vec{B}
- We can then write $\vec{H}=\vec{B} / \mu_{r} \mu_{0}$ where $\mu_{r} \gg 1$ is the relative permeability of the material

Each magnetic material will have a different permeability

Please note
 in workbook

Magnetic intensity

Magnetic materials

- The magnetic intensity \vec{H} is produced by free currents \vec{J}_{f}
- It is computed from Ampere's Law $\vec{\nabla} \times \vec{H}=\vec{J}_{f}$ or $\oint \vec{H} \cdot d \vec{l}=I_{e n c}$
- The medium determines the magnetic field $\vec{B}=\mu_{r} \mu_{0} \vec{H}$, where $\mu_{r} \gg 1$
- The \vec{B}-field determines the force on a current

Dielectric materials

- The electric displacement \vec{D} is produced by free charges ρ_{f}
- It is computed from Gauss's Law $\vec{\nabla} \cdot \vec{D}=\rho_{f}$ or $\int \vec{D} \cdot d \vec{A}=Q_{\text {enc }}$
- The medium determines the electric field $\vec{E}=\vec{D} / \varepsilon_{r} \varepsilon_{0}$, where $\varepsilon_{r} \gg 1$
- The \vec{E}-field determines the force on a charge

Electromagnet

- Now, consider a solenoid with an iron core of relative permeability μ_{r}. What is the \vec{B}-field in the middle?

- Apply Ampere’s Law $\oint \vec{H} \cdot d \vec{l}=I_{e n c}$ to the closed loop shown
- $\oint \vec{H} \cdot d \vec{l}=H l=\frac{B}{\mu_{r} \mu_{0}} l$, neglecting \vec{B} outside coil
- $I_{e n c}=N \times I$
- Hence $B=\frac{\mu_{r} \mu_{0} N I}{l}$

Electromagnet

- In this way, a magnetic field \vec{B} generated by a solenoid can be amplified by using an iron core (since $\vec{B}=\mu_{r} \mu_{0} \vec{H}$ and $\left.\mu_{r} \gg 1\right)$

Clicker question

An iron bar is placed inside a solenoid to make an electromagnet. What can
we say about \vec{B} and \vec{H} inside the solenoid before and after?

A. B and H stay the same
B. B increases, H stays the same

C. B stays the same, H increases
D. B and H increase

Clicker question

The number of coils of wire in the solenoid is now doubled. What can we say about \vec{B} and \vec{H} inside the solenoid before and after?

A. B and H stay the same
B. B increases, H stays the same

C. B stays the same, H increases
D. B and H increase

Boundary conditions

- We previously found that on the boundary between two dielectrics, the normal component of \vec{D} and the tangential component of \vec{E} are continuous

Boundary conditions

－We previously found that on the boundary between two dielectrics，the normal component of \vec{D} and the tangential component of \vec{E} are continuous
－We can similarly derive that the normal component of \vec{B} and the tangential component of \vec{H} are continuous

Medium 1

	ィニニニニニニニニヲ	ו－－－－－－－－－
	In－－－－－－－－${ }^{\text {l }}$	－－－－－－－－－－\｜
Medium 2	$\vec{\nabla} \cdot \vec{B}=0$ or $\int \vec{B} \cdot d \vec{A}=0$	$\oint \vec{H} \cdot d \vec{l}=0$

$\rightarrow B_{\perp}$ is continuous $\quad \rightarrow H_{\|}$is continuous

Clicker question

Consider the magnetized iron core of the previous question. What can you say about the magnetic field \vec{B} at A and B ?

A. They are equal
B. Magnetic field is stronger at A

C. Magnetic field is stronger at B
D. Impossible to say

Clicker question

Consider the magnetized iron core of the previous question. What can you say about the magnetic field \vec{B} at A and B ?

A

A. They are equal
B. Magnetic field is stronger at A

C. Magnetic field is stronger at B
D. Impossible to say

Summary

- Magnetic materials consist of tiny dipoles which can be modelled as current loops
- When a magnetic field is applied, alignment of these loops causes magnetization \vec{M} which is equivalent to current density $\vec{J}_{m}=\vec{\nabla} \times \vec{M}$
- We define the magnetic intensity $\vec{H}=\frac{\vec{B}}{\mu_{0}}-\vec{M}$, in terms
 of which $\vec{\nabla} \times \vec{H}=\vec{J}_{f}$

