Class 11 : Magnetic materials

- Magnetic dipoles
- Magnetization of a medium, and how it modifies magnetic field
- Magnetic intensity
- How does an electromagnet work?
- Boundary conditions for \vec{B}

Recap (1)

- Electric currents give rise to magnetic fields
- The magnetic field \vec{B} generated by current density \vec{J} satisfies the two Maxwell equations $\vec{\nabla} \cdot \vec{B} = \mathbf{0}$ and $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$

Recap (2)

- An external electric field \vec{E} causes **polarization** \vec{P} of insulators into electric dipoles, altering the electric field inside the material
- The combined field is described by the **electric displacement** $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$, which can be used to express Maxwell's 1st Equation as $\vec{\nabla} \cdot \vec{D} = \rho_f$
- In many materials $\vec{D} = \varepsilon_r \varepsilon_0 \vec{E}$, in terms of the **relative permittivity** $\varepsilon_r \gg 1$

• We often think of **magnetism** as a intrinsic property of certain materials. How can we model this phenomenon?

• The \vec{B} -field from a **bar magnet** (= **magnetic dipole**) is analogous to the \vec{B} -field from a **current loop**

• In this sense, we can model a magnetic material via the **combined action of many tiny current loops**

• We can think of these current loops as *"electrons circulating within each atom"* or *"atomic spin"* or *"magnetic domains"*

• When a material is **magnetized**, the current loops (or magnetic dipoles) align in a process of **magnetic polarization**

• We define the **magnetization** \vec{M} of the material as the *magnetic dipole moment per unit volume*

• Ferromagnets are materials in which these *magnetic domains* can readily align, such that the material becomes a *permanent magnet*

• This is similar to the *polarization* \vec{P} of an insulating material into electric dipoles by an applied \vec{E} -field (recall, \vec{P} is defined as the *electric dipole moment* per unit volume)

- This is similar to the *polarization* \vec{P} of an insulating material into electric dipoles by an applied \vec{E} -field (recall, \vec{P} is defined as the *electric dipole moment* per unit volume)
- However, note that magnetizing a medium **increases** the magnetic field (\vec{B} increases), whereas polarizing a dielectric medium **reduces** the electric field (\vec{E} decreases)

Please note in workbook

• Magnetization is equivalent to an effective current density $\vec{J}_m = \vec{\nabla} \times \vec{M}$ (the next three slides are optional and explain this for students who would like to follow up)

• The magnetic dipole moment \vec{m} of a current loop I enclosing area \vec{A} is $\vec{m} = I\vec{A}$

- \vec{m} is analogous to the electric dipole moment \vec{p} in electrostatics
- In an external electric field \vec{E} , an electric dipole feels a torque $\vec{p} \times \vec{E}$
- In an external magnetic field \vec{B} , a magnetic dipole feels a torque $\vec{m} \times \vec{B}$

• What is the net effect of all these current loops?

- Consider current loops in *xy*-plane
- Magnetic dipole moment of 1^{st} element = $I dx dy = M_z dx dy dz$
- Hence, $I = M_z dz$
- For 2nd element, $I' = \left(M_z + \frac{\partial M_z}{\partial x} dx\right) dz$
- Net current $I_y = I I' = -\frac{\partial M_z}{\partial x} dx dz$
- Apply the same argument to loops in the yz-plane : $I_y = \frac{\partial M_x}{\partial z} dx dz$
- Current density $J_y = \frac{I_y}{dx \, dz} = \frac{\partial M_x}{\partial z} \frac{\partial M_z}{\partial x} = (\vec{\nabla} \times \vec{M})_y$

• The magnetization \vec{M} of a material may hence be modelled via an effective **magnetization current** $\vec{J}_m = \vec{\nabla} \times \vec{M}$

Surface currents

- For constant magnetization, this results in an effective **surface current**
 - This is analogous to the electric polarization \vec{P} of an insulator being represented by an effective bound charge density $\rho_b = -\vec{\nabla}.\vec{P}$
- For constant electric polarization, this results in a layer of effective surface charge

Magnetic intensity

- We can use magnetization current to **re-write Ampere's Law** $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$ in a form that applies in *all magnetic materials*
- Including both free current \vec{J}_f and magnetization current \vec{J}_m : $\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J}_f + \vec{J}_m) = \mu_0 (\vec{J}_f + \vec{\nabla} \times \vec{M})$
- We define the magnetic intensity $\vec{H} = \frac{\vec{B}}{\mu_0} \vec{M}$
- Ampere's Law then takes the general form $\vec{\nabla} \times \vec{H} = \vec{J}_f$ (in differential form) or $\oint \vec{H} \cdot d\vec{l} = I_{enc}$ (in integral form)
- By working in terms of \vec{H} , we can ignore the effects of magnetization and only consider free current

Magnetic intensity

- In many materials the magnetization \vec{M} is proportional to the applied field \vec{B}
- We can then write $\vec{H} = \vec{B}/\mu_r\mu_0$ where $\mu_r \gg 1$ is the **relative permeability** of the material

Each magnetic material will have a different permeability

Please note in workbook

Magnetic intensity

Magnetic materials

- The magnetic intensity \vec{H} is produced by free currents \vec{J}_f
- It is computed from Ampere's Law $\vec{\nabla} \times \vec{H} = \vec{J}_f$ or $\oint \vec{H} \cdot d\vec{l} = I_{enc}$
- The medium determines the magnetic field $\vec{B} = \mu_r \mu_0 \vec{H}$, where $\mu_r \gg 1$
- The \vec{B} -field determines the force on a current

Dielectric materials

- The electric displacement \vec{D} is produced by free charges ρ_f
- It is computed from Gauss's Law $\vec{\nabla}.\vec{D} = \rho_f$ or $\int \vec{D}.d\vec{A} = Q_{enc}$
- The medium determines the electric field $\vec{E} = \vec{D} / \varepsilon_r \varepsilon_0$, where $\varepsilon_r \gg 1$
- The \vec{E} -field determines the force on a charge

Electromagnet

• Now, consider a solenoid with an iron core of relative permeability μ_r . What is the \vec{B} -field in the middle?

• Apply Ampere's Law $\oint \vec{H} \cdot d\vec{l} = I_{enc}$ to the closed loop shown

•
$$\oint \vec{H} \cdot d\vec{l} = H \ l = \frac{B}{\mu_r \mu_0} \ l$$
,
neglecting \vec{B} outside coil

•
$$I_{enc} = N \times I$$

• Hence $B = \frac{\mu_r \, \mu_0 \, N \, I}{l}$

Electromagnet

• In this way, a magnetic field \vec{B} generated by a solenoid can be amplified by using an iron core (since $\vec{B} = \mu_r \mu_0 \vec{H}$ and $\mu_r \gg 1$)

Clicker question

An iron bar is placed inside a solenoid to make an **electromagnet**. What can we say about \vec{B} and \vec{H} inside the solenoid before and after?

- A. B and H stay the same
- B. B increases, H stays the same
- C. B stays the same, H increases
- D. B and H increase

Clicker question

The number of coils of wire in the solenoid is now doubled. What can we say about \vec{B} and \vec{H} inside the solenoid before and after?

- A. B and H stay the same
- B. B increases, H stays the same
- C. B stays the same, H increases
- D. B and H increase

Boundary conditions

• We previously found that on the boundary between two dielectrics, the normal component of \vec{D} and the tangential component of \vec{E} are continuous

Boundary conditions

- We previously found that on the boundary between two dielectrics, the normal component of \vec{D} and the tangential component of \vec{E} are continuous
- We can similarly derive that the *normal component of* \vec{B} and the *tangential component of* \vec{H} are continuous

Medium 1

Medium 2 $\vec{\nabla} \cdot \vec{B} = 0 \text{ or } \int \vec{B} \cdot d\vec{A} = 0 \qquad \oint \vec{H} \cdot d\vec{l} = 0$ $\rightarrow B_{\perp} \text{ is continuous} \qquad \rightarrow H_{\parallel} \text{ is continuous}$

Clicker question

Consider the magnetized iron core of the previous question. What can you say about the magnetic field \vec{B} at A and B?

- A. They are equal
- B. Magnetic field is stronger at A
- C. Magnetic field is stronger at B
- D. Impossible to say

Clicker question

Consider the magnetized iron core of the previous question. What can you say about the magnetic field \vec{B} at A and B?

A •

- A. They are equal
- B. Magnetic field is stronger at A
- C. Magnetic field is stronger at B
- D. Impossible to say

Summary

- Magnetic materials consist of tiny dipoles which can be modelled as current loops
- When a magnetic field is applied, alignment of these loops causes **magnetization** \vec{M} which is *equivalent to current density* $\vec{J}_m = \vec{\nabla} \times \vec{M}$
- We define the **magnetic intensity** $\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M}$, in terms of which $\vec{\nabla} \times \vec{H} = \vec{J}_f$

