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Testing the laws of gravity with
redshift-space distortions (RSDs)



How fast are structures 
growing within it?

How fast is the Universe 
expanding with time?

What observations can cosmologists make?



Expansion of the homogeneous Universe

Standard candles Standard rulers



Expansion of the homogeneous Universe

Standard candles Standard rulers

• The cosmic expansion history over the last ~7 billion 
years has been measured with ~1% accuracy

Credit : Anderson et al. (2013)Credit : Amanullah et al. (2010)



Expansion of the homogeneous Universe

• The cosmic expansion history over the last ~7 billion 
years has been measured with ~1% accuracy



Growth of perturbations

There are a rich 
variety of observable 
signatures in the 
clumpy Universe

These have not been 
measured as accurately, 
and are crucial for 
distinguishing physics

In a perfectly homogeneous 
Universe, it would be tricky 
to understand dark energy!



Growth of perturbations

Measure these perturbations 
as a function of redshift (z) 
and scale (Fourier mode k)



Growth of perturbations

• Clustering of galaxies [measured using a galaxy redshift survey]

• Velocities of objects [measured through the additional Doppler 
shift in the cosmological redshift]

• Gravitational lensing of light [measured through the correlated 
shapes of background galaxies as their light passes through structure]

• Abundance/properties of structures e.g. clusters/voids



Overview

• What are redshift-space distortions (RSD)?

• How do we measure them?

• Linear theory

• Complicating issues!

• Current measurements

• Future directions



RSD basics

• Galaxies possess coherent “peculiar velocities” on 
top of the overall cosmological expansion



RSD basics

• Galaxies possess coherent “peculiar velocities” on 
top of the overall cosmological expansion



• These velocities are driven by the matter 
distribution, according to gravitational physics

• For example in linear perturbation theory:

• in terms of the growth rate

• where 

• The dependence of the growth rate on scale and 
time is a key discriminator between gravity models

RSD basics



RSD basics

• Can measure line-of-sight velocities because they add 
an extra Doppler shift to the galaxy redshift:



RSD basics

• Can measure line-of-sight velocities because they add 
an extra Doppler shift to the galaxy redshift:

• Approach (1) : measure direct peculiar velocity vr 
using standard-candle estimate of zcosmo

• Approach (2) : measure redshift-space distortions in 
the clustering distribution of galaxies in “redshift 
space” (i.e. using positions based on zobs)

• The RSD approach has so far been the most accurate 
method of measuring cosmic growth 



observer

infalling
galaxies
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RSD basics

• What are we measuring?  (cartoon version)



Linear RSD theory

• RSDs amplify galaxy overdensities and imprint a 
dependence on the angle to the line-of-sight

“real space” “redshift space”

line-of-sight



Linear RSD theory

Line-of-sight

Direction of
Fourier mode

• How is each Fourier galaxy overdensity mode 
modulated for a given velocity divergence field ?



Linear RSD theory

Line-of-sight

Direction of
Fourier mode

• small overdensities 

• velocity field irrotational

• continuity equation

• plane-parallel approximation

Small print:

• How is each Fourier galaxy overdensity mode 
modulated for a given velocity divergence field ?



Linear RSD theory



Linear RSD theory

• Linear perturbation theory

• Linear galaxy bias



Linear RSD theory

• Linear perturbation theory

• Linear galaxy bias

• Matter power spectrum 



Linear RSD theory

• Linear perturbation theory

• Linear galaxy bias

• Matter power spectrum 

• Conclusion (1) : Linear RSD measures 



Linear RSD theory

• Linear perturbation theory

• Linear galaxy bias

• Matter power spectrum 

• Conclusion (1) : Linear RSD measures 

• Conclusion (2) : Hexadecapole is sensitive to            - a 
quantity which responds directly to mass (like lensing)



Issues!

• “Linear theory” never applies in practice!

• Perturbation theory breaks down

• Galaxy velocities have a random component

• Galaxy bias is not linear, local or deterministic

• The theoretical uncertainty in the model is greater 
than the observational errors!



RSD measurements

• Perform a large galaxy redshift survey

• Assume a fiducial cosmology to measure the galaxy 
clustering as a function of scale and line-of-sight angle

• Compress this information (e.g. into multipoles)

• Fit for the growth rate, marginalizing over nuisance 
parameters (e.g. velocity dispersion, galaxy bias)

• Use mock catalogues built from N-body simulations 
to test the model and covariance

• Compare the measurements to cosmological models



RSD measurements

• Current status: ~10% growth measurements in the 
range z < 1, “reasonable agreement” with CMB26 S. Alam et al.
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Figure 15. Left-hand panel: Comparison of f�8(z) measurements across previous BOSS measurements in DR11 (Alam et al. 2015b; Beutler et al. 2014a;
Samushia et al. 2014; Sánchez et al. 2014) and DR12 (Gil-Marı́n et al. 2016b,c; Chuang et al. 2016) samples. Right-hand panel: The f�8(z) results from this
work compared with the measurements of the 2dfGRS (Percival et al. 2004b) and 6dFGS (Beutler et al. 2012), the GAMA (Blake et al. 2013), the WiggleZ
(Blake et al. 2012), the VVDS (Guzzo et al. 2008), and the VIPERS (de la Torre et al. 2013) surveys, as well as the measurements from the SDSS-I and
-II main galaxy sample (Howlett et al. 2015, MGS) and the SDSS-II LRG sample (Oka et al. 2014, DR7). We have plotted conditional constraints on f�8

assuming a Planck ⇤CDM background cosmology. This is one of the best evidence of how growth rate measurements from BOSS again reaffirm the validity
of General Relativity in large scales.

9 COSMOLOGICAL PARAMETERS

9.1 Data sets

We now turn to cosmological interpretation of our results. We will
use the consensus measurements, including our estimated system-
atic error contribution to the covariance matrix, from the BAO-only
and BAO+FS columns of Table 3. In our subsequent figures and ta-
bles, the former case is simply labeled “BAO.”

Following Aubourg et al. (2015), we include the 6dFGS and
SDSS MGS BAO measurements and the BOSS DR11 Ly↵ forest
BAO measurements (see Fig. 14 and §8.3). These are largely in-
dependent and have utilized similar methodologies. We opt not to
include other BAO measurements, notably those from photomet-
ric clustering and from the WiggleZ survey (Blake et al. 2011a,
2012), as the volumes partially overlap BOSS and the errors are
sufficiently large that a proper inclusion would not substantially
affect the results. As shown in Aubourg et al. (2015), these mea-
surements are in good agreement with those from BOSS. We note
in particular the good match to the WiggleZ results, as this was a
sample of strongly star-forming galaxies in marked contrast to the
red massive galaxies used in BOSS. The dual-tracer opportunity
was studied extensively with a joint analysis of the overlap region
of WiggleZ and BOSS (Beutler et al. 2016a).

We further opt not to include other RSD measurements be-
yond BOSS, as they come from a variety of analysis and modelling
approaches. One can see from Figure 15 that the measurements
from other surveys are consistent with those from BOSS within
their quoted errors, and the error bars in all cases are large enough
that there are potential gains from combining multiple measure-
ments. However, in contrast to BAO measurements, systematic er-
rors associated with non-linear clustering and galaxy bias are a ma-
jor component of the error budget in any RSD analysis, and these
systematics may well be covariant from one analysis to another in
a way that is difficult to quantify. Because of systematic error con-
tributions, we do not consider it feasible to carry out a robust joint
RSD analysis with other measurements.

In all cases, we combine with CMB anisotropy data from the

Planck 2015 release (Planck Collaboration XIII 2015). We use the
power spectra for both temperature and polarization; in detail, we
use the likelihoods plik dx11dr2 HM v18 TTTEEE and lowTEB
for the high and low multipoles, respectively. We do not include
the information from the lensing of the CMB in the 4-point corre-
lations of the CMB temperature anisotropies. We will discuss the
impact of the recent (Planck Collaboration XLVI 2016) large-angle
polarization results in §9.4.

We note that there is some mild tension between the Planck
2015 results and those from combining WMAP, SPT, and ACT
(Calabrese et al. 2013; Spergel et al. 2015; Bennett et al. 2016).
The Planck data set yields a mildly higher matter density ⌦mh2,
which for ⇤CDM implies a higher ⌦m and �8 and a lower H0.
As in the DR11 results, our BOSS results for ⇤CDM fall in be-
tween these two and therefore do not prefer either CMB option.
We have presented non-Planck results in Anderson et al. (2014b)
and Aubourg et al. (2015) and do not repeat that here, as the sense
of the differences has not changed.

Finally, for some cases, we utilize measurements of the
distance-redshift relation from Type Ia supernovae (SNe) from the
Joint Lightcurve Analysis (JLA, Betoule et al. 2014), which com-
bined SNe from the SDSS-II Supernova Survey (Sako et al. 2014)
and the Supernova Legacy Survey 3-year data set (Conley et al.
2011) together with local and high-z data sets. The combination
of SN measurements with BAO is particularly powerful for con-
straining the low-redshift distance scale (e.g., Mehta et al. 2012;
Anderson et al. 2014b). The SNe provide a higher precision mea-
surement of relative distance at lower redshift where the BAO is
limited by cosmic volume, but the BAO provides an absolute scale
that connects to higher redshift and particularly to the CMB acous-
tic scale at z = 1000. The combination of BAO and SN data also
allows an “inverse distance ladder” measurement of H0 that uses
the CMB-based calibration of rd but is almost entirely insensitive
to the dark energy model and space curvature over the range al-
lowed by observations (Aubourg et al. 2015).

c
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RSD measurements

• Current status: some tensions between expansion 
and growth probes!
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FIG. 4. 68% and 95% confidence constraints in the split ⌦M plane with the equation of state held constant at the ⇤CDM
value (wgeom = wgrow = �1). As in Fig. 3, “EU” refers to our early universe prior, while “SH” refers to the sound horizon
prior.

of the sound horizon prior, otherwise its constraints be-
come much weaker. We do not add any priors to Type
Ia supernovae, which are able to constrain ⌦geom

M , pre-
ferring however somewhat lower values but with errors
large enough to encompass the value of 0.3 at 2-�. On
the other hand RSD, combined with the early-universe
prior, is sensitive to both geometry and growth, though
it constrains either only weakly.

The first small surprise is that clusters are much more
sensitive to growth than geometry, despite the fact that
they probe both (recall the summary in Table I). This
is excellent news for consistency tests of wCDM, since
growth is typically more weakly probed than geometry
and “needs more help”. The cluster constraint, com-
bined with the early-universe prior, is broadly consistent
with ⌦grow

M ' 0.25-0.30. Finally, weak lensing constrains
both geometry and growth about equally well, but the
overall constraint is rather weak and consistent with a
wide range of values of the two ⌦M s.

On the whole, Fig. 4 shows an impressive complemen-
tarity between the di↵erent cosmological probes in how
they constrain geometry and growth. It also shows the
huge progress in the field since similar constraints im-
posed by Wang et al. [18] seven years ago. Because the
constraints are mutually consistent, it is reasonable to
combine them; the fully marginalized constraints on the
matter energy density relative to critical is

⌦geom
M = 0.302± 0.008

⌦grow
M = 0.321± 0.017

(⌦M split, w ⌘ �1) (30)

Clearly, in this w = �1 split case the geometry and
growth constraints are perfectly consistent with each
other. The geometry constraint is stronger, as expected.

12

FIG. 5. 68% and 95% confidence constraints in the split w plane. Note that the combined 2�� contour does not pass through
the wgeom = wgrow line. As before, “EU” refers to our early universe prior, while “SH” refers to the sound horizon prior.
Individual CMB results have been omitted due to the poor constraints they provide in this plane, but they are included in the
combined constraint. See text for details.

C. Split case: ⌦M and w

A much more challenging task is to constrain the ge-
ometry and growth components of the dark energy equa-
tion of state, since in that case one also has to split
the matter density and therefore deals with the dark en-
ergy sector parameter space consisting of four param-
eters: ⌦geom

M ,⌦grow
M , wgeom and wgrow. Before we show

the constraints, let us emphasize that, despite their rel-
atively weak individual constraints on the equation of
state, all of the cosmological probes are invaluable since
in combination they help break degeneracies in the full
⇠ 10-dimensional parameter space and lead to excellent
combined constraints.

In Fig. 5, we show constraints on wgeom

and wgrow, marginalized (for each probe) over
{⌦geom

M ,⌦grow
M ,⌦Mh2,⌦Bh2, 109A, ns}, plus the nui-

sance parameters as before. As in the previous case
when only the matter density parameter was split, we
find largely expected directions probed in this plane.

However, because we now fully marginalize over the
matter density parameters ⌦geom

M and ⌦grow
M , the con-

straints on the equation of state are necessarily weaker.
Nevertheless, BAO and SNIa still do an admirable job
in constraining the geometric w. The CMB distance,
being a single quantity, is subject to degeneracy between
⌦geom

M and wgeom and, by itself, provides no constraint
on either parameter alone. Finally WL and clusters also
weakly constrain either equation of state parameters
due to partial degeneracies. All of the aforementioned
probes are broadly consistent with the ⇤CDM value
wgeom = wgrow = �1. In addition, we want to check
that our constraints are comparable to those obtained
previously. To that e↵ect, we get constraints using only
the combined CMB and weak lensing, and find that
these are similar to comparible constraints obtained
Wang et al. [18] and shown in Fig. 3 of that work.

The one significant outlier are the RSD; they alone,
combined with the Planck early-universe prior, precisely

arXiv : 1410.5832



Future directions

• Future galaxy redshift surveys (e.g. DESI, Euclid, SKA) 
will allow per-cent level growth measurements4 Dark Energy and Modified Gravity 5
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Figure 2. Constraints on the growth of density fluctuations in the Universe with errors projected from
a future survey designed with DESI specifications. The curves show the derivative of the logarithmic
growth with respect to the logarithmic scale factor — a quantity readily measured from the clustering
of galaxies in redshift space — as a function of redshift. We show theory predictions for the ⇤CDM model,
as well as for two modified-gravity models: the Dvali-Gabadadze-Porrati braneworld model [3] and the f(R)
modification to the Einstein action [4]. Because growth in the f(R) models is generically scale-dependent,
we show predictions at two wavenumbers, k = 0.02hMpc�1 and k = 0.1hMpc�1. LSST projects to impose
constraints of similar excellent quality on the growth function D(a).

GR because it can have the expansion history mimicking the ⇤CDM model (w is within 1% of �1) and
can have a growth function identical to ⇤’s at high redshift — can clearly be distinguished from ⇤CDM
using growth data from future surveys such as eBOSS, DESI, Euclid, or WFIRST. The DGP model can be
distinguished even more readily by measuring both the expansion history as well as growth of structure in
the Universe.

4 Dark Energy and Modified Gravity

Over the past decade, the ⇤CDM paradigm has passed all observational tests, firmly establishing it as our
cosmological “standard model”. However, it is clearly of crucial importance to test this paradigm, given
that it involves two unknown ingredients (dark matter and ⇤), and given the lack of theoretical motivation
for the value of the putative cosmological constant. Growth of structure o↵ers a broad range of probes of
dark energy which in principle cover three orders of magnitude in length scale, and one order of magnitude
in time or scale factor. In order to convincingly rule out alternatives to the cosmological constant, we need
to cover this range of scales and redshifts. Large-scale structure also provides model-independent tests of
gravity on Mpc scales and above, extending Solar System tests by ten orders of magnitude in length scale.

Community Planning Study: Snowmass 2013

arXiv : 1309.5385

(DESI forecast)



Future directions
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ABSTRACT
We perform the first fit to the anisotropic clustering of SDSS-III CMASS DR10 galaxies on
scales of ⇠ 0.8�32 h�1 Mpc. A standard halo occupation distribution model evaluated near the
best fit Planck ⇤CDM cosmology provides a good fit to the observed anisotropic clustering,
and implies a normalization for the peculiar velocity field of M ⇠ 2 ⇥ 1013 h�1 M� halos
of f�8(z = 0.57) = 0.450 ± 0.011. Since this constraint includes both quasi-linear and non-
linear scales, it should severely constrain modified gravity models that enhance pairwise infall
velocities on these scales. Though model dependent, our measurement represents a factor of
2.5 improvement in precision over the analysis of DR11 on large scales, f�8(z = 0.57) =
0.447 ± 0.028, and is the tightest single constraint on the growth rate of cosmic structure to
date. Our measurement is consistent with the Planck ⇤CDM prediction of 0.480 ± 0.010 at
the ⇠ 1.9� level. Assuming a halo mass function evaluated at the best fit Planck cosmology,
we also find that 10% of CMASS galaxies are satellites in halos of mass M ⇠ 6 ⇥ 1013

h�1 M�. While none of our tests and model generalizations indicate systematic errors due
to an insufficiently detailed model of the galaxy-halo connection, the precision of these first
results warrant further investigation into the modeling uncertainties and degeneracies with
cosmological parameters.

Key words: cosmology: large-scale structure of Universe, cosmological parameters, galaxies:
haloes, statistics

1 INTRODUCTION

The clustering of galaxies on small scales provides important con-
straints on the relationship between galaxies and the underlying
dark matter distribution. This relation is of interest in itself as a
constraint on galaxy formation and evolution, as well as for quanti-
fying the impact of galaxy-formation scale physics on larger scale
clustering measures used for cosmological parameter constraints.
Modern approaches to modeling the relationship between galax-
ies and the underlying dark matter distribution rely on the basic
tenet that galaxy formation requires a gravitationally-bound dark
matter halo or sub-halo to accumulate and condense gas (Peacock
& Smith 2000; Seljak 2000; Benson et al. 2000; White, Hern-
quist, & Springel 2001; Berlind & Weinberg 2002; Cooray & Sheth
2002; Yang, Mo, & van den Bosch 2003). In their simplest form,

? E-mail: beth.ann.reid@gmail.com

such “halo models” contain one dominant variable that determines
the probability that a (sub-)halo hosts a galaxy of interest. In the
halo occupation distribution (HOD) formalism adopted in this pa-
per, halo mass is the dominant variable and halos are permitted to
host more than one galaxy. In the sub-halo abundance matching
(“SHAM”) formalism, the maximum circular velocity at accretion
is often used (Marinoni & Hudson 2002; Vale & Ostriker 2006;
Conroy, Wechsler, & Kravtsov 2006). The primary advantage of
SHAM is that each sub-halo hosts only a single galaxy, thus re-
quiring fewer free parameters to specify the model but assuming
a specific but physically motivated relation between central and
satellite galaxies. The practical disadvantage is that N-body sim-
ulations require higher resolution to resolve sub-halos. In principle
both of these approaches could be generalized to include additional
secondary variables such as halo formation time, with observable
consequences (Gao et al. 2005; Wang et al. 2013; Zentner, Hearin,
van den Bosch 2013; Cohn & White 2013).
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• Modelling of small-scale intra-halo velocities could 
allow incredibly precise tests of gravitational physics

arXiv : 1404.3742
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ABSTRACT
Dark energy may be the first sign of new fundamental physics in the Universe, taking either a
physical form or revealing a correction to Einsteinian gravity. Weak gravitational lensing and
galaxy peculiar velocities provide complementary probes of General Relativity, and in com-
bination allow us to test modified theories of gravity in a unique way. We perform such an
analysis by combining measurements of cosmic shear tomography from the Canada-France
Hawaii Telescope Lensing Survey (CFHTLenS) with the growth of structure from the Wig-
gleZ Dark Energy Survey and the Six-degree-Field Galaxy Survey (6dFGS), producing the
strongest existing joint constraints on the metric potentials that describe general theories of
gravity. For scale-independent modifications to the metric potentials which evolve linearly
with the effective dark energy density, we find present-day cosmological deviations in the
Newtonian potential and curvature potential from the prediction of General Relativity to be
�⇤/⇤ =0 .05± 0.25 and �⇥/⇥ = �0.05± 0.3 respectively (68 per cent CL).

Key words: cosmology: observations - gravitational lensing
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Figure 11. Here we explore fractional deviations in the two gravitational
potentials, the Newtonian potential ⇥ and the curvature potential �, from
the GR value at z = 0.5. The prescription for this is given by equation (21).
The contours represent the same combinations of data as those in the left
hand panel of Figure 5.

8 THEORETICAL MODELS

Below we briefly review some of the theoretical models which
could generate a departure from µ0 = �0 = 0, and interpret the
implications of our results. There is such a plethora of modified
gravity models, that no single choice of parameterisation can ade-
quately encompass all of them. This is a situation reminiscent of the
dark energy equation of state, w(z), except here we are faced with
uncertainty not only in the functional form of the time-dependence,
but also in its scale-dependence. So how can we relate a given
(µ,�) constraint to a specific model? The observed parameters µ̂0

and �̂0 may be interpreted as a weighted integral over the true func-
tional form µ(k, z), such that

µ̂0 =

⇧⇧
⌅(k, z)µ(k, z)

⇥�

⇥�(z)
dk dz . (22)

If we perform a scale- and time-dependent principal component
analysis (see for example Zhao et al. 2009), then the weight func-
tion ⌅(k, z) may be expressed in terms of the principal components
ei(k, z) and the errors associated with their corresponding eigen-
values ⇤(�j) (Simpson & Bridle 2006), such that

⌅(k, z) =

⇤
i ei(k, z)

⌅⌅
ei(k

⇥, z⇥)dk⇥ dz⇥/⇤2(�i)
⇤

j

�⌅⌅
ej(k⇥⇥, z⇥⇥)dk⇥⇥ dz⇥⇥

⇥2
/⇤2(�j)

. (23)

The analysis of redshift space distortions in Blake et al. (2012) in-
cludes information from the galaxy power spectrum up to a max-
imum wavenumber kmax = 0.2hMpc�1, corresponding to the
regime over which the density and velocity fields are sufficiently
linear for our theoretical models to remain valid. Since the number
of Fourier modes increases towards higher k, the scale-dependent
component of ⌅(k, z) peaks close to this value of kmax, and
⌅(k, z) = 0 for k > kmax. We evaluate the redshift-dependence
of the weight function ⌅(z) associated with the combined WiggleZ
and 6dFGS data of Figure 3, following the prescription of Simp-
son & Bridle (2006), and this is shown to peak at z ⇥ 0.5 as il-
lustrated in Figure 12. In the following subsections we utilise the
weight function ⌅(z) presented in Figure 12 to map specific exam-
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Figure 12. The redshift sensitivity of the modified gravity parameter µ0.
The weight function ⇥(z) is defined in equation (22) and evaluated with
equation (23).

ples of theoretical models onto our parameter space, by evaluating
equation (22). However as stressed earlier, we do not aim to place
rigorous parameter constraints on any particular family of models.

8.1 f(R)

A more general form of the Einstein-Hilbert action replaces the
Ricci scalar R with an arbitrary function f(R) such that

S =

⇧
f(R)

⇤
�g d4x , (24)

where g is the determinant of the metric tensor. This defines the
broad class of f(R) models. One of the most difficult tasks for
any modified gravity model attempting to replace dark energy is
to satisfy the stringent Solar System constraints, and most natu-
ral choices of the function f(R) fail to do so. The subset of f(R)
models which have attracted interest are those which employ the
so-called chameleon mechanism, where departures from GR are
strongly suppressed in regions where R is large, only emerging
when R is sufficiently small. Our location within the potential well
of the Sun and the Milky Way halo may be sufficient to shield us
from this unusual gravitational behaviour.

For a particular subset of f(R) models which are capable of
satisfying Solar System tests, the departure from GR may be char-
acterised as (Zhao et al. 2012)

µ(k, a) =
1

3 + 3(aM/k)2
, (25)

where the scalaron mass M(a) = 1/
⌃

3 d2f/dR2. For any given
redshift and wavenumber, the value of µ lies in the range 0 �
µ < 1

3 . This generically enhances growth, so we expect this
family of models to lie vertically above the point (0, 0) in Fig-
ure 5. We parameterise M = M0a

�� and take as an example
M0 = 0.02hMpc�1 and ⇤ = 3, corresponding to the type of
model explored in Zhao et al. (2012). In f(R) models the lensing
potential for a given mass distribution is unchanged from the case
of GR, and so �f(R)

0 = 0. Our measure of µ is dominated by the
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Figure 2 | Comparison of observational constraints with predictions from 

GR and viable modified gravity theories. Estimates of EG(R) are shown with 

1! error bars (s.d.) including the statistical error on the measurement19 of ! 

(filled circles). The grey shaded region indicates the 1!  envelope of the mean 

EG over scales R = 10 – 50h-1 Mpc, where the systematic effects are least 

important (see Supplementary Information). The horizontal line shows the mean 

prediction of the GR+"CDM model, EG = !
m,0
/ f , for the effective redshift of the 

measurement, z = 0.32. On the right side of the panel, labelled vertical bars 

show the predicted ranges from three different gravity theories: (i) GR+"CDM 

(E
G
= 0.408 ± 0.029(1! ) ), (ii)  a class of cosmologically-interesting models 

in f (R)  theory with Compton wavelength parameters27
B
0
= 0.001! 0.1 

(E
G
= 0.328 ! 0.365 ), and (iii) a TeVeS model9 designed to match existing 

cosmological data and to produce a significant enhancement of the growth 

factor (E
G
= 0.22 , shown with a nominal error bar of 10 per cent for clarity).  
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Einstein’s general relativity (GR) is the theory of gravity underpinning our 

understanding of the Universe, encapsulated in the standard cosmological model 

(!CDM). To explain observations showing that the Universe is undergoing 

accelerated expansion
1,2

, !CDM posits the existence of a gravitationally repulsive 

fluid, called dark energy (in addition to ordinary matter and dark matter). 

Alternatively, the breakdown of GR on cosmological length scales could also 

explain the cosmic acceleration. Indeed, modifications to GR have been proposed 

as alternatives to dark energy
3,4

, as well as to dark matter.
5,6

 These modified 

gravity theories are designed to explain the observed expansion history, so the only 

way to test them is to study cosmological perturbations (deviations of the matter 

density from its mean value). This is a non-trivial task, compounded by our lack of 

a priori knowledge of relevant astrophysical parameters.
7,8

 Here, we successfully 

measure the probe of gravity
9
 EG that is robust to these uncertainties. Under 

GR+!CDM, EG should approximately equal 0.4. We find EG = 0.39±0.06 at 
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http://www.nature.com/nature/journal/v464/n7286/full/nature08857.html. 
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Future directions

• Cross-correlations with weak lensing allow tests of 
the gravitational metric potentials (and systematics)



• 50 AAT nights used for spectroscopic follow-up of 
southern lensing surveys such as KiDS and DES

• Galaxy lens sample (~50,000) to test gravity by cross-
correlating weak lensing and galaxy velocities

• Photo-z calibration samples (direct / cross-correlation)

2-degree Field Lensing Survey (2dFLenS)



2-degree Field Lensing Survey (2dFLenS)



Future directions

• Surveying multiple galaxy populations across the 
same volume enables growth measurements below 
the usual “sample variance” floor

GAMA Survey: RSD with multiple tracers 15

Figure 14. Fisher matrix forecasts for the error in the growth
rate, ∆f , marginalized over the other RSD parameters. We con-
sider two-tracer survey configurations varying the bias parameters
(b1, b2) and number densities (n1, n2), fixing the survey volume
V = 6.42 × 106 h−3 Mpc3 and b1 = 1 for all cases. In the upper
panel we fix n1 = 5 × 10−3 h3 Mpc−3 and plot ∆f as a function
of b2 for various choices of n2. In the lower panel we plot ∆f as a
function of n = n1 = n2 for various choices of b2. The dash-triple-
dotted black curve in the lower panel, compared to the solid black
curve, shows the effect of dropping the cross-power spectrum in-
formation. The solid circles in the panels indicate the fiducial
GAMA values of these parameters. Changing the survey volume
V will simply scale the results by ∆f ∝ V −1/2.

(8, 22, 35, 44, 51)% for b2 = (1.2, 1.4, 1.6, 1.8, 2.0). These fore-
cast gains will be impacted by the practical difficulty of
maintaining a high target number density as galaxy bias
increases, as described by the set of lines for different values
of n2 in the upper panel of Fig. 14.

The lower panel of Fig. 14 displays the increasing ef-
ficacy of the multiple-tracer method as the number den-
sity of the galaxy populations increases. For n > 10−3 h3

Mpc−3 the gains from single-tracer RSD saturate (as indi-
cated by the solid black line); but the growth rate measure-
ment from multiple-tracers improves by (12, 22, 37, 53, 66)%
for n = (0.23, 0.5, 1.1, 2.4, 5.2) × 10−2 h3 Mpc−3 assuming
(b1, b2) = (1.0, 1.4). The black dash-triple-dotted line in
Fig. 14, which should be compared with the black solid
line, illustrates the effect of dropping the information from
the cross-power spectrum. For low values of number den-
sity n < 10−3 h3 Mpc−3 the cross-power spectrum adds

some information due to shot noise. For high number den-
sity n > 10−3 h3 Mpc−3 the cross-power spectrum may be
entirely predicted from the two auto-power spectrum (under
the assumption of linear galaxy bias) and hence its inclusion
does not improve the growth-rate measurements within the
assumed RSD model.

7 SUMMARY

In this study we have presented the first observational
multiple-tracer analysis of redshift-space distortions using
data from the Galaxy and Mass Assembly survey. We per-
formed a Fourier analysis of the two auto-power spectra of
galaxy populations split by both colour and luminosity, de-
riving new expressions for the covariances between these
measurements in terms of a general survey selection func-
tion and weighting scheme, and verified our results by also
measuring the cross-power spectrum. We fit models to the
redshift-space power spectra in terms of the gravitational
growth rate, f , linear galaxy bias factors and an empirical
non-linear damping parameter. We find that, in the case of
GAMA, the multiple-tracer analysis produces an improve-
ment in the measurement accuracy of f by 10-20% (de-
pending on the sample). The growth rates determined from
the separate populations, split by colour and luminosity, are
consistent, showing no evidence for strong systematic mod-
elling errors. The precision of our measurements is similar
to a Fisher matrix forecast, which indicates how our anal-
yses would extend to surveys with a different design: for
samples with higher number densities or bias factor differen-
tials, much stronger improvements in the accuracy of growth
rate determination are expected. We tested our methodol-
ogy using mock catalogues from N-body simulations, demon-
strating that the systematic error in the measured growth
rate was much smaller than the statistical error. The nor-
malized gravitational growth rate determined in two inde-
pendent redshift slices, fσ8(z = 0.18) = 0.36 ± 0.09 and
fσ8(z = 0.38) = 0.44 ± 0.06 using multiple-tracer subsam-
ples selected by colour, is consistent with results from other
RSD surveys in a similar redshift range, and with standard
Λ Cold Dark Matter models.
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Future directions

• Environmental velocity 
statistics (e.g. around 
clusters, voids) can 
distinguish between 
screening mechanisms in 
modified gravity scenarios

Magnus Fagernes Ivarsen et al.: Distinguishing screening mechanisms with velocity statistics

Fig. 5. Fractional deviation from GR (��k = �k,MG/�k,GR�1) of the rel-
ative radial velocity dispersion, ��k, for the three f (R) models, binned
by isolatedness (isolated vs. clustered) and mass (low and high halo
mass) as described in Sect. 4.2. Pair separations r = 1 and 5 h

�1Mpc are
presented with bold and pale shading respectively. The isolated, high
mass halo bin was excluded for r = 1 h

�1Mpc due to the low number of
halos within in.

5. Results

In this section, we investigate the dependence of the velocity
statistics on halo mass, isolatedness, and ambient density, for
each of the simulated modified gravity models. We will mostly
focus on the quantity ��k (see Sect. 3), which is the fractional
deviation of the radial velocity dispersion from its GR+⇤CDM
value (where we define �

X

= XMG/XGR � 1 for quantity X).

5.1. Dependence on halo mass

In Fig. 4, we show the absolute value and fractional deviation
from GR for four di↵erent statistics, binned by halo mass with
the binning specified in Table 3. Each bin is shown for two dif-
ferent halo pair separations, r = 1 and 5 h

�1Mpc. We will focus
on r = 5 h

�1Mpc below, as the 1 h

�1Mpc bin is considerably
noisier.5 Nevertheless, we include both in the figures to facilitate
comparison with equivalent results in Hellwing et al. (2014).

The upper left panel of Fig. 4 shows the halo-halo correla-
tion function, ⇠hh(r), estimated using the Landy-Szalay estima-
tor (Landy & Szalay 1993), with 7,000-30,000 halos per mass
bin (Table 3). There is a clear trend of increasing correlation
with mass for all models, which is expected; more massive halos
are more strongly biased. The deviation �⇠ becomes larger and
more negative as we go from the Weak to Strong f (R) model,
indicating a suppression of clustering on these scales. A simi-
lar, but more confused picture can be seen for the Symmetron
models. There is no clear evidence for a dependence of �⇠ on
mass, although there is a ‘spike’ feature in the second mass bin
for all models. This is most likely due to a large scatter in the
neighboring mass bins, which we tentatively observed through a
(50:50) subsampling of each bin. Clearer trends in ⇠ as a function
of mass are observed by Hellwing et al. (2014), as they average
over 6 di↵erent realizations of the initial fluctuations; they also
find no strong evidence for a mass dependence.

The upper right panel of Fig. 4 shows the mean relative ra-
dial velocity, vk, in the same separation and mass bins. The �vk
curves are more clearly separated for the di↵erent MG theories,
with stronger modifications consistently giving larger fractional
deviations. The dispersion of vk is shown in the lower left panel.
This quantity was calculated from the full 3D information in

5 Note that the noise due to sample variance is correlated between
models, as the simulations share the same initial conditions.
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Fig. 6. Fractional deviation ��k, for the four Symmetron models (see
Fig. 5 for key).

the simulations, not the estimator �̃k. The pattern is more co-
herent than for the previous two quantities, with weaker mod-
ifications (e.g. Weak f (R) and Weak coupling Symmetron) ex-
hibiting ��k ⇡ 0, and stronger modifications (e.g. Strong f (R))
giving up to ⇠ 30% deviations from GR. Again, there is no clear
dependence on mass, either of �k or ��k.

Finally, the lower right panel of Fig. 4 shows the dispersion
of the relative LOS velocity, �los. As for �k, the trend with in-
creasing strength of deviation from GR is clear, and the depen-
dence on mass is weak (although �los can be seen to decrease
slightly with increasing mass). We also find that ��k ⇡ ��los in
all cases, with similar scatter across the mass bins. We find ex-
cellent agreement with the results for f (R) from Hellwing et al.
(2014) (red points in Fig. 4) at a separation of r = 5 h

�1Mpc,
but less so at r = 1 h

�1Mpc, where they observe a much stronger
mass dependence.

Overall, then, we find no clear evidence that the fractional
deviations of the velocity statistics depend on halo mass. This is
qualitatively similar to what was found in Hellwing et al. (2014),
although some of the results di↵er in detail. The lack of a strong
mass dependence can be understood in terms of the fifth force
profiles calculated by Gronke et al. (2014) for the same Sym-
metron and f (R) theories considered here. At distances beyond
the virial radius, r � rvir, the fifth force was found to be ap-
proximately constant as a function of mass in all models when
M

h

. 1013
M�. (The fifth force decreases rapidly at higher M

h

for some models, e.g. Weak f (R), but is small in these models
anyway, resulting in little overall change in velocity.)

5.2. Dependence on isolatedness

Figs. 5 and 6 show the fractional deviations of the relative radial
velocity dispersion, ��k, in bins of halo mass and isolatedness,
D1,1. As discussed in Sect. 4.2, halos are considered “isolated” if
the nearest more-massive halo is greater than 10 times its virial
radius away, D1,1 > 10, and “clustered” otherwise. The boundary
between the low and high mass bins is at 2 ⇥ 1012

h

�1
M�. As

before, the results are presented for two halo separations, r = 1
and 5 h

�1Mpc. Note that in some cases there are too few halo
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• Need to simultaneously measure expansion and 
growth to distinguish dark energy physics

• Redshift-space distortions in galaxy surveys offer the 
most precise existing growth test

• Data is now more precise than our ability to model it!

• N-body simulations will be critical for calibrating 
models and exploring modified gravity effects

• The next decade will see orders of magnitude 
increases in data : will we be able to utilize it?

Summary


