What does the galaxy distribution tell us about the Universe?

Our current model of cosmology

Big Bang

Inflation

Expansion

Present Day Acceleration

Our current model of cosmology

Cosmic tug of war

The force of dark energy surpasses that of dark matter as time progresses.

Cosmological redshift

Cosmologist's tools

Cosmic microwave background

Galaxy surveys

Supernovae

The link between cosmology and eResearch

- Cosmology is now a data-driven science dominated by a series of "big experiments"
- Advanced computer simulations of the Universe are needed for end-to-end testing of analysis pipelines and determining measurement errors
- Sophisticated statistical tools and algorithms are required for answering questions

The need for statistics!

- Cosmological model predictions are inherently statistical
- We live in an era of "precision cosmology" which demands robust statistical methods
- Systematic errors must also be quantified
- We are typically doing one of : hypothesis testing, parameter estimation, model selection or forecasting

Typical questions asked by a cosmologist

- Is the Universe homogeneous and isotropic? [hypothesis testing]
- Are the initial conditions of the Universe consistent with Gaussian fluctuations? [hypothesis testing]
- What is the value of the cosmic expansion rate today? [parameter estimation]
- Are the properties of dark energy constant over the age of the Universe, or do they evolve? [model selection]
- How well will Planck satellite measurements determine the gravitational wave background? [forecasting]

The cosmological principle

Cosmic Microwave Background radiation (WMAP)

Ripples are
I part in 100,000

Homogeneity and isotropy

Galaxy distribution on the sky (APM survey)

The APM Galaxy Survey Maddox et al

How do we model the Universe?

$$\delta(\vec{x}) = \frac{\rho(\vec{x}) - \langle \rho \rangle}{\langle \rho \rangle}$$

- Assume we have observed a fair sample of the Universe
- Assume the Universe is homogeneous and isotropic
- Assume the density is a Gaussian random field [theoretical motivation from inflation, analytic tools]
- All information is encoded in the 2-point statistics (power spectrum or correlation function)
- Real-world issues : higher-order statistics, determination of errors, survey "selection function", galaxy "bias"

How do we model the Universe?

Dark matter

We can solve these equations exactly and predict 2-point statistics !

Radiation

Neutrinos

Dark energy : what do we know?

- Dark energy smoothly fills space with a roughly constant energy density
- Dark energy dominates the Universe today but is insignificant at high redshift
- Dark energy propels the cosmos into a phase of accelerating expansion

Dark energy : what don't we know?

- Physically, is it a manifestation of gravity or matter-energy?
- Why now? why does dark energy become important billions of years after the Big Bang?
- If dark energy is vacuum energy, how can we explain its magnitude?
- How are our observations of dark energy affected by inhomogeneity?

Dark energy : is it a cosmological constant?

A cosmological constant matches the data so far, but its amplitude is inexplicable

The WiggleZ Dark Energy Survey

The WiggleZ Dark Energy Survey

Southern sky surveys [image courtesy of Simon Driver]

Standard candles and rulers

Standard ruler : baryon acoustic peak

- Preferred co-moving separation of 105 Mpc between clumps imprinted at recombination
- We observe a preferred angular separation between galaxies at some redshift
- Allows distance determination by simple geometry

The baryon acoustic peak in WiggleZ

Dark energy : the "w" parameter

 $\begin{array}{lll} \mbox{Physics of dark energy ...} \\ \mbox{Equation of state :} & P = w \ \rho \\ \mbox{Conservation of energy :} & dE = d(\rho \ a^3) = -p \ d(a^3) \\ \mbox{Re-arranging :} & \rho \propto a^{-3(1+w)} \\ \mbox{Friedmann equation :} & da/dt \propto a^{-(1+3w)/2} \end{array}$

The physics of dark energy

• Einstein equations relate gravity/geometry to matter/ energy. Is dark energy a form of matter:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu} - g_{\mu\nu}\Lambda$$

• Or is it gravity:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R + g_{\mu\nu}\Lambda = \frac{8\pi G}{c^4}T_{\mu\nu}$$

• We cannot distinguish between these cases if we only measure the distance-redshift relation. Galaxy surveys provide extra information through growth of structure

Galaxy flows

Galaxy flows in WiggleZ

Growth rate measurements from WiggleZ

Growth rate measurements from WiggleZ

Summary of results from WiggleZ

- Large galaxy surveys offer a powerful means to test the cosmological model
- Baryon acoustic oscillations measure cosmic distances to z=0.8 and provide cross-check with supernovae
- Galaxy flows provide accurate measurement of growth of structure to high redshift
- General Relativity + cosmological constant models have been tested in a new way and remain a good fit
- If dark energy behaves as Lambda, what is its physics?

Thank you!

