Forecasting lensing-clustering analyses with DESI

Chris Blake (Swinburne) July 2019

Goals

Investigate potential and practicality of joint lensing and clustering analyses in DESI

- How accurately can such analyses constrain cosmology, what do they add to clustering alone? (Science cases: testing gravity, photo-z by cross-correlation, halo studies...)
- What weights should be applied to reduce systematic bias or optimize statistical error? (Examples: FKP weights, fibre collision, completeness, redshift kernels/weights?)
- What are the key systematics to address?

Methods

• DESI will overlap with several current weak lensing surveys (KiDS, DES, HSC) and future surveys (e.g. CFIS, LSST)

Methods

We use **two approaches** for forecasts / tests:

- **Combined-probe mocks** from Buzzard simulations
- Analytic covariance for lensing statistics

We measure various **combined-probe correlations**:

- Cosmic shear, $\xi_+(\theta)$ and $\xi_-(\theta)$
- Galaxy-galaxy lensing, $\gamma_t(\theta)$ or $\Delta\Sigma(R)$
- Galaxy clustering, $w(\theta)$ or $w_p(R)$

DESI-HSC mocks

• Use **Buzzard mocks** on NERSC to construct 18 "HSClike" simulations (each with area $\sim 1000 \text{ deg}^2$)

• Each mock consists of **sources with shapes**, and **DESI lenses** (I will show here, LRGs 0.4 < z < 0.6)

DESI-HSC mocks

 Modulate the shape noise applied to the Buzzard sources to match the "effective number density" of the HSC source redshift distribution

Mock mean and (halofit) model

Errors (JK vs mock vs analytic)

• Annular differential surface density statistics (suppress information at $R < R_0$):

$$\Upsilon_{gm}(R,R_0) = \Delta \Sigma(R) - \frac{R_0^2}{R^2} \Delta \Sigma(R_0)$$

• Gravitational slip statistic:

$$E_G(R) = \frac{1}{\beta} \frac{\Upsilon_{gm}(R, R_0)}{\Upsilon_{gg}(R, R_0)} \approx \frac{\Omega_m}{f}$$

 Cosmic shear statistics (just one bin for now, in practice would split into tomographic bins)

DESI-HSC Y1 forecast (160 deg^2)

• Here is a $\Delta\Sigma(R)$ forecast for a putative 160 deg² Y1 DESI-HSC overlap area using analytic covariance:

Note: this dataset would not be competitive on large scales with current KiDS/DES datasets

Rossana and I are working on ...

- Optimal weighting for combined probe analyses
- Differing effective bias values for $\Delta\Sigma(R)$ and $w_p(R)$
- Fibre collision corrections for lensing analyses
- Source redshift distributions by cross-correlation
- I look forward to further discussions at this meeting!