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The WiggleZ Dark Energy Survey

• 1000 sq deg , 0.2 < z < 1.0

• 200,000 redshifts

• blue star-forming galaxies

• Aug 2006 - Jan 2011



Sky coverage



Redshift distribution



Method 1 : baryon acoustic peak

• Preferred co-moving separation 
of 105 h-1 Mpc between clumps 
imprinted at recombination 

• We observe a preferred angular 
separation between galaxies at 
some redshift

• Allows distance determination 
by simple geometry
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The baryon acoustic peak in WiggleZ



The baryon acoustic peak in WiggleZ
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BAO Hubble diagram

(WiggleZ measurements
before reconstruction)



Reconstruction of the acoustic peak
A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h−1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ξ(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ≡ d lnD/d ln a ∼Ω0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and ΩM is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are sufficiently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field Ψ within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by −Ψ. Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional −f(Ψ · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by −Ψ. Note that we do not correct these for
redshift-space distortions. Denote these points by S.
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Reconstruction of the acoustic peak

Distance measurement improves from ~6% to ~3%

Credit : Eyal Kazin



Reconstruction of the acoustic peak

Credit : Eyal Kazin

Theoretical Challenges in LSS, Ascona, July 4th 2013 Eyal Kazin

Reconstructed WiggleZ yields
substantial improvements
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• Reconstruction improves significance of detection:



Method 2 : Alcock-Paczynski measurement

Line-of-sight
Measure

Measure

Decreasing H(z)

Increasing DA(z)

Constant DA(z)*H(z)



Alcock-Paczynski measurement
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WiggleZ measurements of DA(z) and H(z)
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Cosmic expansion history

arXiv:1204.3674
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Accelerating
expansion

Cosmic expansion history



Method 3 : topological statistics

• Morphology of the density field (isodensity contours):

“A topologist cannot distinguish their doughnut from their coffee cup”



Topological statistics

• Genus statistic (a.k.a. Euler characteristic):

Credit : Berian James



Topological statistics

• WiggleZ density field for 15-hr region:

[Visualization of isodensity contours that contain 
the 20% highest and lowest density regions]

Credit : Berian James



Topological statistics

Re-define density:

• Minkowski functionals give complete description

4 Blake et al.

Figure 1. Density contours in the WiggleZ survey 15-hr region for a smoothing scale of 20h−1 Mpc, extending from z = 0.3 (right of
image) to z = 0.9, with the contouring chosen to excise the highest (red) and lowest (blue) 20% of volume within the field.

The alternative that we propose and implement here is:
i) Do not weight the galaxies initially and instead smooth the
galaxy counts in cells D as they are; ii) instead of creating a
comparator field of constant value inside the survey region,
weight the constant field by the selection function C×W (!x);
iii) smooth this weighted comparator field, which again is
used in ratio with the smoothed data. In the notation de-
scribed immediately above, this process may be summarized
as:

F ′ = [D ⊗G]/[(C ×W )⊗G]. (2)

The motivation for the latter scheme is to apply the selection
function to the data in a smoother and more global way,
rather than locally at the site of each galaxy. In this sense,
it is closer in spirit to the methodology used for correlation
function estimation.

Figure 1 shows two isodensity surfaces within the recon-
structed density field of the WiggleZ survey 15-hr region for
the redshift range 0.3 < z < 0.9, using a Gaussian smooth-
ing scale R = 20 h−1 Mpc. The isodensity values have been
chosen so as to excise the highest and lowest density fifths of
the field by volume, and the surfaces display the relative dis-
connectedness of structure that is expected for regions this
far removed from the median density. The apparent unifor-
mity of the topology of the structure with redshift relies on
an accurate correction of the effects of the survey selection
function, and the smoothness of the structures themselves
is determined by the choice of filter.

3 MINKOWSKI FUNCTIONAL ANALYSIS OF
GALAXY SURVEY DATA

3.1 Overview of Minkowski functional
methodology

This work studies the topology of large-scale structure using
the four Minkowski functionals of (the boundary surface of)
excursion sets cut from the density field. An excursion set
is constructed from the smoothed density field by choosing
a critical density threshold (ρc); regions of density above
this value are identified as being within the surface. The
Minkowski functionals, which we computed by the algebraic

means described in Appendix A, are identified geometrically
with the enclosed volume, surface area, curvature and genus
of the excursion set boundary surface. Hadwiger’s theorem
yields the result that these four statistics form a concise geo-
metric description of the salient properties of the surface (see
Chen 2004 for a recent review). Minkowski functionals have
been explored in the context of cosmology by several authors
for almost two decades (early analyses include Mecke et al.
1994, Kerscher et al. 1997, Schmalzing & Buchert 1997).

For convenience we remap the density threshold param-
eter ρc to a variable ν ∈ (−∞,∞) which is defined such that
the fraction of volume Vfrac enclosed by a given isodensity
surface is

Vfrac(ν) =
1√
2π

Z ∞

ν

e−ν′2/2 dν′ =
1
2

erfc

„
ν√
2

«
. (3)

This step ensures that the first Minkowski functional – the
enclosed volume – is identically an error function irrespective
of the structure of the density field. Consequently it is the
three remaining functionals, which we studied as a function
of ν, that possess dispositive statistical power in the analysis.

This density transformation is equivalent to the Gaus-
sianisation process of Weinberg (1992) employed in stud-
ies of reconstructing the linear-regime power spectrum
(Neyrinck, Szapudi & Szalay 2011)

ν ≡ fG(δ)− f̄G

σfG

where fG(δ) ≡ erf−1

»Z δ

−∞
f(δ′) dδ′

–
. (4)

This transformation maps the one-point density distribution
f(δ) of the field to that of the normal distribution with mean
f̄G and standard deviation σfG , preserving the ordering of
regions from highest to lowest. It is also very similar to the
lognormal transformation, given that the cosmological den-
sity field obeys a lognormal distribution even to the smallest
scales we study in this work (Coles & Jones 1991, Taylor &
Watts 2000, Watts & Taylor 2001).

The parameter ν indexes the surfaces drawn through
the density field. The first two useful Minkowski functionals
describe the area and curvature of these surfaces. There is
less immediate geometric intuition for the final functional:
the total connectedness, or genus statistic g. It is defined as
the arithmetic difference between the total number of holes
through the filamentary structure and its total number of

c© 0000 RAS, MNRAS 000, 000–000

For Gaussian random field :



Topological statistics

Galaxy
number counts

Topological
statistics

Theory predicts ...
Luminosity function 

(number of galaxies per 
unit volume)

We measure ... Galaxy count

We determine ...

Minkowski functionals of 
Gaussian random field 

(topology per unit volume)

Amount of topology

Volume element Volume element

Evolution ? Yes No

• Analogy with number counts method



Topological statistics
arXiv:0905.2268
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LARGE-SCALE STRUCTURE OF THE UNIVERSE AS A COSMIC STANDARD RULER

Changbom Park and Young-Rae Kim
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ABSTRACT

We propose to use the large-scale structure of the universe as a cosmic standard ruler, based on
the fact that the pattern of galaxy distribution should be maintained in the course of time on large
scales. By examining the scale-dependence of the pattern in different redshift intervals it is possible
to reconstruct the expansion history of the universe, and thus to measure the cosmological parameters
governing the expansion of the universe. The features in the galaxy distribution that can be used as
standard rulers include the topology of large-scale structure and the overall shapes of galaxy power
spectrum and correlation function. The genus, being an intrinsic topology measure, is resistant against
the non-linear gravitational evolution, galaxy biasing, and redshift-space distortion effects, and thus
is ideal for quantifying the primordial topology of the large-scale structure. The expansion history of
the universe can be constrained by comparing among the genus measured at different redshifts. In
the case of initially Gaussian fluctuations the genus accurately recovers the slope of the primordial
power spectrum near the smoothing scale, and the expansion history can be constrained by comparing
between the predicted and measured genus.
Subject headings: large-scale structure of the universe – cosmology: theory

1. INTRODUCTION

There are three kinds of phenomena of the universe
that are currently used to constrain cosmological mod-
els. The first is the primordial fluctuations or the initial
conditions. Currently available tracers of the primor-
dial fluctuations are the cosmic microwave background
(hereafter CMB) anisotropies and the large-scale struc-
ture (LSS) of the universe. From these one can study the
geometry of space, matter content, matter power spec-
trum (PS), non-Gaussianity of the initial conditions, and
so on. Information from these tracers has limitations
because it contains knowledge only in one thin shell lo-
cated at a specific epoch in the case of CMB, or because
the amount of the corresponding data is not yet large
enough to constrain cosmological models strongly in the
LSS case. The eventual limitation lies in the finite vol-
ume of the observable universe.

The second measurable phenomenon of the universe is
the expansion of the universe. It can be measured by
observing the standard candles (e.g. supernova type Ia;
Colgate 1979; Riess et al. 1998; Permultter et al. 1999),
the standard rulers (e.g. baryon acoustic oscillations,
hereafter BAOs; Peebles & Yu 1970; Meiksin, White, &
Peacock 1999), or standard populations, if any. Red-
shifts of these objects give us the relation between the
comoving distance r and redshift z through the lumi-
nosity distance DL(z) and/or angular diameter distance
DA(z), which constrain the expansion history of the uni-
verse or the Hubble parameter H(z) through the relation
r(z) =

∫ z
0 dz′/H(z′). The Hubble parameter depends on

many cosmological parameters such as the total density
parameter Ωtot, matter density parameter Ωm, and the
equation of state of the dark energy w = P/ρ. However,
there are various kinds of systematic effects that limit the
power of this method. For example, the dependences of
the ‘standard’ properties on tracer subclasses and on red-

Electronic address: cbp@kias.re.kr, yrk@kias.re.kr

shift are the most serious error sources in measuring r(z)
in the case of the standard candles and populations. The
standard rulers also suffer from all kinds of systematics
such as non-linear gravitational evolution, redshift-space
distortion, past light-cone effects, and biasing of tracers.

The third phenomenon is the growth of cosmic struc-
tures, which depends on both expansion history and ini-
tial matter fluctuations. This can be examined by ob-
serving the integrated Sachs-Wolfe effect causing a corre-
lation between CMB anisotropy and LSS (Sachs & Wolfe
1967, Corasaniti et al. 2003), abundance of galaxy clus-
ters (Allen et al. 2004, Rapetti et al. 2005), and the
weak gravitational lensing by LSS (Cooray & Huterer
1999). Properties of some non-linear objects can be also
used. Various present and redshift-dependent properties
of intergalactic medium (near the reionization epoch, in
particular), massive dark halos (luminous galaxies and
clusters of galaxies), etc., are the combined results of the
initial matter fluctuations, expansion history, and non-
linear physics.

In this paper we propose to use the pattern of the
large-scale galaxy distribution to study both the first
and second phenomena of the universe. We will intro-
duce this tool as a geometrical method similar to the
Alcock-Paczynski test (Alcock & Paczynski 1979) or the
BAO-scale method (Blake & Glazebrook 2003). In the
forthcoming papers we will also show that this method
is complementary to other methods such as the BAO-
scale method, and has a power comparable to the BAO
method in constraining the dark energy equation of state
(Kim et al. 2009).

2. LARGE-SCALE STRUCTURE AS A STANDARD
RULER

The large-scale distribution of galaxies has long been
used to constrain cosmological models through two-point
correlation function (hereafter CF; Davis & Peebles 1983;
Maddox et al. 1990) and PS analyses (Park, Gott, &

arXiv:1005.3631
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Using the Topology of Large Scale Structure to constrain Dark
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ABSTRACT

The use of standard rulers, such as the scale of the Baryonic Acoustic oscillations (BAO),
has become one of the more powerful techniques employed in cosmology to probe the entity
driving the accelerating expansion of the Universe. In this paper, the topology of large scale
structure (LSS) is used as one such standard ruler to study this mysterious ‘dark energy’. By
following the redshift evolution of the clustering of luminous red galaxies (LRGs) as measured
by their 3D topology (counting structures in the cosmic web), we can chart the expansion rate
and extract information about the equation of state of dark energy. Using the technique first
introduced in (Park & Kim (2009)), we evaluate the constraints that can be achieved using 3D
topology measurements from next-generation LSS surveys such as the Baryonic Oscillation
Spectroscopic Survey (BOSS). In conjunction with the information that will be available from
the Planck satellite, we find a single topology measurement on 3 different scales is capable
of constraining a single dark energy parameter to within 5% and 10% when dynamics are
permitted. This offers an alternative use of the data available from redshift surveys and serves
as a cross-check for BAO studies.

1 INTRODUCTION

In the late 90’s, the expansion of the Universe, first de-

tected by Hubble, was confirmed from the precise measure-

ments of SNIa and astonishingly found to be accelerating

(Riess et al. (1998); Perlmutter et al. (1999); Lange et al. (2001);

Hoekstra et al. (2002); Riess et al. (2004); Cole et al. (2005);

Astier et al. (2006); Spergel et al. (2006); Riess et al. (2006)). This

provided convincing evidence for the presence of an unidentified

entity in the Universe which (in the context of General Relativity)

must act against the gravitational attraction of ordinary matter. In-

direct yet also compelling evidence came from the missing energy

density inferred from the discrepancy between the measurements of

matter density (from direct measurements and observation of the

Integrated Sachs-Wolfe effect) and the indications of spatial flat-

ness from the CMB anisotropy spectrum, as well as the level of the

initial inhomogeneity measured in the CMB compared with large

scale structure today. Although the presence of this ‘dark energy’ is

now well-established, its nature still evades us and characterizing it

has become one of the most important topics in cosmology today.

This is evidenced by the large number of experiments which have

been proposed and designed with this question in mind.

One such effort is the Baryon Oscillations Spectroscopic Sur-

vey (BOSS) which plans to map the spatial distribution of lumi-

nous red galaxies (LRG) and quasars over 10, 000 sq. deg. of the

sky. The survey hopes to detect the excess of galaxy clustering at

100 Mpc/h separations left over from the acoustic oscillations in

the baryon distribution at the time of last scattering. The change in

the characteristic scale of this phenonemon from the time of the

CMB to today is encapsulated by the diameter angular distance

dA(z) = (1 + z)−1r(z), which is related to the expansion rate

of space via the comoving distance

r(z) = c

∫ z

0

dz′

H(z′)
. (1)

where

H(z) = H0

√

Ωm (1 + z)3 + ΩX exp

(
∫ z

0

1 + w(z′)

1 + z′
dz′

)

(2)

where H0 is the Hubble parameter today (note that flatness is as-

sumed), c is the speed of light, Ωm is the current matter density and

ΩX is the current density of dark energy. We focussing on mea-

suring the equation of state w(z) of the dark energy component,

which describes the ratio of its pressure to its energy density as a

function of redshift. Because the scale of the oscillations at the time

of last scattering is measured precisely from the CMB peak mor-

phology, the BAO scale becomes a standard ruler. BOSS is fore-

casted to measure dA(z) to 1% at various redshifts (Schlegel et al.

(2009)), placing constraints on the equation of state of dark energy

w in Eqn. 2. In this paper, we will use the topology of large scale

structure as another such standard ruler with which to get a han-

dle on w(z). Being a tracer of the primordial density perturbations,

LSS provides a record of the initial conditions and so its topology

has been used extensively to test our current assumptions of the

earliest epoch. For example, the measured topology of the Sloan

Sky Digitial Survey (SDSS) traced by LRGs was shown to be con-

sistent with expectations from a Universe with Gaussian randon

phase initial conditions (Gott et al. (2009b)). In this paper, we rec-

ognize that topology is another measure of clustering or the num-



Topological statistics

• Minkowski functionals are an independent method to 
2-pt statistics for quantifying large-scale structure

• They are a topological measure unchanged by any 
density field transformation that preserves rank-
ordering (so are conserved over time in linear theory)

• We model them as a Gaussian random field (plus 
corrections), then the amplitudes of functionals per 
unit volume are predicted by power spectrum shape

• Observed amplitudes then determine volume element 
hence DV(z) [same quantity as measured by BAOs]



Topological statistics

• WiggleZ Minkowski functional measurements ...



Topological statistics

• Fit amplitudes to these measurements ...



Topological statistics

• Fit distances to these amplitudes ...



Topological statistics

• Fits to WiggleZ Minkowski functionals produce 
distance determinations which are consistent with, 
and twice as precise as, fits to WiggleZ BAOs

• We obtain distance errors in the range 3-7% in 6 
independent redshift slices across 0.2 < z < 1.0

• A model power spectrum shape (although not 
normalization) must be assumed

• Non-linear corrections (RSD, shot noise) need more 
development ...



• Baryon acoustic oscillations measure cosmic distances 
to z=0.8 and provide cross-check with supernovae

• Alcock-Paczynski effect allows direct measurement of 
the cosmic expansion [H(z)] at high redshift

• Topological measurements produce consistent results 
with improved errors, but assume more information

• General Relativity + cosmological constant models 
have been tested in a new way and remain a good fit

• If dark energy behaves as Lambda, what is its physics?

Summary of results from WiggleZ


