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- Testing the laws of gravity
| with cosmological observations |




® The science of cosmology has been transformed by a
remarkable growth in data over the past ~20 years




® Cosmologists have used these observations to build a
detailed model of the history of the Universe
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® The most startling discovery is that the cosmic
expansion seems to be accelerating!

r Decelerating Universes . Coasting Universe Accelerating Universe




® This is the “dark energy
problem” : the attempt to
understand the physics of
cosmic acceleration, and its
implications
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The cosmic expansion is accelerating!
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The cosmic expansion is accelerating!
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® The accelerating cosmic expansion cannot be produced
by applying General Relativity to a homogeneous and
isotropic Universe containing matter and radiation



The cosmic expansion is accelerating!

® Accelerating expansion can be
produced by adding a
cosmological constant term ook Matter NETRT

® A wide range of data is
consistent with a Universe
where the current energy
density is ~/0% cosmological
constant and ~30% matter
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The cosmic expansion is accelerating!

® This is the concordance “Lambda CDM” cosmology!
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Why is this a problem!?
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® Why is the energy density in the cosmological constant

“unnaturally low”? [many tens of orders lower than expected
from quantum mechanical processes involving standard particles]

® Why are the energy densities in cosmological constant
and matter roughly equal today? [“coincidence problem”]

® |s the cosmological constant a sign of new physics!?



Anthropic principle!
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® [f the cosmological constant were significantly larger,
cosmic structure could not grow and life may not arise

® Perhaps our particular Universe is selected from a wide
distribution (“string theory landscape”) ...

® |et’s not abandon the search for other explanations!



Other explanations ...
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cosmological constant and
seek another solution!

® “Accelerating expansion cannot be produced applying GR to a
homogeneous/isotropic Universe containing matter and radiation”

® Modify General Relativity! [e.g. Einstein-Hilbert action]
® Allow for effects of inhomogeneity? [very hard!]

® Add extra “source” [e.g. dynamical scalar field]



What does it mean to “modify gravity’’!
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NEWTON DISCOVERS ANTI-GRAVITY

® Add some kind of “fifth

force” [...to the four we
already have]

® But we have extremely
accurate laboratory and
solar system tests of
General Relativity!

® Add a“screening
mechanism” which allows
the fifth force to vary
with environment



Adding an extra source term!

® Perhaps the cosmological constant is a dynamical
scalar field (“quintessence”) which relaxes to its
present-day value through some mechanism

® Other scalar fields are known (inflation? Higgs?)

® Tracking matter could resolve coincidence problem
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What observations can cosmologists make!

Expansion of the
homogeneous Universe

Growth of perturbations
within the expanding
background




Expansion of the homogeneous Universe
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® Cosmic expansion is described by the scale factor a(t)
which is related to the redshift z of light,a = |/(1+z)

® The Friedmann equation relates the scale factor to the
matter/energy contents of the Universe

® The“distance” to a given redshift is computed from the
metric and depends on the matter/energy contents

® Cosmologists can measure distance by using standard
candles or standard rulers



Expansion of the homogeneous Universe

Standard candles

Standard rulers




Expansion of the homogeneous Universe
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® The cosmic expansion history over the last ~7 billion
years has been measured with ~1% accuracy



Expansion of the homogeneous Universe
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® The cosmic expansion history over the last ~7 billion
years has been measured with ~1% accuracy



Growth of perturbations

In a perfectly homogeneous
Universe, it would be tricky

There are a rich

variety of observable
signatures in the K wlir S
clumpy Universe! : A

measured as accurately,
and are crucial for
distinguishing physics
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Growth of perturbations

® (Clustering of galaxies [measured using a galaxy redshift survey]

® V\elocities of objects [measured through the additional Doppler
shift in the cosmological redshift]

® Gravitational lensing of light [measured through the correlated
shapes of background galaxies as their light passes through structure]

® Abundance/properties of structures e.g. clusters/voids




Lensing and clustering : complementarity

® Sensitive to theories of gravity in complementary ways
® General perturbations to spacetime metric:
ds® = [142¢(x, 1) dt*—a*(t) [1=2¢(x, t)] da”

® (v, ¢)are metric gravitational potentials, identical in
General Relativity but can differ in general theories

® Relativistic particles (e.g. light rays for lensing) collect
equal contributions and are sensitive to (1) + ¢)

® Non-relativistic particles (e.g. galaxies infalling into
clusters) experience the Newtonian potential )



What approaches are possible?

® Measure an observable, is it

consistent with the prediction
of the LambdaCDM model?

® Parametrize deviations from
GR, and seek to place
constraints on those deviations

® Target particularly important
signatures of new physics, e.g.
| difference in metric potentials




Is an observable consistent : galaxy velocities




Measuring velocities of individual galaxies

® Simultaneous measurements of distance D and redshift z

® Use standard candle (supernovae, fundamental plane, ...)
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Measuring correlated galaxy velocities

® Even without velocity measurements, can detect via

redshift-space distortion in galaxy redshift surveys _ i . ent
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Is an observable consistent : galaxy velocities

® A galaxy’s standard-candle
distance and redshift
determines its velocity

® The velocity is linked to the
matter density by gravity, via
the growth rate of structure

® VVe measure the velocity
power spectrum of 9,000
standard-candle galaxies
from the 6dF Galaxy Survey

® Credit to Andrew Johnson!




Is an observable consistent : galaxy velocities

® Here is our result : consistency with the prediction with
particular sensitivity to large scales
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Parametrized deviations : Gmatter and Giighe

® Use these data to test for deviations from
GR using a phenomenological model

V2 = 4ArGNa’pmAm
VX (d+¢) = 81GNGpmAm




Parametrized deviations : Gmatter and Giighe

® Use these data to test for deviations from
GR using a phenomenological model

VQ@D — 47TGNa2ﬁmAm X Gmatter
V2(¢ —+ w) = SWGNQQﬁmAm X Glight .




Parametrized deviations : Gmatter and Giighe

® Use these data to test for deviations from
GR using a phenomenological model

VQ@D — 47TGNaf2ﬁmAm 4 Gmatter
V2(¢ —+ ’gb) = SWGNQQﬁmAm \ Glight .

Gmatter(k,z) and Giighe(k,z) in two
bins of k and z (8 parameters)



Parametrized deviations : Gmatter and Giighe

® Use these data to test for deviations from
GR using a phenomenological model
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Gravitational lensing
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Targetted test : lensing vs. dynamics

® What is the gravity generated by the density field?

Lens galaxies:
measure their velocities!

Source galaxies:
measure lensing
of their light!



Targetted test : lensing vs. dynamics

® Measure cross-correlations between source shapes
from CFHTLenS / RCSLenS (to r ~ 25) and lenses from
WiggleZ / BOSS (covering 0.15 <z < 0.7)

® Total overlap area ~ 500 deg?

® Shape measurements using “lensfit” give shape density
of 14 arcmin? [CFHTLenS] and 6 arcmin-? [RCSLenS]

® Source photometric redshift catalogue using BPZ

® Battery of systematic tests of shear measurements,
results blinded



Targetted test : lensing vs. dynamics
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Targetted test : lensing vs. dynamics

Measurement [scale]

Prediction

Amplitude of lensing [scale]

Amplitude of velocities [scale]
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2-degree Field Lensing Survey (2dFLe

nS)

® 50 AAT nights used for spectroscopic follow-up of
southern lensing surveys such as KiDS and DES

® Galaxy lens sample (~50,000) to test gravity by cross-
correlating weak lensing and galaxy velocities

® Photo-z calibration samples (direct / cross-correlation)




ensing Survey (2dFLenS)




Outlook

® Cosmological datasets will grow by further orders of
magnitude over the next few years (DES, HSC, KiDS,
LSST, Taipan, DESI, 4MOST, PFS, Euclid, WFIRST, SKA)

® These data will be a goldmine for advances in
cosmology, astrophysics and statistical methods

® “Predictable” science goals include measuring neutrino
mass, testing if expansion is matter-dominated at high-z,
constraining deviations from GR across scales/redshifts

® “Unpredictable” science goals include observing a
signature of modified gravity! (e.g.,in a targetted test)



Taipan Galaxy Survey

® |ocal Universe survey of ~IM galaxy redshifts (z < 0.3)
and ~100,000 velocities (z < 0.1) starting this year

® |% measurement of Ho through baryon acoustic peak

® Perform new tests of General Relativity using combined
analyses of the density and velocity fields




Challenges
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® Observational probes are all | B o G
systematics-limited such that | § fon™ A0
progress is now very difficult

® Sociology is changing (large
collaborations...)

® Specialization means that o No! (k4 Evouving
o . o ° THhK ABOuUT
bridging observations and e SOLUARLE PRIBLEMS !
¢

theory is harder than ever

® No guarantee that we will
ever understand the physics
of cosmic acceleration!




