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Testing the laws of gravity
with cosmological observations



• The science of cosmology has been transformed by a 
remarkable growth in data over the past ~20 years



• Cosmologists have used these observations to build a 
detailed model of the history of the Universe



• The most startling discovery is that the cosmic 
expansion seems to be accelerating!



• This is the “dark energy 
problem” : the attempt to 
understand the physics of 
cosmic acceleration, and its 
implications



The cosmic expansion is accelerating!

Early hints ...

Credit: Perlmutter (2003)



• The accelerating cosmic expansion cannot be produced 
by applying General Relativity to a homogeneous and 
isotropic Universe containing matter and radiation

The cosmic expansion is accelerating!



• Accelerating expansion can be 
produced by adding a 
cosmological constant term

• A wide range of data is 
consistent with a Universe 
where the current energy 
density is ~70% cosmological 
constant and ~30% matter

The cosmic expansion is accelerating!



The cosmic expansion is accelerating!

• This is the concordance “Lambda CDM” cosmology!

Credit: Kowalski et al. (2008)



Why is this a problem?

• Why is the energy density in the cosmological constant 
“unnaturally low”?  [many tens of orders lower than expected 
from quantum mechanical processes involving standard particles]

• Why are the energy densities in cosmological constant 
and matter roughly equal today?  [“coincidence problem”]

• Is the cosmological constant a sign of new physics?



Anthropic principle!

• If the cosmological constant were significantly larger, 
cosmic structure could not grow and life may not arise

• Perhaps our particular Universe is selected from a wide 
distribution (“string theory landscape”) ...

• Let’s not abandon the search for other explanations!



Other explanations ...

• “Accelerating expansion cannot be produced applying GR to a 
homogeneous/isotropic Universe containing matter and radiation”

• Modify General Relativity? [e.g. Einstein-Hilbert action]

• Allow for effects of inhomogeneity? [very hard!]

• Add extra “source” [e.g. dynamical scalar field]

Let’s not worry about 
cosmological constant and 

seek another solution!



What does it mean to “modify gravity”?

• Add some kind of “fifth 
force” [... to the four we 
already have]

• But we have extremely 
accurate laboratory and 
solar system tests of 
General Relativity!

• Add a “screening 
mechanism” which allows 
the fifth force to vary 
with environment



Adding an extra source term?

• Perhaps the cosmological constant is a dynamical 
scalar field (“quintessence”) which relaxes to its 
present-day value through some mechanism

• Other scalar fields are known (inflation?  Higgs?)

• Tracking matter could resolve coincidence problem



What observations can cosmologists make?

Expansion of the
homogeneous Universe

Growth of perturbations 
within the expanding 

background



Expansion of the homogeneous Universe

• Cosmic expansion is described by the scale factor a(t) 
which is related to the redshift z of light, a = 1/(1+z)

• The Friedmann equation relates the scale factor to the 
matter/energy contents of the Universe

• The “distance” to a given redshift is computed from the 
metric and depends on the matter/energy contents

• Cosmologists can measure distance by using standard 
candles or standard rulers



Expansion of the homogeneous Universe

Standard candles Standard rulers



Expansion of the homogeneous Universe

Standard candles Standard rulers

• The cosmic expansion history over the last ~7 billion 
years has been measured with ~1% accuracy

Credit : Anderson et al. (2013)Credit : Amanullah et al. (2010)



Expansion of the homogeneous Universe

• The cosmic expansion history over the last ~7 billion 
years has been measured with ~1% accuracy



Growth of perturbations

There are a rich 
variety of observable 
signatures in the 
clumpy Universe!

These have not been 
measured as accurately, 
and are crucial for 
distinguishing physics

In a perfectly homogeneous 
Universe, it would be tricky 
to understand dark energy!



Growth of perturbations

Measure these perturbations 
as a function of redshift (z) 
and scale (Fourier mode k)



Growth of perturbations

• Clustering of galaxies [measured using a galaxy redshift survey]

• Velocities of objects [measured through the additional Doppler 
shift in the cosmological redshift]

• Gravitational lensing of light [measured through the correlated 
shapes of background galaxies as their light passes through structure]

• Abundance/properties of structures e.g. clusters/voids



• Sensitive to theories of gravity in complementary ways

• General perturbations to spacetime metric:

•           are metric gravitational potentials, identical in 
General Relativity but can differ in general theories

• Relativistic particles (e.g. light rays for lensing) collect 
equal contributions and are sensitive to

• Non-relativistic particles (e.g. galaxies infalling into 
clusters) experience the Newtonian potential 

Lensing and clustering : complementarity



What approaches are possible?

• Measure an observable, is it 
consistent with the prediction 
of the LambdaCDM model?

• Parametrize deviations from 
GR, and seek to place 
constraints on those deviations

• Target particularly important 
signatures of new physics, e.g. 
difference in metric potentials



Is an observable consistent : galaxy velocities



Measuring velocities of individual galaxies

• Simultaneous measurements of distance D and redshift z

• Use standard candle (supernovae, fundamental plane, ...)

[Small print :
this equation is not exact!]



observer

infalling
galaxies

coherent
flowsvirialized

motions

Measuring correlated galaxy velocities

• Even without velocity measurements, can detect via 
redshift-space distortion in galaxy redshift surveys



Is an observable consistent : galaxy velocities

• A galaxy’s standard-candle 
distance and redshift 
determines its velocity

• The velocity is linked to the 
matter density by gravity, via 
the growth rate of structure

• We measure the velocity 
power spectrum of 9,000 
standard-candle galaxies 
from the 6dF Galaxy Survey

• Credit to Andrew Johnson!



• Here is our result : consistency with the prediction with 
particular sensitivity to large scales

“Standard model”

arXiv : 1404.3799
Gpc scales !

Is an observable consistent : galaxy velocities
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where GN is Newton’s gravitational constant, and the equa-
tions are defined in terms of the comoving-gauge density
perturbation �m = �m + (3H/k2)✓m.

2.2 Glight(k, z) and Gmatter(k, z)

We now introduce two dimensionless free parameters Glight

and Gmatter that we use to model deviations to the field
equations. Our model is now specified as (Daniel & Linder
2013)

r2 = 4⇡GNa2⇢̄m�m ⇥Gmatter (6)

r2(�+  ) = 8⇡GNa2⇢̄m�m ⇥Glight . (7)

The first equation governs the motion of non-relativistic par-
ticles, while the second controls the propagation of light
along null geodesics. As a result, Gmatter can be measured
using RSDs and direct PVs, and Glight can be measured
using weak lensing. Because of this distinction the two pa-
rameters are significantly less correlated than models in-
volving a ‘slip’ relation (e.g., Bean & Tangmatitham 2010).
Note that the variables {⌃, µ} in Simpson et al. (2013) and
Zhao et al. (2012) are equivalent to {Glight, Gmatter}. There
is also a trivial re-mapping to the {Q,R} parameters used
by Bean & Tangmatitham (2010), through Gmatter = QR,
Glight = Q(1 +R)/2.

To ensure our model can test for a variety of deviations
from GR we allow for both scale- and redshift-dependence:
that is, Glight = Glight(z, k) and Gmatter = Gmatter(z, k).
To specify these parameters we use a high vs. low-redshift,
large vs. small scale binning approach introduced by Daniel
& Linder (2010). Note, however, that very general func-
tional forms for these parameters (including scale-dependent
terms) have been developed (Silvestri, Pogosian & Buniy
2013; Baker et al. 2014). We leave such investigations to
future work.

Our adopted model introduces 8 free parameters and
requires one to specify a redshift and wavenumber transi-
tion scale, zt and kt. We set zt = 1 and kc = 0.01 Mpc�1;
therefore, we have two redshift bins (viz., 0 < z < 1 and
1 < z < 2) and two wavenumber bins (10�4Mpc�1 < k <
10�2Mpc�1 and 0.01Mpc�1 < k < 0.1Mpc�1), while for
z > 2 and k < 10�4Mpc�1 GR is restored. The transition
between bins is implemented using an arctan function of
width �z = 0.05 and �k = 0.001.

For our first model we choose to leave the cosmic ex-
pansion unmodified at the ⇤CDM prediction, and concen-
trate on the growth of structure. Henceforth, we will refer
to this model as model I. To calculate the relevant observ-
ables (to be discussed in the next section) we use camb and
CosmoMC. The modified field equations (Eq 7) are incorpo-
rated into camb using the publicly available code ISITGR
(Dossett, Ishak & Moldenhauer 2011), and the exact equa-
tions implemented in camb are given by Dossett, Ishak &
Moldenhauer (2011). Note the only significant di↵erence be-
tween the equations employed in camb and Eq (7) is that
the latter are written within the synchronous gauge (Ma &
Bertschinger 1995).

A few technical comments on the model are unavoid-
able: Firstly, super-horizon curvature perturbations need to
be conserved independent of the form of field equations
(Bertschinger & Zukin 2008). This condition was shown to

be satisfied for this model by Pogosian et al. (2010). Addi-
tionally, it is natural to include a smoothness theory prior
on these parameters, however, given the large distance be-
tween the centre of our bins we choose not to include such a
prior (Silvestri, Pogosian & Buniy 2013). With more accu-
rate data, and hence a larger number of bins, this argument
will no longer be valid. Finally, the accuracy of any map-
ping from our model to physical models (i.e., those derived
from an action) relies on the validity of the quasi-static ap-
proximation (QSA). Following the arguments presented in
Silvestri, Pogosian & Buniy (2013) it is reasonable to include
a theoretical prior to ignore such deviations.

2.3 Varying Growth and Expansion: {�, w0, wa}
As more freedom is introduced to model deviations from
GR the precision of the inferred parameters degrades. We
must decide then which features of the standard model to
preserve; for example, to what extent does the expansion
history dictate the growth history. This presents a balancing
problem with no clear solution. To partially circumvent this
issue we adopt a second model (which we label model II). In
contrast to our first model, this model includes only minimal
extensions to the standard model. As a result there are fewer
free parameters and more precise tests are possible (although
we nonetheless introduce deviations to both the expansion
and growth history).

This minimal extension to the standard model using
the parameters {w0, wa, �} has been advocated by Linder
& Cahn (2007); Linder (2005), and Simpson & Peacock
(2010), and applications have been presented, for exam-
ple, by Huterer & Linder (2007). To expand on this, we
introduce deviations to the expansion history through a
time-dependent equation of state w(z), which is expressed
in terms of two free parameters: w0 = w(a = 0) and
wa = �(dw/da)

��
a=1

, as a function of the redshift w(z) =
w0+waz/(1+z). Note the expansion history is still governed
by the Friedman equation, there is simply more freedom
in the properties of the dark energy component. We intro-
duce deviations in the growth history by parameterizing the
growth rate as f(z) ⌘ ⌦m(z)� , where � is the growth index;
within GR one expects � ⇠ 0.55. The growth rate is defined
by f(a) ⌘ d lnD(a)/d ln a, and D(a) ⌘ �(a)/�(a = 1).

3 PRIMARY DATASETS: METHODOLOGY

Below we will outline the measurements we use in Sec. 5,
in addition to the tools we use to analyze them. A gen-
eral summary is provided in Table 1 where the datasets,
the measured quantities, and the fitting ranges adopted are
specified. The focus will be on introducing extensions to the
public MCMC code CosmoMC (Lewis & Bridle 2002) and camb
(Lewis, Challinor & Lasenby 2000) to update the range of
datasets one can analyze.

3.1 Velocity Power Spectrum

The radial PVs of galaxies in the local universe induce a
fluctuation in the apparent magnitude m, defined as (Hui &

c� 2015 RAS, MNRAS 000, 000–000

• Use these data to test for deviations from 
GR using a phenomenological model
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where GN is Newton’s gravitational constant, and the equa-
tions are defined in terms of the comoving-gauge density
perturbation �m = �m + (3H/k2)✓m.

2.2 Glight(k, z) and Gmatter(k, z)

We now introduce two dimensionless free parameters Glight

and Gmatter that we use to model deviations to the field
equations. Our model is now specified as (Daniel & Linder
2013)

r2 = 4⇡GNa2⇢̄m�m ⇥Gmatter (6)

r2(�+  ) = 8⇡GNa2⇢̄m�m ⇥Glight . (7)

The first equation governs the motion of non-relativistic par-
ticles, while the second controls the propagation of light
along null geodesics. As a result, Gmatter can be measured
using RSDs and direct PVs, and Glight can be measured
using weak lensing. Because of this distinction the two pa-
rameters are significantly less correlated than models in-
volving a ‘slip’ relation (e.g., Bean & Tangmatitham 2010).
Note that the variables {⌃, µ} in Simpson et al. (2013) and
Zhao et al. (2012) are equivalent to {Glight, Gmatter}. There
is also a trivial re-mapping to the {Q,R} parameters used
by Bean & Tangmatitham (2010), through Gmatter = QR,
Glight = Q(1 +R)/2.

To ensure our model can test for a variety of deviations
from GR we allow for both scale- and redshift-dependence:
that is, Glight = Glight(z, k) and Gmatter = Gmatter(z, k).
To specify these parameters we use a high vs. low-redshift,
large vs. small scale binning approach introduced by Daniel
& Linder (2010). Note, however, that very general func-
tional forms for these parameters (including scale-dependent
terms) have been developed (Silvestri, Pogosian & Buniy
2013; Baker et al. 2014). We leave such investigations to
future work.

Our adopted model introduces 8 free parameters and
requires one to specify a redshift and wavenumber transi-
tion scale, zt and kt. We set zt = 1 and kc = 0.01 Mpc�1;
therefore, we have two redshift bins (viz., 0 < z < 1 and
1 < z < 2) and two wavenumber bins (10�4Mpc�1 < k <
10�2Mpc�1 and 0.01Mpc�1 < k < 0.1Mpc�1), while for
z > 2 and k < 10�4Mpc�1 GR is restored. The transition
between bins is implemented using an arctan function of
width �z = 0.05 and �k = 0.001.

For our first model we choose to leave the cosmic ex-
pansion unmodified at the ⇤CDM prediction, and concen-
trate on the growth of structure. Henceforth, we will refer
to this model as model I. To calculate the relevant observ-
ables (to be discussed in the next section) we use camb and
CosmoMC. The modified field equations (Eq 7) are incorpo-
rated into camb using the publicly available code ISITGR
(Dossett, Ishak & Moldenhauer 2011), and the exact equa-
tions implemented in camb are given by Dossett, Ishak &
Moldenhauer (2011). Note the only significant di↵erence be-
tween the equations employed in camb and Eq (7) is that
the latter are written within the synchronous gauge (Ma &
Bertschinger 1995).

A few technical comments on the model are unavoid-
able: Firstly, super-horizon curvature perturbations need to
be conserved independent of the form of field equations
(Bertschinger & Zukin 2008). This condition was shown to

be satisfied for this model by Pogosian et al. (2010). Addi-
tionally, it is natural to include a smoothness theory prior
on these parameters, however, given the large distance be-
tween the centre of our bins we choose not to include such a
prior (Silvestri, Pogosian & Buniy 2013). With more accu-
rate data, and hence a larger number of bins, this argument
will no longer be valid. Finally, the accuracy of any map-
ping from our model to physical models (i.e., those derived
from an action) relies on the validity of the quasi-static ap-
proximation (QSA). Following the arguments presented in
Silvestri, Pogosian & Buniy (2013) it is reasonable to include
a theoretical prior to ignore such deviations.

2.3 Varying Growth and Expansion: {�, w0, wa}
As more freedom is introduced to model deviations from
GR the precision of the inferred parameters degrades. We
must decide then which features of the standard model to
preserve; for example, to what extent does the expansion
history dictate the growth history. This presents a balancing
problem with no clear solution. To partially circumvent this
issue we adopt a second model (which we label model II). In
contrast to our first model, this model includes only minimal
extensions to the standard model. As a result there are fewer
free parameters and more precise tests are possible (although
we nonetheless introduce deviations to both the expansion
and growth history).

This minimal extension to the standard model using
the parameters {w0, wa, �} has been advocated by Linder
& Cahn (2007); Linder (2005), and Simpson & Peacock
(2010), and applications have been presented, for exam-
ple, by Huterer & Linder (2007). To expand on this, we
introduce deviations to the expansion history through a
time-dependent equation of state w(z), which is expressed
in terms of two free parameters: w0 = w(a = 0) and
wa = �(dw/da)
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, as a function of the redshift w(z) =
w0+waz/(1+z). Note the expansion history is still governed
by the Friedman equation, there is simply more freedom
in the properties of the dark energy component. We intro-
duce deviations in the growth history by parameterizing the
growth rate as f(z) ⌘ ⌦m(z)� , where � is the growth index;
within GR one expects � ⇠ 0.55. The growth rate is defined
by f(a) ⌘ d lnD(a)/d ln a, and D(a) ⌘ �(a)/�(a = 1).

3 PRIMARY DATASETS: METHODOLOGY

Below we will outline the measurements we use in Sec. 5,
in addition to the tools we use to analyze them. A gen-
eral summary is provided in Table 1 where the datasets,
the measured quantities, and the fitting ranges adopted are
specified. The focus will be on introducing extensions to the
public MCMC code CosmoMC (Lewis & Bridle 2002) and camb
(Lewis, Challinor & Lasenby 2000) to update the range of
datasets one can analyze.

3.1 Velocity Power Spectrum

The radial PVs of galaxies in the local universe induce a
fluctuation in the apparent magnitude m, defined as (Hui &
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GR using a phenomenological model
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where GN is Newton’s gravitational constant, and the equa-
tions are defined in terms of the comoving-gauge density
perturbation �m = �m + (3H/k2)✓m.

2.2 Glight(k, z) and Gmatter(k, z)

We now introduce two dimensionless free parameters Glight

and Gmatter that we use to model deviations to the field
equations. Our model is now specified as (Daniel & Linder
2013)

r2 = 4⇡GNa2⇢̄m�m ⇥Gmatter (6)

r2(�+  ) = 8⇡GNa2⇢̄m�m ⇥Glight . (7)

The first equation governs the motion of non-relativistic par-
ticles, while the second controls the propagation of light
along null geodesics. As a result, Gmatter can be measured
using RSDs and direct PVs, and Glight can be measured
using weak lensing. Because of this distinction the two pa-
rameters are significantly less correlated than models in-
volving a ‘slip’ relation (e.g., Bean & Tangmatitham 2010).
Note that the variables {⌃, µ} in Simpson et al. (2013) and
Zhao et al. (2012) are equivalent to {Glight, Gmatter}. There
is also a trivial re-mapping to the {Q,R} parameters used
by Bean & Tangmatitham (2010), through Gmatter = QR,
Glight = Q(1 +R)/2.

To ensure our model can test for a variety of deviations
from GR we allow for both scale- and redshift-dependence:
that is, Glight = Glight(z, k) and Gmatter = Gmatter(z, k).
To specify these parameters we use a high vs. low-redshift,
large vs. small scale binning approach introduced by Daniel
& Linder (2010). Note, however, that very general func-
tional forms for these parameters (including scale-dependent
terms) have been developed (Silvestri, Pogosian & Buniy
2013; Baker et al. 2014). We leave such investigations to
future work.

Our adopted model introduces 8 free parameters and
requires one to specify a redshift and wavenumber transi-
tion scale, zt and kt. We set zt = 1 and kc = 0.01 Mpc�1;
therefore, we have two redshift bins (viz., 0 < z < 1 and
1 < z < 2) and two wavenumber bins (10�4Mpc�1 < k <
10�2Mpc�1 and 0.01Mpc�1 < k < 0.1Mpc�1), while for
z > 2 and k < 10�4Mpc�1 GR is restored. The transition
between bins is implemented using an arctan function of
width �z = 0.05 and �k = 0.001.

For our first model we choose to leave the cosmic ex-
pansion unmodified at the ⇤CDM prediction, and concen-
trate on the growth of structure. Henceforth, we will refer
to this model as model I. To calculate the relevant observ-
ables (to be discussed in the next section) we use camb and
CosmoMC. The modified field equations (Eq 7) are incorpo-
rated into camb using the publicly available code ISITGR
(Dossett, Ishak & Moldenhauer 2011), and the exact equa-
tions implemented in camb are given by Dossett, Ishak &
Moldenhauer (2011). Note the only significant di↵erence be-
tween the equations employed in camb and Eq (7) is that
the latter are written within the synchronous gauge (Ma &
Bertschinger 1995).

A few technical comments on the model are unavoid-
able: Firstly, super-horizon curvature perturbations need to
be conserved independent of the form of field equations
(Bertschinger & Zukin 2008). This condition was shown to

be satisfied for this model by Pogosian et al. (2010). Addi-
tionally, it is natural to include a smoothness theory prior
on these parameters, however, given the large distance be-
tween the centre of our bins we choose not to include such a
prior (Silvestri, Pogosian & Buniy 2013). With more accu-
rate data, and hence a larger number of bins, this argument
will no longer be valid. Finally, the accuracy of any map-
ping from our model to physical models (i.e., those derived
from an action) relies on the validity of the quasi-static ap-
proximation (QSA). Following the arguments presented in
Silvestri, Pogosian & Buniy (2013) it is reasonable to include
a theoretical prior to ignore such deviations.

2.3 Varying Growth and Expansion: {�, w0, wa}
As more freedom is introduced to model deviations from
GR the precision of the inferred parameters degrades. We
must decide then which features of the standard model to
preserve; for example, to what extent does the expansion
history dictate the growth history. This presents a balancing
problem with no clear solution. To partially circumvent this
issue we adopt a second model (which we label model II). In
contrast to our first model, this model includes only minimal
extensions to the standard model. As a result there are fewer
free parameters and more precise tests are possible (although
we nonetheless introduce deviations to both the expansion
and growth history).

This minimal extension to the standard model using
the parameters {w0, wa, �} has been advocated by Linder
& Cahn (2007); Linder (2005), and Simpson & Peacock
(2010), and applications have been presented, for exam-
ple, by Huterer & Linder (2007). To expand on this, we
introduce deviations to the expansion history through a
time-dependent equation of state w(z), which is expressed
in terms of two free parameters: w0 = w(a = 0) and
wa = �(dw/da)

��
a=1

, as a function of the redshift w(z) =
w0+waz/(1+z). Note the expansion history is still governed
by the Friedman equation, there is simply more freedom
in the properties of the dark energy component. We intro-
duce deviations in the growth history by parameterizing the
growth rate as f(z) ⌘ ⌦m(z)� , where � is the growth index;
within GR one expects � ⇠ 0.55. The growth rate is defined
by f(a) ⌘ d lnD(a)/d ln a, and D(a) ⌘ �(a)/�(a = 1).

3 PRIMARY DATASETS: METHODOLOGY

Below we will outline the measurements we use in Sec. 5,
in addition to the tools we use to analyze them. A gen-
eral summary is provided in Table 1 where the datasets,
the measured quantities, and the fitting ranges adopted are
specified. The focus will be on introducing extensions to the
public MCMC code CosmoMC (Lewis & Bridle 2002) and camb
(Lewis, Challinor & Lasenby 2000) to update the range of
datasets one can analyze.

3.1 Velocity Power Spectrum

The radial PVs of galaxies in the local universe induce a
fluctuation in the apparent magnitude m, defined as (Hui &
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• Use these data to test for deviations from 
GR using a phenomenological model

Gmatter(k,z) and Glight(k,z) in two 
bins of k and z (8 parameters)
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Figure 5. 68% and 95% confidence regions for the four Gmatter(k, z) bin parameters. Here z > 1 here is referring to the redshift range
2 > z > 1. Note all of the parameters specified in Table 2 are being varied in this analysis yet for clarity we only plot the constraints on
Gmatter(k, z). Recall we have defined Base as High�l + low�l +WP+BAO+ SNe.

as the high-z and low-z Gmatter bins are highly correlated,
as can be seen in Fig. 5. This degeneracy occurs as some
probes, such as the CMB, are sensitive to integrated quanti-
ties over redshift, such that higher growth at high-z can be
compensated for by lower growth at low-z.

Introducing direct PV measurements the constraints
shift from the green to the grey contours. The most promi-
nent shift occurs in the low-z and low-k Gmatter bin, as ex-
pected: we find a shift from Gmatter(z < 1; k < 0.01) =
0.81+0.59

�0.46 to Gmatter(z < 1; k < 0.01) = 1.32+0.42
�0.29. We

find further improvements in the constraints for the high-
wavenumber and low-redshift bin. Future PV surveys should
be able to considerably improve on this situation (cf. Koda
et al. 2014). Using the best-fit parameters from Set 4, we
measure �2

6dFGSv = 778 with 979 data points: the full

6dfGSv velocity field is smoothed onto a grid with 979 non-
empty elements (cf. Johnson et al. 2014).

Including RSD measurements results in the shift from
the grey to red contours, for which we find a significant im-
provement in the constraint on the high-z and high-k Gmatter

bin. Moreover, we find that the RSD measurements have
more influence on the high-z bin than the the low-z bin:
this is an further consequence of measuring integrated quan-
tities. As a systematic check we isolate the measurements
from WiggleZ and BOSS and perform separate fits, we find
that the two separate constraints on Gmatter are consistent.
We can also assess how well our model fits the observations.
By adding the multipole likelihoods we find ��2 = 322, for
a total of 324 measurement points. Individually, for the fit
to the WiggleZ multipoles, with 126 data points per redshift

c� 2015 RAS, MNRAS 000, 000–000
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where GN is Newton’s gravitational constant, and the equa-
tions are defined in terms of the comoving-gauge density
perturbation �m = �m + (3H/k2)✓m.

2.2 Glight(k, z) and Gmatter(k, z)

We now introduce two dimensionless free parameters Glight

and Gmatter that we use to model deviations to the field
equations. Our model is now specified as (Daniel & Linder
2013)

r2 = 4⇡GNa2⇢̄m�m ⇥Gmatter (6)

r2(�+  ) = 8⇡GNa2⇢̄m�m ⇥Glight . (7)

The first equation governs the motion of non-relativistic par-
ticles, while the second controls the propagation of light
along null geodesics. As a result, Gmatter can be measured
using RSDs and direct PVs, and Glight can be measured
using weak lensing. Because of this distinction the two pa-
rameters are significantly less correlated than models in-
volving a ‘slip’ relation (e.g., Bean & Tangmatitham 2010).
Note that the variables {⌃, µ} in Simpson et al. (2013) and
Zhao et al. (2012) are equivalent to {Glight, Gmatter}. There
is also a trivial re-mapping to the {Q,R} parameters used
by Bean & Tangmatitham (2010), through Gmatter = QR,
Glight = Q(1 +R)/2.

To ensure our model can test for a variety of deviations
from GR we allow for both scale- and redshift-dependence:
that is, Glight = Glight(z, k) and Gmatter = Gmatter(z, k).
To specify these parameters we use a high vs. low-redshift,
large vs. small scale binning approach introduced by Daniel
& Linder (2010). Note, however, that very general func-
tional forms for these parameters (including scale-dependent
terms) have been developed (Silvestri, Pogosian & Buniy
2013; Baker et al. 2014). We leave such investigations to
future work.

Our adopted model introduces 8 free parameters and
requires one to specify a redshift and wavenumber transi-
tion scale, zt and kt. We set zt = 1 and kc = 0.01 Mpc�1;
therefore, we have two redshift bins (viz., 0 < z < 1 and
1 < z < 2) and two wavenumber bins (10�4Mpc�1 < k <
10�2Mpc�1 and 0.01Mpc�1 < k < 0.1Mpc�1), while for
z > 2 and k < 10�4Mpc�1 GR is restored. The transition
between bins is implemented using an arctan function of
width �z = 0.05 and �k = 0.001.

For our first model we choose to leave the cosmic ex-
pansion unmodified at the ⇤CDM prediction, and concen-
trate on the growth of structure. Henceforth, we will refer
to this model as model I. To calculate the relevant observ-
ables (to be discussed in the next section) we use camb and
CosmoMC. The modified field equations (Eq 7) are incorpo-
rated into camb using the publicly available code ISITGR
(Dossett, Ishak & Moldenhauer 2011), and the exact equa-
tions implemented in camb are given by Dossett, Ishak &
Moldenhauer (2011). Note the only significant di↵erence be-
tween the equations employed in camb and Eq (7) is that
the latter are written within the synchronous gauge (Ma &
Bertschinger 1995).

A few technical comments on the model are unavoid-
able: Firstly, super-horizon curvature perturbations need to
be conserved independent of the form of field equations
(Bertschinger & Zukin 2008). This condition was shown to

be satisfied for this model by Pogosian et al. (2010). Addi-
tionally, it is natural to include a smoothness theory prior
on these parameters, however, given the large distance be-
tween the centre of our bins we choose not to include such a
prior (Silvestri, Pogosian & Buniy 2013). With more accu-
rate data, and hence a larger number of bins, this argument
will no longer be valid. Finally, the accuracy of any map-
ping from our model to physical models (i.e., those derived
from an action) relies on the validity of the quasi-static ap-
proximation (QSA). Following the arguments presented in
Silvestri, Pogosian & Buniy (2013) it is reasonable to include
a theoretical prior to ignore such deviations.

2.3 Varying Growth and Expansion: {�, w0, wa}
As more freedom is introduced to model deviations from
GR the precision of the inferred parameters degrades. We
must decide then which features of the standard model to
preserve; for example, to what extent does the expansion
history dictate the growth history. This presents a balancing
problem with no clear solution. To partially circumvent this
issue we adopt a second model (which we label model II). In
contrast to our first model, this model includes only minimal
extensions to the standard model. As a result there are fewer
free parameters and more precise tests are possible (although
we nonetheless introduce deviations to both the expansion
and growth history).

This minimal extension to the standard model using
the parameters {w0, wa, �} has been advocated by Linder
& Cahn (2007); Linder (2005), and Simpson & Peacock
(2010), and applications have been presented, for exam-
ple, by Huterer & Linder (2007). To expand on this, we
introduce deviations to the expansion history through a
time-dependent equation of state w(z), which is expressed
in terms of two free parameters: w0 = w(a = 0) and
wa = �(dw/da)

��
a=1

, as a function of the redshift w(z) =
w0+waz/(1+z). Note the expansion history is still governed
by the Friedman equation, there is simply more freedom
in the properties of the dark energy component. We intro-
duce deviations in the growth history by parameterizing the
growth rate as f(z) ⌘ ⌦m(z)� , where � is the growth index;
within GR one expects � ⇠ 0.55. The growth rate is defined
by f(a) ⌘ d lnD(a)/d ln a, and D(a) ⌘ �(a)/�(a = 1).

3 PRIMARY DATASETS: METHODOLOGY

Below we will outline the measurements we use in Sec. 5,
in addition to the tools we use to analyze them. A gen-
eral summary is provided in Table 1 where the datasets,
the measured quantities, and the fitting ranges adopted are
specified. The focus will be on introducing extensions to the
public MCMC code CosmoMC (Lewis & Bridle 2002) and camb
(Lewis, Challinor & Lasenby 2000) to update the range of
datasets one can analyze.

3.1 Velocity Power Spectrum

The radial PVs of galaxies in the local universe induce a
fluctuation in the apparent magnitude m, defined as (Hui &
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• Use these data to test for deviations from 
GR using a phenomenological model

Green : CMB+BAO+SNe
Grey : + peculiar velocities

Red : + RSD
Blue : + CMB X-correlations



Gravitational lensing



Targetted test : lensing vs. dynamics

Source galaxies:
measure lensing

of their light!

Lens galaxies:
measure their velocities!

• What is the gravity generated by the density field?



• Measure cross-correlations between source shapes 
from CFHTLenS / RCSLenS (to r ~ 25) and lenses from 
WiggleZ / BOSS (covering 0.15 < z < 0.7)

• Total overlap area ~ 500 deg2

• Shape measurements using “lensfit” give shape density 
of 14 arcmin-2 [CFHTLenS] and 6 arcmin-2 [RCSLenS]

• Source photometric redshift catalogue using BPZ

• Battery of systematic tests of shear measurements, 
results blinded

Targetted test : lensing vs. dynamics
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where we have introduced the redshift-space distortion pa-
rameter β = f/b, which governs the amplitude of the mea-
sured RSD.

The anisotropic imprint of RSD in galaxy clustering al-
lows the measurement of the gravitational growth rate and,
consequently, powerful tests of gravitational physics. How-
ever, it also introduces an extra amplitude factor in the rela-
tion between ξgg and ξmm, complicating inferences about the
galaxy bias. In order to avoid this issue the real-space “pro-
jected” correlation function wp(R), independent of RSD, can
instead be constructed by integrating the 3D galaxy corre-
lation function ξgg(R, Π) along the line-of-sight:

wp(R) =

∫ ∞

−∞

ξgg(R, Π) dΠ. (14)

Our method of estimating wp(R) from the data is described
in Section 6.1. In practice the limits of Equation 14 must be
taken as large, finite values.

2.4 Suppressing small-scale information

Equation 6 demonstrates that the amplitude of ∆Σ(R) de-
pends on the surface density of matter around galaxies
across a range of smaller scales from zero to R. This is prob-
lematic from the viewpoint of fitting cosmological models
to the data since at small scales, within the halo virial ra-
dius, the cross-correlation coefficient between the matter and
galaxy fluctuations is a complex function which is difficult
to predict from first principles (Baldauf et al. 2010, Man-
delbaum et al. 2010). In order to remove this sensitivity to
small-scale information these authors proposed a new statis-
tic, the annular differential surface density (ADSD), denoted
by Υ and defined by

Υgm(R, R0) = ∆Σ(R) −
R2

0

R2
∆Σ(R0)

=
2

R2

∫ R

R0

R′ Σ(R′) dR′

− Σ(R) +
R2

0

R2
Σ(R0), (15)

which does not contain information originating from scales
R < R0. The small-scale limit R0 is chosen to be large
enough to reduce the main systematic effects discussed
above, but small enough to preserve a high signal-to-noise
ratio in the measurements (also see the discussion in Man-
delbaum et al. 2013). An alternative approach is to model
the halo occupation statistics and marginalize over the free
parameters (e.g., Cacciato et al. 2013).

The corresponding quantity suppressing the small-scale
contribution to the galaxy auto-correlations is

Υgg(R, R0) = ρc
[

2
R2

∫ R

R0

R′ wp(R′) dR′ − wp(R) +
R2

0

R2
wp(R0)

]

. (16)

We discuss our choice of R0 and the measurement of the Υ
statistics in Section 6.3.

2.5 Testing gravitational physics: the EG statistic

In general scalar theories of gravity, the perturbed FRW
spacetime metric ds2 may be expressed in terms of the New-
tonian potential Ψ and curvature potential Φ:

ds2 = [1 + 2Ψ($x, t)] c2 dt2 − a(t)2 [1 − 2Φ($x, t)] d$x2. (17)

Relativistic particles, such as photons experiencing gravi-
tational lensing, collect equal contributions from these two
potentials as they traverse spacetime, such that their equa-
tions of motion (and hence the resulting lensing patterns)
are determined by ∇2(Ψ + Φ). However, the motion of non-
relativistic particles arising from the gravitational attraction
of matter, which produces galaxy clustering and RSD, is
sensitive only to the derivatives of the Newtonian potential
∇2Ψ (e.g., Jain & Zhang 2008).

In standard General Relativity (GR), in the absence of
anisotropic stress, Ψ($x, t) = Φ($x, t) and both potentials are
related to the matter overdensity via the Poisson equation
∇2Φ = 4πGa2ρmδm. Therefore, by measuring if both the
gravitational lensing of photons and galaxy peculiar veloc-
ity respond in an identical manner to the matter overdensity
traced by the lens galaxies in our datasets, we can perform
a fundamental test of whether the relation between (Ψ+Φ)
and Ψ follows the GR expectation (assuming this perturba-
tion approximation applies).

Zhang et al. (2007) proposed that this test can be effi-
ciently carried out by cross-correlating lens galaxies to both
the surrounding velocity field using RSD and to the shear of
background galaxies using galaxy-galaxy lensing. In partic-
ular, Reyes et al. (2010) implemented this consistency test
by constructing the “gravitational slip” statistic

EG(R) =
1
β

Υgm(R, R0)

Υgg(R, R0)
, (18)

which is independent of both the galaxy bias factor b and
the underlying amplitude of matter clustering σ8, given that
β ∝ 1/b, Υgm ∝ b σ2

8 and Υgg ∝ b2 σ2
8 . The perturbed GR

model prediction on large scales is then a scale-independent
quantity EG = Ωm/f (see Leonard et al. (2015) for a more
detailed discussion of this approximation). We measure EG

and carry out this consistency test in Section 6.3. We note
that a failure of this consistency check does not necessarily
indicate evidence for gravitational physics beyond GR: other
possible explanations would include a breakdown in validity
of linear perturbation theory, or that the value of Ωm or
curvature differs from that predicted by measurements of
the Cosmic Microwave Background radiation.

3 DATA

We perform this test of gravitational physics by utiliz-
ing the overlap of lensing measurements from two imaging
surveys, the Canada-France-Hawaii Telescope Lensing Sur-
vey (CFHTLenS; Heymans et al. 2012) and the Red Clus-
ter Sequence Lensing Survey (RCSLenS, Hildebrandt et al.
2015), with two spectroscopic-redshift large-scale structure
surveys, the WiggleZ Dark Energy Survey (Drinkwater et
al. 2010) and the Baryon Oscillation Spectroscopic Survey
(BOSS, Eisenstein et al. 2011). Figure 1 displays the sky dis-
tribution of the CFHTLenS, RCSLenS, WiggleZ and BOSS
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where we have introduced the redshift-space distortion pa-
rameter β = f/b, which governs the amplitude of the mea-
sured RSD.

The anisotropic imprint of RSD in galaxy clustering al-
lows the measurement of the gravitational growth rate and,
consequently, powerful tests of gravitational physics. How-
ever, it also introduces an extra amplitude factor in the rela-
tion between ξgg and ξmm, complicating inferences about the
galaxy bias. In order to avoid this issue the real-space “pro-
jected” correlation function wp(R), independent of RSD, can
instead be constructed by integrating the 3D galaxy corre-
lation function ξgg(R, Π) along the line-of-sight:

wp(R) =

∫ ∞

−∞

ξgg(R, Π) dΠ. (14)

Our method of estimating wp(R) from the data is described
in Section 6.1. In practice the limits of Equation 14 must be
taken as large, finite values.

2.4 Suppressing small-scale information

Equation 6 demonstrates that the amplitude of ∆Σ(R) de-
pends on the surface density of matter around galaxies
across a range of smaller scales from zero to R. This is prob-
lematic from the viewpoint of fitting cosmological models
to the data since at small scales, within the halo virial ra-
dius, the cross-correlation coefficient between the matter and
galaxy fluctuations is a complex function which is difficult
to predict from first principles (Baldauf et al. 2010, Man-
delbaum et al. 2010). In order to remove this sensitivity to
small-scale information these authors proposed a new statis-
tic, the annular differential surface density (ADSD), denoted
by Υ and defined by

Υgm(R, R0) = ∆Σ(R) −
R2

0

R2
∆Σ(R0)

=
2

R2

∫ R

R0

R′ Σ(R′) dR′

− Σ(R) +
R2

0

R2
Σ(R0), (15)

which does not contain information originating from scales
R < R0. The small-scale limit R0 is chosen to be large
enough to reduce the main systematic effects discussed
above, but small enough to preserve a high signal-to-noise
ratio in the measurements (also see the discussion in Man-
delbaum et al. 2013). An alternative approach is to model
the halo occupation statistics and marginalize over the free
parameters (e.g., Cacciato et al. 2013).

The corresponding quantity suppressing the small-scale
contribution to the galaxy auto-correlations is

Υgg(R, R0) = ρc
[

2
R2

∫ R

R0

R′ wp(R′) dR′ − wp(R) +
R2

0

R2
wp(R0)

]

. (16)

We discuss our choice of R0 and the measurement of the Υ
statistics in Section 6.3.

2.5 Testing gravitational physics: the EG statistic

In general scalar theories of gravity, the perturbed FRW
spacetime metric ds2 may be expressed in terms of the New-
tonian potential Ψ and curvature potential Φ:

ds2 = [1 + 2Ψ($x, t)] c2 dt2 − a(t)2 [1 − 2Φ($x, t)] d$x2. (17)

Relativistic particles, such as photons experiencing gravi-
tational lensing, collect equal contributions from these two
potentials as they traverse spacetime, such that their equa-
tions of motion (and hence the resulting lensing patterns)
are determined by ∇2(Ψ + Φ). However, the motion of non-
relativistic particles arising from the gravitational attraction
of matter, which produces galaxy clustering and RSD, is
sensitive only to the derivatives of the Newtonian potential
∇2Ψ (e.g., Jain & Zhang 2008).

In standard General Relativity (GR), in the absence of
anisotropic stress, Ψ($x, t) = Φ($x, t) and both potentials are
related to the matter overdensity via the Poisson equation
∇2Φ = 4πGa2ρmδm. Therefore, by measuring if both the
gravitational lensing of photons and galaxy peculiar veloc-
ity respond in an identical manner to the matter overdensity
traced by the lens galaxies in our datasets, we can perform
a fundamental test of whether the relation between (Ψ+Φ)
and Ψ follows the GR expectation (assuming this perturba-
tion approximation applies).

Zhang et al. (2007) proposed that this test can be effi-
ciently carried out by cross-correlating lens galaxies to both
the surrounding velocity field using RSD and to the shear of
background galaxies using galaxy-galaxy lensing. In partic-
ular, Reyes et al. (2010) implemented this consistency test
by constructing the “gravitational slip” statistic

EG(R) =
1
β

Υgm(R, R0)

Υgg(R, R0)
, (18)

which is independent of both the galaxy bias factor b and
the underlying amplitude of matter clustering σ8, given that
β ∝ 1/b, Υgm ∝ b σ2

8 and Υgg ∝ b2 σ2
8 . The perturbed GR

model prediction on large scales is then a scale-independent
quantity EG = Ωm/f (see Leonard et al. (2015) for a more
detailed discussion of this approximation). We measure EG

and carry out this consistency test in Section 6.3. We note
that a failure of this consistency check does not necessarily
indicate evidence for gravitational physics beyond GR: other
possible explanations would include a breakdown in validity
of linear perturbation theory, or that the value of Ωm or
curvature differs from that predicted by measurements of
the Cosmic Microwave Background radiation.

3 DATA

We perform this test of gravitational physics by utiliz-
ing the overlap of lensing measurements from two imaging
surveys, the Canada-France-Hawaii Telescope Lensing Sur-
vey (CFHTLenS; Heymans et al. 2012) and the Red Clus-
ter Sequence Lensing Survey (RCSLenS, Hildebrandt et al.
2015), with two spectroscopic-redshift large-scale structure
surveys, the WiggleZ Dark Energy Survey (Drinkwater et
al. 2010) and the Baryon Oscillation Spectroscopic Survey
(BOSS, Eisenstein et al. 2011). Figure 1 displays the sky dis-
tribution of the CFHTLenS, RCSLenS, WiggleZ and BOSS
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• 50 AAT nights used for spectroscopic follow-up of 
southern lensing surveys such as KiDS and DES

• Galaxy lens sample (~50,000) to test gravity by cross-
correlating weak lensing and galaxy velocities

• Photo-z calibration samples (direct / cross-correlation)

2-degree Field Lensing Survey (2dFLenS)



2dF Lensing Survey (2dFLenS)



Outlook

• Cosmological datasets will grow by further orders of 
magnitude over the next few years (DES, HSC, KiDS, 
LSST, Taipan, DESI, 4MOST, PFS, Euclid, WFIRST, SKA)

• These data will be a goldmine for advances in 
cosmology, astrophysics and statistical methods

• “Predictable” science goals include measuring neutrino 
mass, testing if expansion is matter-dominated at high-z, 
constraining deviations from GR across scales/redshifts

• “Unpredictable” science goals include observing a 
signature of modified gravity!  (e.g., in a targetted test)



• Local Universe survey of ~1M galaxy redshifts (z < 0.3) 
and ~100,000 velocities (z < 0.1) starting this year

• 1% measurement of H0 through baryon acoustic peak

• Perform new tests of General Relativity using combined 
analyses of the density and velocity fields

Taipan Galaxy Survey

degrades much more gracefully, with reduced performance in response to many component failures, rather than total 
system incapacity. 

Further, it is likely that the actuators can be very simple, reliable and long lifetime mechanisms based on a very few 
piezoelectric ceramic components. Their independent operation reduces the number of possible single point failures that 
disable the entire system. 

4.7. Instrument upgrade path 
A system based on Starbug concepts lends itself to future upgrades by its modular nature. Once a Starbug paradigm has 
been adopted, different (or more of the same) Starbug system components can be added without disturbing the 
fundamental architecture. A much high degree of planned upgrading and future-proofing is thereby achieved compared 
with systems that tightly integrate important system functionality with major physical structure. 

In particular, bugs carrying active sensing payloads of new and different types can be readily added at any time in the 
instrument’s life – it’s an ideal prototyping environment, while remaining a facility class instrument. 

5. INSTRUMENT CLASS APPLICATIONS 
We conceive a range of classes of instrument concepts that would be enabled or facilitated by Starbug-type positioning 
technologies. These range from making it easier to build instruments with capabilities similar to existing facilities, 
through to concepts that critically depend on unique Starbug characteristics. 

5.1. Fiber-fed, discrete object Multi-Object Spectroscopy 
Coming from the perspective of the current generations of robotic focal plane fiber positioners (epitomized by 2dF and 
FMOS-Echidna), this is perhaps the most obvious application of Starbug technology. In instruments of this class, 
Starbug actuators patrol a focal surface with more or less freedom of motion, each carrying a single optical fiber, 
somewhat like 2dF but where the magnetic buttons can be independently and simultaneously moved without the need 
for a large and precise robotic mechanism (Fig. 2). In this application, an optical fiber already forms a ‘tether’ for each 
bug, and thus provides an obvious route for service feeds (power and control) to the bugs. 

  

Fig. 2. A Starbug implementation (left) of a discrete-object fiber positioner uses magnetic buttons similar to those carrying the 
fibers for OzPoz (right) and other pick-and-place positioners, but mounted on micro-robotic actuators that can be 
independently and simultaneously positioned by ‘walking’ across the field plate. 

Discrete MOS Starbug instruments offer clear and dramatic weight savings over pick-and-place technologies when the 
focal surface is large. A single focal plate suffices because of the relatively short configuration time that results from 



Challenges

• Observational probes are all 
systematics-limited such that 
progress is now very difficult

• Sociology is changing (large 
collaborations...)

• Specialization means that 
bridging observations and 
theory is harder than ever

• No guarantee that we will 
ever understand the physics 
of cosmic acceleration!
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