Cosmology with TAIPAN : optimizing the survey design

Chris Blake (Swinburne)

Probes of the cosmological model

How fast is the Universe expanding with time?

How fast are structures growing within it?

Probes of the cosmological model

- TAIPAN cosmology probes :
- (I) Baryon acoustic peak
- (2) Redshift-space distortions
- (3) Peculiar velocities

Baryon acoustic peak

- Standard ruler in galaxy clustering pattern which allows the mapping out of cosmic distances
- Calibrated in units of Mpc using CMB physics with accuracy of 1.1% [WMAP], 0.3% [Planck]

• Application to a low-z survey measures H_0

Existing low redshift measurement!

D(z=0.1) = 456 + -27 Mpc

6dF Galaxy Survey Beutler et al. (2011)

Why measure H₀?

- TAIPAN will make 1% H₀ measurement
- Local expansion rate is a fundamental cosmic parameter (e.g. important for determining the age of the Universe)
- Assuming flat LCDM, Planck CMB constrains H₀ to ~1.8%, but this is a model-dependent result
- Independent determination of H₀ can improve the measurement of other parameters (e.g. dark energy, neutrino numbers/masses)
- There are systematic discrepancies between CMB and local H₀ measurements (Cepheids, masers, supernovae)

Why measure Ho.

Red : CMB only Blue : CMB+BAO

Why measure H₀?

Local determinations of H₀

Eclipsing binaries (in LMC, 50 kpc)

Parallax (< I kpc)

Masers (NGC4258 at 7.6 Mpc)

100

Why measure H_0 ?

• Discrepancies between Planck and local measurements

Why measure H₀?

- Discrepancies could be systematic errors ...?
- ... or signatures of non-LCDM physics?
- ... or signature of gravitational physics driven by inhomogeneity / backreaction ?

Redshift-space distortions

 Does a cosmological model produce self-consistent cosmic growth and expansion histories?
coherent

Redshift-space distortions

6dFGS measurement from Beutler et al. (2012)

Redshift-space distortions

Why measure RSD at low redshift?

- TAIPAN will make 5% growth rate measurement
- Advantage : local growth rate is very sensitive to dark energy or modified gravity model
- Advantage : high number density of galaxies may be observed, allowing multiple-tracer techniques
- Disadvantage : structure becomes "non-linear" at low redshift and difficult to model
- Disadvantage : is difficult to cover a sizable volume

Analysis techniques

- Two approaches for optimizing these measurements
- We can select galaxies to fill space more uniformly [e.g. photo-z]
- We can use "reconstruction" of the acoustic peak

Padmanabhan et al. (2012)

 Use Fisher matrix techniques to predict H₀ and growth measurements given survey n(z) and area

astro-ph/0701079

IMPROVED FORECASTS FOR THE BARYON ACOUSTIC OSCILLATIONS AND COSMOLOGICAL DISTANCE SCALE

Hee-Jong Seo & Daniel J. Eisenstein

Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721

hseo@as.arizona.edu,deisenstein@as.arizona.edu

Submitted to The Astrophysical Journal 12-20-2006

ABSTRACT

We present the cosmological distance errors achievable using the baryon acoustic oscillations as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from Seo & Eisenstein (2003). We isolate the information from the baryonic peaks by excluding distance information from other less robust sources. Meanwhile we accommodate the Lagrangian

• Luminosity functions

Selection band	Ϋ́F
Luminosity function	Jones et al. (2006) 6dFGS r _F -band
K-corrections	Poggianti (1997) for E galaxies
Conversion to AB mags	r _{AB} = r _F + 0.36 (Fukugita 1995)
Bias of sources	b=2

• Surveys

Maximum survey area	20,000 deg ²
Survey duration	5 years
Time fraction	0.5(dark) x 0.66(weather)
Hours observed/night	8

• Redshift distributions

• Telescope/instrument assumptions

Mirror diameter	I.2 m
Efficiency (instrument)	0.2
Efficiency (atmosphere)	0.9
Field-of-view diameter	6 deg
Number of fibres	150
Fibre diameter	3 arcsec
Read noise	3 electrons
Dark current	0.003 elec/s/pix
Number of pixels extracted	4 (2x2)
Configuration time	300 s
Maximum exposure time	1800 s

• Exposure time assumptions

Wavelength to evaluate S/N	5483 A
Size of SRE	2.384 A
Sky background (AB mags)	20.8
Required S/N per SRE	Ι.0
Half-light radius of sources	5 arcsec
Seeing	I.5 arcsec
Aperture light loss	(fibre area)/(source area)
Redshift completeness	0.7

- Vary magnitude threshold in range $16 < r_F < 19$ with bright limit $r_F = 15.6$ (6dFGS)
- Use r_F to determine source density and N(z)
- Use source and fibre density to determine number of passes of sky required to complete survey
- Use r_F and S/N goal to determine exposure time
- Use exposure time, survey duration, number of passes and FoV to determine survey area (max. 20,000 deg²)
- Use N(z) and area to forecast BAO and growth errors

• BAO accuracy

• Cosmic variance

Figure 8. The number of log-normal realisations found with a certain $\sqrt{\Delta\chi^2}$, where the $\Delta\chi^2$ is obtained by comparing a fit using a Λ CDM correlation function model with a no-baryon model. The blue line indicates the 6dFGS result.

• Growth accuracy

Conclusions

- TAIPAN can provide 1% measurement of H₀ crosschecking CMB vs. local measurement discrepancy
- TAIPAN can improve the z=0 growth rate by a factor of 2, resulting in stronger tests of GR
- Survey simulation suggests r_F<17.8 is optimal for 5year flux-limited survey [depends on design choices!]
- Optimal pre-selection allows 0.5 mag fainter limit and ~30% improvements in parameters