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Cosmology with TAIPAN :
optimizing the survey design



How fast are structures 
growing within it?

Probes of the cosmological model

How fast is the Universe 
expanding with time?



• TAIPAN cosmology probes :

• (1) Baryon acoustic peak

• (2) Redshift-space distortions

• (3) Peculiar velocities

Probes of the cosmological model



• Standard ruler in galaxy clustering pattern which allows 
the mapping out of cosmic distances

• Calibrated in units of Mpc using CMB physics with 
accuracy of 1.1% [WMAP] , 0.3% [Planck]

• Application to a low-z survey measures H0

Baryon acoustic peak



Existing low redshift measurement!
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D(z=0.1) = 456 +/- 27 Mpc

H0 = 67.0 +/- 3.2 km s-1 Mpc-1

6dF Galaxy Survey



Why measure H0?

• TAIPAN will make 1% H0 measurement

• Local expansion rate is a fundamental cosmic parameter 
(e.g. important for determining the age of the Universe)

• Assuming flat LCDM, Planck CMB constrains H0 to 
~1.8%, but this is a model-dependent result

• Independent determination of H0 can improve the 
measurement of other parameters (e.g. dark energy, 
neutrino numbers/masses)

• There are systematic discrepancies between CMB and 
local H0 measurements (Cepheids, masers, supernovae)



Why measure H0?

Planck Collaboration: Cosmological parameters
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Planck Collaboration: Cosmological parameters
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Planck results

Red : CMB only

Blue : CMB+BAO

• Planck determination of H0 is model-dependent



Why measure H0?

• Local determinations of H0

Eclipsing binaries
(in LMC, 50 kpc)

Parallax (< 1 kpc)
Masers (NGC4258 at 7.6 Mpc)

Cepheids
(< 30 Mpc)

Supernovae
(z < 0.1)



Why measure H0?

• Discrepancies between Planck and local measurements



Why measure H0?

• Discrepancies could be systematic errors ...?

• ... or signatures of non-LCDM physics?

• ... or signature of gravitational physics driven by 
inhomogeneity / backreaction ?



observer

infalling
galaxies

coherent
flowsvirialized

motions

Redshift-space distortions

• Does a cosmological model produce self-consistent 
cosmic growth and expansion histories?



4 Beutler et al.

Figure 2. The 2D correlation function of 6dFGS using a density
weighting with P0 = 1600h3 Mpc−3. For reasons of presentation
we binned the correlation function in 0.5h−1 Mpc bins, while in
the analysis we use larger bins of 2h−1 Mpc. Both redshift-space
distortion effects are visible: the “finger-of-God” effect at small
angular separation rp, and the anisotropic (non-circular) shape
of the correlation function at large angular separations.

There is a possible bias in the estimation of the correla-
tion function due to the fact that we estimate both the mean
density and the pair counts from the same survey. This leads
to a non-zero difference between the true correlation func-
tion estimate of an ensemble of surveys and the ensemble
average of ξ(s) from each survey. This is commonly known
as the integral constraint (e.g. Peebles 1980), which can be
calculated as (see e.g. Roche et al. 2002)

ic =

∑

ξmodelRR
∑

RR
(8)

and enters our correlation function estimate as

ξdata = ξ′data + ic, (9)

where ξ′data is the redshift-space correlation function from
eq. 5 and ξmodel is the model for the correlation function.
In 6dFGS ic is typically around 6 × 10−4 and so has no
significant impact on the final result.

In Figure 2 we show the 2D correlation function calcu-
lated from the 6dFGS dataset. In this Figure we use bins
of 0.5h−1 Mpc, while for the analysis later on we use larger
bins of 2h−1 Mpc (see Figure 6). The figure shows clearly
the two effects of redshift-space distortions which we will
discuss later in section 5, the “finger-of-God” effect at small
rp, and the linear infall effect at larger rp which gives the
correlation function a non-circular shape.

3.1 Density weighting

In Fourier space the error in measuring the amplitude of a
mode of the linear power spectrum1 is given by

σP (k) = (b+ fµ2)2P (k) + 〈N〉, (10)

where b is the linear bias, f is the growth rate, µ is the
cosine of the angle to the line of sight and P (k) is the matter
power spectrum. The first term on the right hand side of
this equation represents the sample-variance error, while the
second term (〈N〉) represents the Poisson error.

If the sample-variance error is dominant we can reduce
the power spectrum error by employing a weighting scheme
which depends upon the galaxy density n(z), such as the
one suggested by Feldman, Kaiser & Peacock (1994)

wi(z) =
1

1 + n(z)P0
, (11)

where P0 describes the amplitude of the weighting. A
stronger weighting (larger value of P0) yields a smaller
sample-variance error since it increases the survey volume
by up-weighting sparsely sampled regions. However, such a
weighting scheme also increases the Poisson error because it
shifts the effective redshift to larger values with a smaller
galaxy number density. This is illustrated in Figure 3(a)
and 3(b). Such a weighting scheme is standard for large scale
structure analyses.

In a magnitude-limited sample such as 6dFGS, up-
weighting higher redshift galaxies also has the effect of shift-
ing the galaxy bias to larger values. The sample-variance
error is proportional to the clustering amplitude, and so a
larger bias results in a larger error. However, the weight-
ing will still ensure that the relative error of the power
spectrum, σP (k)/P (k), is minimised. The redshift-space dis-
tortion signal is inversely proportional to the galaxy bias,
β $ Ωγ

m(z)/b. If weighting increases the bias b, it also re-
duces the signal we are trying to measure. We therefore must
investigate whether the advantage of the weighting (the re-
duced relative error) outweighs the disadvantage (increasing
galaxy bias).

The situation is very different for measuring a signal
that is proportional to the clustering amplitude, such as the
baryon acoustic peak. In this case the error and the sig-
nal are proportional to the bias, and so weighting will al-
ways be beneficial. We stress that an increasing bias with
redshift is expected in almost all galaxy redshift surveys.
Therefore redshift-space distortion studies should first test
whether galaxy weighting improves the measurement. The
6dF Galaxy Survey is quite sensitive to the weighting scheme
employed because it has a high galaxy density, making the
sample-variance error by far the dominant source of error.

Finally, we have to consider the correlation between the
bins in the measured power spectrum or correlation func-
tion. If the error is sample-variance dominated, the bins will
show large correlation (especially in the correlation func-
tion), while in the case of Poisson-noise dominated errors,
the correlation is much smaller. Weighting will always in-
crease the Poisson noise and hence reduce the correlation
between bins.

1 As the correlation function and power spectrum are related by
a Fourier transform, the following discussion also holds true for a
correlation function measurement.
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Figure 7. The value of gθ(zeff ) = f(zeff )σ8(zeff ) as a function of
the cut-off scale rcutp , obtained by fitting the 6dFGS 2D correla-
tion function with two different models (as described in section 5.3
and 5.4). At large scales the two models converge to similar val-
ues, while on small scales the models deviate from each other
because of the different descriptions of non-linear evolution. For
the final parameter measurements in Table 1 we chose model 2,
ξSc(rp, π), with a conservative cut-off scale of rcutp = 16h−1 Mpc.
In the lower panel we plot the reduced χ2 as an indicator of the
quality of the fit.

We can also express our results in terms of β which
is given by β = gθ/gb = 0.373 ± 0.054. We summarise all
measured and derived parameters in Table 1.

6.2 Derivation of σ8 and Ωm

In this section we use redshift-space distortions to directly
measure σ8. The angular dependence of the redshift-space
distortion signal in the 2D correlation function allows us
to measure β, which quantifies the amplitude of redshift-
space distortions. Together with Ωm(z) and γ = 0.55, this
constrains the linear bias b through the equation

b ! Ωγ
m(z)
β

. (44)

Knowing b we can use the absolute amplitude of the
correlation function, [bσ8(z)]

2, to constrain σ8(z=0) =
[D(z=0)/D(zeff )]× σ8(zeff).

For computational reasons we use our first model,
ξst(rp,π), in this sub-section and fit the five parameters
σ8, Ωm, b, H0 and σp using an MCMC approach. Since
the shape of the correlation function is only sensitive to
Γ = Ωmh, we cannot constrain Ωm and H0 at the same
time. For the final results we include a prior on the Hubble
constant (H0 = 73.8 ± 2.4 kms−1 Mpc−1, Riess et al. 2011,
from now on referred to as HST prior) and marginalise over
it. We use the same binning and fitting ranges as in the
previous section.

The best-fitting model results in χ2/d.o.f = 1.35. We
find σ8 = 0.76 ± 0.11, Ωm = 0.250 ± 0.022, b = 1.48 ± 0.27
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Figure 8. Likelihood distribution of gθ and gb derived from the
fit to the 2D correlation function. The solid black contours show
model ξSc(rp,π), while the dashed contours show the streaming
model (see section 5.3 and 5.4 for details of the modelling). The
fitting range is 0 < π < 30h−1 Mpc and 10 < rp < 30h−1 Mpc
for ξst(rp,π) and 0 < π < 30h−1 Mpc and 16 < rp < 30h−1 Mpc
for ξSc(rp,π). The black cross indicates the best-fitting value for
the solid black contours.
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Figure 9. This plot shows the likelihood distribution of the
galaxy bias b and σ8, which we obtained by fitting the 6dFGS
2D correlation function assuming γ = 0.55. The solid black
line shows the result using a prior on the Hubble constant of
H0 = 73.8±2.4 km s−1 Mpc−1 from Riess et al. (2011), while the
dashed black line uses a prior of H0 = 67 ± 3.2 kms−1 Mpc−1

from Beutler et al. (2011). Although the detection of redshift-
space distortions can partially break the degeneracy between b

and σ8 which exists in the 1D correlation function, there is still a
significant residual degeneracy. The black cross marks the maxi-
mum likelihood value for the solid black lines.
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• 6dFGS measurement from Beutler et al. (2012)

Redshift-space distortions



Redshift-space distortions



Why measure RSD at low redshift?

• TAIPAN will make 5% growth rate measurement

• Advantage : local growth rate is very sensitive to dark 
energy or modified gravity model

• Advantage : high number density of galaxies may be 
observed, allowing multiple-tracer techniques

• Disadvantage : structure becomes “non-linear” at low 
redshift and difficult to model

• Disadvantage : is difficult to cover a sizable volume



Analysis techniques

• Two approaches for optimizing these measurements

• We can select galaxies to fill space more uniformly [e.g. photo-z]

• We can use “reconstruction” of the acoustic peakA 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we
show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark
the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution
of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here
by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of
the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.
The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial
rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h�1 Mpc Gaussian
filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back
to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field
in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has
been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the
initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the
acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic
opportunity of reconstruction.

steps of this algorithm below and discuss details specific to
our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function �(r).

(ii) Estimate the galaxy bias b and the linear growth rate,
f ⇤ d lnD/d ln a ⌅�0.55

M (Carroll et al. 1992; Linder 2005),
where D(a) is the linear growth function as a function of
scale factor a and �M is the matter density relative to the
critical density.

(iii) Embed the survey into a larger volume, chosen such
that the boundaries of this larger volume are su⇤ciently
separated from the survey.

(iv) Gaussian smooth the density field.
(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked
and unobserved regions (§2.3).

(vi) Estimate the displacement field � within the
Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by ��. Since linear redshift-
space distortions arise from the same velocity field, we shift
the galaxies by an additional �f(� · ŝ)ŝ (where ŝ is the
radial direction). In the limit of linear theory (i.e. large
scales), this term exactly removes redshift-space distortions
(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote
these points by D.

(viii) Construct a sample of points randomly distributed
according to the angular and radial selection function and
shift them by ��. Note that we do not correct these for
redshift-space distortions. Denote these points by S.

c� 0000 RAS, MNRAS 000, 000–000

Padmanabhan
et al. (2012)



Survey simulations

• Use Fisher matrix techniques to predict H0 and growth 
measurements given survey n(z) and area
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IMPROVED FORECASTS FOR THE BARYON ACOUSTIC

OSCILLATIONS AND COSMOLOGICAL DISTANCE SCALE

Hee-Jong Seo & Daniel J. Eisenstein

Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721
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ABSTRACT

We present the cosmological distance errors achievable using the baryon acoustic oscilla-
tions as a standard ruler. We begin from a Fisher matrix formalism that is upgraded from
Seo & Eisenstein (2003). We isolate the information from the baryonic peaks by excluding dis-
tance information from other less robust sources. Meanwhile we accommodate the Lagrangian
displacement distribution into the Fisher matrix calculation to reflect the gradual loss of in-
formation in scale and in time due to nonlinear growth, nonlinear bias, and nonlinear redshift
distortions. We then show that we can contract the multi-dimensional Fisher matrix calculations
into a 2-dimensional or even 1-dimensional formalism with physically motivated approximations.
We present the resulting fitting formula for the cosmological distance errors from galaxy redshift
surveys as a function of survey parameters and nonlinearity, which saves us going through the
12-dimensional Fisher matrix calculations. Finally, we show excellent agreement between the
distance error estimates from the revised Fisher matrix and the precision on the distance scale
recovered from N-body simulations.

Subject headings: large-scale structure of the universe — distance scale — cosmological parame-
ters — cosmic microwave background

1. Introduction

The famous Hubble expansion drives more distant objects to recede faster from us. Recent observations
of supernovae argue that this expansion is in fact accelerating, implying an existence of dark energy with
negative pressure (Riess et al. 1998; Perlmutter et al. 1999; Riess et al. 2001; Knop et al. 2003; Tonry et al.
2003; Riess et al. 2004). This dark energy, which contributes two third of energy density in the present
Universe, is mysterious in its physical origin. Precise measurements of its time evolution will be crucial to
uncover the identity of this energy component. One of most promising probes to measure the dark energy
is a standard ruler called baryon acoustic oscillations in large-scale clustering (Eisenstein et al. 1998, 1999)

Baryon acoustic oscillations (hereafter BAO) arise from sound waves that propagated in the hot plasma
of tightly coupled photons and baryons in the early Universe. As the Universe expands and cools, photons
finally decouple from baryons 400,000 years after the Big Bang, with the sound waves revealed as the
acoustic oscillations in the anisotropies of the Cosmic Microwave Background (hereafter CMB) (Miller et al.
1999; de Bernardis et al. 2000; Hanany et al. 2000; Lee et al. 2001; Halverson et al. 2002; Netterfield et al.
2002; Benôıt et al. 2003; Bennett et al. 2003; Pearson et al. 2003; Hinshaw et al. 2006). The equivalent
but attenuated feature exists in the clustering of matter, as baryons fall into dark matter potential well

astro-ph/0701079



Survey simulations

Selection band rF

Luminosity function Jones et al. (2006) 6dFGS rF-band

K-corrections Poggianti (1997) for E galaxies

Conversion to AB mags rAB = rF + 0.36 (Fukugita 1995) 

Bias of sources b=2

Maximum survey area 20,000 deg2

Survey duration 5 years

Time fraction 0.5(dark) x 0.66(weather)

Hours observed/night 8

• Luminosity functions

• Surveys



Survey simulations

Number density
nP0.2 = 3

Sources above
this line “wasted”

• Redshift distributions



Survey simulations

Mirror diameter 1.2 m

Efficiency (instrument) 0.2

Efficiency (atmosphere) 0.9

Field-of-view diameter 6 deg

Number of fibres 150

Fibre diameter 3 arcsec

Read noise 3 electrons

Dark current 0.003 elec/s/pix

Number of pixels extracted 4 (2x2)

Configuration time 300 s

Maximum exposure time 1800 s

• Telescope/instrument assumptions



Survey simulations

Wavelength to evaluate S/N 5483 A

Size of SRE 2.384 A

Sky background (AB mags) 20.8

Required S/N per SRE 1.0

Half-light radius of sources 5 arcsec

Seeing 1.5 arcsec

Aperture light loss (fibre area)/(source area)

Redshift completeness 0.7

• Exposure time assumptions



• Vary magnitude threshold in range 16 < rF < 19 with 
bright limit rF = 15.6 (6dFGS)

• Use rF to determine source density and N(z)

• Use source and fibre density to determine number of 
passes of sky required to complete survey

• Use rF and S/N goal to determine exposure time

• Use exposure time, survey duration, number of passes 
and FoV to determine survey area (max. 20,000 deg2)

• Use N(z) and area to forecast BAO and growth errors

Survey simulations



Survey simulations

Configuration time Fibre density

Max. survey area Survey time filled



Survey simulations

No reconstruction

Reconstruction Pre-selection

Survey time exhausted

• BAO accuracy

Confirms
1% measurement



Survey simulations
6dFGS: BAOs and the Local Hubble Constant 11

the error further and yields H0 = 68.7 ± 1.5 km s−1Mpc−1

(2.2%) and Ωm = 0.29 ± 0.022 (7.6%).
Percival et al. (2010) determine a value of H0 =

68.6 ± 2.2 km s−1Mpc−1 using SDSS-DR7, SDSS-LRG and
2dFGRS, while Reid et al. (2010) found H0 = 69.4 ±
1.6 km s−1Mpc−1 using the SDSS-LRG sample and WMAP-
5. In contrast to these results, 6dFGS is less affected by
parameters like Ωk and w because of its lower redshift. In
any case, our result of the Hubble constant agrees very
well with earlier BAO analyses. Furthermore our result
agrees with the latest CMB measurement of H0 = 70.3 ±
2.5 km s−1Mpc−1 (Komatsu et al. 2010).

The SH0ES program (Riess et al. 2011) determined the
Hubble constant using the distance ladder method. They
used about 600 near-IR observations of Cepheids in eight
galaxies to improve the calibration of 240 low redshift
(z < 0.1) SN Ia, and calibrated the Cepheid distances us-
ing the geometric distance to the maser galaxy NGC 4258.
They found H0 = 73.8 ± 2.4 km s−1Mpc−1, a value con-
sistent with the initial results of the Hubble Key project
Freedman et al. (H0 = 72±8 km s−1Mpc−1; 2001) but 1.7σ
higher than our value (and 1.8σ higher when we combine
our dataset with WMAP-7). While this could point toward
unaccounted or under-estimated systematic errors in either
one of the methods, the likelihood of such a deviation by
chance is about 10% and hence is not enough to represent a
significant discrepancy. Possible systematic errors affecting
the BAO measurements are the modelling of non-linearities,
bias and redshift-space distortions, although these system-
atics are not expected to be significant at the large scales
relevant to our analysis.

To summarise the finding of this section we can state
that our measurement of the Hubble constant is competitive
with the latest result of the distance ladder method. The dif-
ferent techniques employed to derive these results have very
different potential systematic errors. Furthermore we found
that BAO studies provide the most accurate measurement
of H0 that exists, when combined with the CMB distance
priors.

6.2 Constraining dark energy

One key problem driving current cosmology is the determi-
nation of the dark energy equation of state parameter, w.
When adding additional parameters like w to ΛCDM we find
large degeneracies in the WMAP-7-only data. One example
is shown in Figure 7. WMAP-7 alone can not constrain H0

or w within sensible physical boundaries (e.g. w < −1/3). As
we are sensitive toH0, we can break the degeneracy between
w and H0 inherent in the CMB-only data. Our assumption
of a fiducial cosmology with w = −1 does not introduce a
bias, since our data is not sensitive to this parameter and
any deviation from this assumption is modelled within the
shift parameter α.

We again use the WMAP-7 distance priors intro-
duced in the last section. In addition to our value of
rs(zd)/DV (0.106) = 0.336 ± 0.015 we use the results
of Percival et al. (2010), who found rs(zd)/DV (0.2) =
0.1905 ± 0.0061 and rs(zd)/DV (0.35) = 0.1097 ± 0.0036.
To account for the correlation between the two latter data
points we employ the covariance matrix reported in their
paper. Our fit has 3 free parameters, Ωmh2, H0 and w.

2
χΔ

0 0.5 1 1.5 2 2.5 3 3.5 4

)
2
χ

Δ
N

(

0

2

4

6

8

10

12

14

16

18

20

22

24

6dFGS

Figure 8. The number of log-normal realisations found with a
certain

√
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the covariance matrix (shown in grey). The red points indicate
the mean values, while the blue points show actual 6dFGS data
(the data point at 5h−1 Mpc is not included in the fit). The red
data points are shifted by 2h−1 Mpc to the right for clarity.

The best fit gives w = −0.97 ± 0.13, H0 = 68.7 ±
2.8 km s−1Mpc−1 and Ωmh2 = 0.1380 ± 0.0055, with a
χ2/d.o.f. = 1.3/3. Table 2 and Figure 7 summarise the re-
sults. To illustrate the importance of the 6dFGS result to
the overall fit we also show how the results change if 6dFGS
is omitted. The 6dFGS data improve the constraint on w by
24%.

Finally we show the best fitting cosmological parame-
ters for different cosmological models using WMAP-7 and
BAO results in Table 3.

7 SIGNIFICANCE OF THE BAO DETECTION

To test the significance of our detection of the BAO sig-
nature we follow Eisenstein et al. (2005) and perform a fit
with a fixed Ωb = 0, which corresponds to a pure CDM
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Survey simulations

Survey time
exhausted

• Growth accuracy



• TAIPAN can provide 1% measurement of H0 cross-
checking CMB vs. local measurement discrepancy

• TAIPAN can improve the z=0 growth rate by a factor 
of 2, resulting in stronger tests of GR

• Survey simulation suggests rF<17.8 is optimal for 5-
year flux-limited survey [depends on design choices!]

• Optimal pre-selection allows 0.5 mag fainter limit and 
~30% improvements in parameters

Conclusions


