# Are VISTA/4MOST surveys interesting for cosmology?

#### Chris Blake (Swinburne)



#### Probes of the cosmological model

# How fast is the Universe expanding with time?

# How fast are structures growing within it?





#### 4MOST BAO surveys

• Follow-up ~2x10<sup>6</sup> X-ray selected AGN from eROSITA?

From eROSITA Bulletin 4:



Left: BAO signal in the angular power spectra of eRASS AGN for the redshift interval z = 0-3, shown as residual with respect to a smooth broad-band spectral template. Error bars show statistical uncertainty in the angular power spectrum of the eRASS AGN. In this redshift range the BAO signal will be detected with a 14 $\sigma$  statistical confidence. Right: Effective volumes of various BAO surveys as a function of wavenumber computed for the redshift ranges indicated in the plot.

# 4MOST BAO surveys

- The sample is very under-dense for BAO studies (issues : shot noise, reconstruction)
- Comparison : DESI is targetting 18x10<sup>6</sup> ELGs, 4x10<sup>6</sup> LRGs, 3x10<sup>6</sup> QSOs on a similar timeframe (2018-22)
- Other strong competition from Euclid and WFIRST
- Suggests that BAO studies targetting this AGN sample are likely not competitive?
- But ...

## 4MOST lensing follow-up surveys

• Mis-match between imaging and spectroscopy



#### Overlaps of lensing and spec-z surveys

- Improvement of cosmological measurements through addition of galaxy-galaxy lensing
- [e.g. determines bias of lens sample which improves RSD measurements of lenses, especially when using multiple-tracer techniques, e.g. Cai & Bernstein (2012)]
- Spec-z survey allows definition of lens samples (e.g. groups, galaxy types) enabling a range of studies
- Understanding, calibration and risk mitigation of systematic errors (photo-z errors including outliers, intrinsic alignments, cosmic shear)

#### **Redshift-space distortions**

 RSD allow spectroscopic galaxy surveys to measure the growth rate of structure coherent



#### **Redshift-space distortions**



# Why combination of lensing and RSD?

- Sensitive to theories of gravity in complementary ways
- General perturbations to FRW metric:

$$ds^2 = \left[1 + 2\psi(x,t)\right] dt^2 - a^2(t) \left[1 - 2\phi(x,t)\right] dx^2$$

- $(\psi, \phi)$  are metric gravitational potentials, identical in General Relativity but can differ in general theories
- Relativistic particles (e.g. light rays for lensing) collect equal contributions and are sensitive to  $(\psi+\phi)$
- Non-relativistic particles (e.g. galaxies infalling into clusters) experience the Newtonian potential  $\psi$

# Applications



#### Photometric redshift calibration

- Photometric redshift errors are one of the leading systematics for weak lensing tomography
- Mean and width of redshift distributions in each photo-z bin must be known to accuracy ~ 10<sup>-3</sup>
- Method (I) : spectroscopic training set [issues : sample variance, incompleteness of training set, outliers]
- Method (2) : photo-z/spec-z cross-correlations [issues : degeneracies with galaxy bias, cosmic magnification]
- Currently unsolved problem for current and future lensing surveys (DES, LSST, Euclid)

## Galaxy clusters

- eROSITA will provide deep survey of X-ray clusters
- Mass function of clusters is sensitive test of cosmology
- 4MOST can efficiently obtain cluster redshifts



# Summary

- VISTA/4MOST offers wide-field spectroscopic followup of the southern sky
- BAO surveys targetting AGN likely not competitive
- Follow-up of southern lensing surveys (DES, LSST) is most compelling cosmology science case (in my view)
- Allows cross-correlations of RSD + cosmic shear and other applications of galaxy-galaxy lensing
- Solves the photometric-redshift calibration problem
- Cluster cosmology