
Introduction to

OpenACC

16 May 2013

1,000,000’s

Early Adopters

Time

Research

Universities
Supercomputing Centers

Oil & Gas

CAE
CFD

Finance
Rendering

Data Analytics
Life Sciences

Defense
Weather
Climate

Plasma Physics

GPUs Reaching Broader Set of Developers

100,000’s

2004 Present

3 Ways to Accelerate Applications

Applications

Libraries

“Drop-in”

Acceleration

Programming

Languages
OpenACC

Directives

Maximum

Flexibility

Easily Accelerate

Applications

Introducing OpenACC
The Standard for GPU Directives

OpenACC allows programmers to provide simple hints, known as

“directives” to the compiler.

These directives identify which areas of code to accelerate, without

requiring programmers to modify or adapt the underlying code

itself.

By exposing parallelism to the compiler, directives allow the

compiler to do the detailed work of mapping the computation onto

the accelerator.

Easy: OpenACC directives supply an easy path to accelerate

 compute intensive applications.

• Modelled on the familiar OpenMP directives format.

Open: OpenACC is an open GPU directives standard, making GPU

 programming straightforward and portable.

• Currently Nvidia GPUs and multicore CPUs. More to come…

Powerful: GPU Directives allow complete access to the massively

 parallel power of a GPU.

Advantages of OpenACC

High-Level Language...

Compiler directives to specify parallel regions in C &

Fortran.

Offload parallel regions.

Portable across OSes, host CPUs, accelerators, and compilers.

Create high-level heterogeneous programs.

Without explicit accelerator initialization.

Without explicit data or program transfers between host and

accelerator.

…Low-Level Access

Programming model allows programmers to start simple.

Compiler gives additional guidance.

Loop mappings, data location, and other performance

details.

Compatible with other GPU languages and libraries.

Interoperate between CUDA C/Fortran and GPU libraries.

e.g. CUFFT, CUBLAS, CUSPARSE, etc.

OpenACC Directives Overview

Program myscience

 ... serial code ...

!$acc kernels

 do k = 1,n1

 do i = 1,n2

 ... parallel code ...

 enddo

 enddo

!$acc end kernels

 ...

End Program myscience

CPU GPU

Your original

Fortran or C code

Simple Compiler hints

Compiler Parallelises code

Works on many-core GPUs &

multicore CPUs

OpenACC

Compiler

Hint

Familiar to OpenMP Programmers

main() {

 double pi = 0.0; long i;

 #pragma omp parallel for reduction(+:pi)

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

 printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

 double pi = 0.0; long i;

 #pragma acc kernels

 for (i=0; i<N; i++)

 {

 double t = (double)((i+0.05)/N);

 pi += 4.0/(1.0+t*t);

 }

printf(“pi = %f\n”, pi/N);

}

CPU GPU

OpenACC

Benefits of CUDA vs Time to Implement

CUDA C/C++ or Fortran are powerful techniques, offering dramatic

performance increases.

While it has become increasingly user friendly, there are many

programmers who can't afford the time to learn and apply a parallel

programming language.

Scientists and engineers also work with huge existing code bases and

can only make minor changes to their code that are portable across

hardware and operating systems.

Directives: Easy & Powerful

Real-Time Object
Detection

Global Manufacturer of Navigation
Systems

Valuation of Stock Portfolios
using Monte Carlo

Global Technology Consulting Company

Interaction of Solvents and
Biomolecules

University of Texas at San Antonio

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

Local Success with OpenACC

The University of

Melbourne

Department of Zoology

Professor Kerry Black

65x in 48 hours

Better understand complex reasons by

lifecycles of snapper fish in Port Phillip

Bay

* Achieved using the PGI Accelerator Compiler

OpenACC Specification and Website

Full OpenACC 1.0 Specification available online.

Public Comment Draft of 2.0 Specification now

available online.

www.openacc.org

Quick reference card also available.

Beta implementations available now from PGI, Cray,

and CAPS.

http://www.openacc.org/

How does it work?

Programmers provide simple hints to the compiler.

In C/C++ these hints are implemented using the #pragma acc
directive (!$acc in Fortan).

The „acc‟ identifier directives tell the compiler to enable

accelerator functions during the compilation of your program code.

A fully defined accelerator directive should look as follows:

 #pragma acc directive-name [clause [[,] clause]…]

OpenACC Directives

There directive-name specifies the type of accelerator action you

want to perform.

For example, #pragma acc kernels is an OpenACC directive that

compiles a region of your program into a sequence of kernels to

execute on your GPU device.

The clause provides specific instructions for the chosen directive.

For example, #pragma acc kernels copyin(A[0:n]) declares that

array A has values that need to be copied to the device memory.

OpenACC Directives

There directive-name specifies the type of accelerator action you

want to perform.

For example, #pragma acc kernels is an OpenACC directive that

compiles a region of your program into a sequence of kernels to

execute on your GPU device.

The clause provides specific instructions for the chosen directive.

For example, #pragma acc kernels copyin(A[0:n]) declares that

array A has values that need to be copied to the device memory.

NB: This is NOT array ‘slice’

notation (Python, MATLAB,

Fortran users beware!!)

This means start at idx 0 and

copy the following n elements

Example: Vector Addition Serial Code

int main ()

{

 ...serial code...

 for(i=0; i < n; i++) {

 c[i] = a[i] + b[i]

 }

 ...serial code...

}
CPU

for

loop

for loop

vectorizable

Vector Addition Device Code (CUDA)

Launch a CUDA kernel for the Vector addition

__global__ void vecaddgpu(float *r, float *a, float *b, int n)

{

 // Get global thread ID

 int id = blockIdx.x*blockDim.x+threadIdx.x;

 // Make sure we do not go out of bounds

 if (id < n)

 c[id] = a[id] + b[id];

}
 GPU

Vector Addition Device Code (OpenACC)

Accelerator Kernel launched with #pragma acc

void vecaddgpu(float *restrict r, float *a, float *b, int n)

{

 //Launch GPU Accelerator Kernel

 #pragma acc kernels copyin(a[0:n],b[0:n]) copyout(c[0:n])

 for(int i = 0; i < n; ++i) {

 c[i] = a[i] + b[i];

 }

}

GPU

Device Code: What’s Similar?

Both techniques require an accelerator (i.e. GPU) kernel to be

launched on the device.

The host variables (e.g. arrays) need to be copied from the host

memory to the device memory.

Values in the device memory need to be copied back to the host

memory at the end of the accelerator region.

Device Code: What’s Changed?

#pragma acc directive replaces __global__ as the GPU kernel

generator.

Variables are copied from host to device (and vice versa) using

#pragma acc (copyin() & copyout()) directive clauses instead of

using cudaMemcpy() in the host code.

Thread id allocation (blockIdx.x*blockDim.x+threadIdx.x) is

handled „behind the scenes‟ by OpenACC.

A restrict keyword is placed on array „r‟ (explained later).

Kernels Construct

Each loop is executed as a separate kernel on the GPU.

#pragma acc kernels
 for (i=0; i<n; i++){

 a(i) = 0.0
 b(i) = 1.0
 c(i) = 2.0

 }

 for (i=0; i<n; i++){
 a(i) = b(i) + c(i)

 }

kernel 1

kernel 2

The two kernels will execute

synchronously by default

Kernels Clauses

if(condition)

Generates two copies of the construct (host and device) and executes one of the
copies when an IF condition is reached.

async [(scalar-integer-expression)]

The kernels region will be executed by the accelerator device asynchronously while
the host process continues with the code following the region.

copy(list)

Allocates memory on the GPU and copies the data from the host when entering the
region, and copies data back to the host when exiting region.

copyin(list)

Allocates GPU memory and copies data from the host when entering the region.

Kernels Clauses

copyout(list)

Allocates host memory copies data to the host when exiting the region.

create(list)

Allocates memory on the GPU but does not copy.

Other clauses include:

present(list)

present_or_copy(list)

present_or_copyin(list)

present_or_copyout(list)

present_or_create(list)

deviceptr(list)

For more information on clauses:

http://www.openacc.org/sites/defa

ult/files/OpenACC.1.0_0.pdf

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf

The restrict keyword

Applied to a pointer. For example:

 float* restrict r

Without the restrict keyword, pointer aliasing may occur,

whereby the same memory location can be accessed using different

names.

OpenACC compilers often require the restrict keyword to

determine independence of memory locations.

Otherwise the compiler can‟t parallelize loops that access r.

http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict

Vector Addition Host Code (CUDA)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of c
__global__ void vecaddgpu(float *d_a, float *d_b, float *d_c, int n)
{
 //Device Code
}

int main(int argc, char* argv[])
{
 // Size of vectors
 int n = 100000;
 float *h_a;
 float *h_b;
 float *h_c;
 float *d_a;
 float *d_b;
 float *d_c;

 // Allocate memory for each vector on host
 size_t bytes = n*sizeof(float);
 h_a = (float*)malloc(bytes);
 h_b = (float*)malloc(bytes);
 h_c = (float*)malloc(bytes);

 // Allocate memory for each vector on GPU
 cudaMalloc(&d_a, bytes);
 cudaMalloc(&d_b, bytes);
 cudaMalloc(&d_c, bytes);

 // Initialize vectors on host
 int i;
 for(i = 0; i < n; i++) {
 h_a[i] = sinf(i)*sinf(i);
 h_b[i] = cosf(i)*cosf(i);
 }

 // Copy host vectors to device
 cudaMemcpy(d_a, h_a, bytes, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, h_b, bytes, cudaMemcpyHostToDevice);

 // Execute the kernel
 int blockSize, gridSize;
 blockSize = 1024;
 gridSize = (int)ceil((float)n/blockSize);
 vecaddgpu<<<gridSize, blockSize>>>(d_a, d_b, d_c, n);

 // Copy array back to host
 cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);

 // Sum up vector c and print result divided by n, this should equal 1 within
error
 float sum = 0;
 for(i=0; i<n; i++)
 sum += h_c[i];
 printf("final result: %f\n", sum/n);

 // Release device memory
 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);

 // Release host memory
 free(h_a);
 free(h_b);
 free(h_c);

 return 0;
}

Device kernel __global__ void vecAddGpu(...)

Explicitly define separate host h_x and device d_x vectors

Allocate host vector memory using malloc()

Allocate device vector memory using cudaMalloc()

Initialise vectors on host (for loop)

Copy initialised values to device using cudaMemcpy()

Launch kernel to do work vecaddgpu<<< ... >>>
 Copy result vector from device to host using cudaMemcpy()

Free device memory using cudaFree()

Free host memory using free()

Host Code: OpenACC

What is one of the most significant differences between host-only and combined

host+accelerator based programs?

MEMORY

In accelerator programming languages such as CUDA, data movement between the

memories can dominate the user‟s host code.

In the OpenACC model, data movement between the memories is implicit and

managed by the compiler.

Controlled by the directives from the programmer (e.g. copyin(list))

Host Code: OpenACC

While less code-intensive, programmers must be aware of the

potentially separate memories for reasons including (but not limited

to):

Memory bandwidth between host and device, which determines the

compute intensity required to accelerate a region of code.

Device memory size, which can prohibit offloading regions of code

that operate on very large amounts of data.

Vector Addition Host Code (OpenACC)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of c
void vecaddgpu(float *d_a, float *d_b, float *restrict d_c, int n)
{
 #pragma acc kernels copyin(d_a[0:n],d_b[0:n]) copyout(d_c[0:n])
 for (int i = 0; i < n; ++i)
 d_c[i] = d_a[i] + d_b[i];
}

int main(int argc, char* argv[])
{
 // Size of vectors
 int n = 100000;
 float *h_a;
 float *h_b;
 float *h_c;
 float *d_a;
 float *d_b;
 float *d_c;

 // Allocate memory for each vector on host
 size_t bytes = n*sizeof(float);
 h_a = (float*)malloc(bytes);
 h_b = (float*)malloc(bytes);
 h_c = (float*)malloc(bytes);

 // Allocate memory for each vector on GPU
 cudaMalloc(&d_a, bytes);
 cudaMalloc(&d_b, bytes);
 cudaMalloc(&d_c, bytes);

 // Initialize vectors on host
 int i;
 for(i = 0; i < n; i++) {
 h_a[i] = sinf(i)*sinf(i);
 h_b[i] = cosf(i)*cosf(i);
 }

 // Copy host vectors to device
 cudaMemcpy(d_a, h_a, bytes, cudaMemcpyHostToDevice);
 cudaMemcpy(d_b, h_b, bytes, cudaMemcpyHostToDevice);

 // Execute the kernel
 int blockSize, gridSize;
 blockSize = 1024;
 gridSize = (int)ceil((float)n/blockSize);
 vecaddgpu<<<gridSize, blockSize>>>(d_a, d_b, d_c, n);

 // Copy array back to host
 cudaMemcpy(h_c, d_c, bytes, cudaMemcpyDeviceToHost);

 // Sum up vector c and print result divided by n, this should equal 1 within
error
 float sum = 0;
 for(i=0; i<n; i++)
 sum += h_c[i];
 printf("final result: %f\n", sum/n);

 // Release device memory
 cudaFree(d_a);
 cudaFree(d_b);
 cudaFree(d_c);

 // Release host memory
 free(h_a);
 free(h_b);
 free(h_c);

 return 0;
}

Remove __global__ and replace device code with
 #pragma acc kernels copyin(...) copyout(...)

Define host h_x and device d_x vectors

Allocate host vector memory using malloc()

Allocate device vector memory using cudaMalloc()

Initialise vectors on host (for loop)

Copy initialised values to device using cudaMemcpy()

Launch kernel to do work vecaddgpu<<< ... >>>
 Copy result vector from device to host using cudaMemcpy()

Free device memory using cudaFree()

Free host memory using free()

“regular” for loop

Vector Addition Host Code (OpenACC)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of c
void vecaddgpu(float *a, float *b, float *restrict c, int n)
{
 #pragma acc kernels copyin(a[0:n],b[0:n]) copyout(c[0:n])
 for (int i = 0; i < n; ++i)
 c[i] = a[i] + b[i];}
}

int main(int argc, char* argv[])
{
 // Size of vectors
 int n = 100000;
 float *a;
 float *b;
 float *c;

 // Allocate memory for each vector on host
 size_t bytes = n*sizeof(float);
 a = (float*)malloc(bytes);
 b = (float*)malloc(bytes);
 c = (float*)malloc(bytes);

 // Initialize vectors on host
 int i;
 for(i = 0; i < n; i++) {
 a[i] = sinf(i)*sinf(i);
 b[i] = cosf(i)*cosf(i);
 }

 // Execute the kernel
 vecaddgpu(a, b, c, n);

 // Sum up vector c and print result divided by n, this should equal 1 within
error
 float sum = 0;
 for(i=0; i<n; i++)
 sum += c[i];
 printf("final result: %f\n", sum/n);

 // Release host memory
 free(a);
 free(b);
 free(c);

 return 0;
}

Remove __global__ and replace device code with
 #pragma acc kernels copyin(...) copyout(...)

Allocate host vector memory using malloc()

Initialise vectors on host (for loop)

Free host memory using free()

Call vecaddgpu() function normally to run on GPU

“regular” for loop

Vector Addition Host Code (OpenACC)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

// CUDA kernel. Each thread takes care of one element of c
void vecaddgpu(float *a, float *b, float *restrict c, int n)
{
 #pragma acc kernels copyin(a[0:n],b[0:n]) copyout(c[0:n])
 for (int i = 0; i < n; ++i)
 c[i] = a[i] + b[i];}
}

int main(int argc, char* argv[])
{
 // Size of vectors
 int n = 100000;
 float *a;
 float *b;
 float *c;

 // Allocate memory for each vector on host
 size_t bytes = n*sizeof(float);
 a = (float*)malloc(bytes);
 b = (float*)malloc(bytes);
 c = (float*)malloc(bytes);

 // Initialize vectors on host
 int i;
 for(i = 0; i < n; i++) {
 a[i] = sinf(i)*sinf(i);
 b[i] = cosf(i)*cosf(i);
 }

 // Execute the kernel
 vecaddgpu(a, b, c, n);

 // Sum up vector c and print result divided by n, this should equal 1 within
error
 float sum = 0;
 for(i=0; i<n; i++)
 sum += [i];
 printf("final result: %f\n", sum/n);

 // Release host memory
 free(a);
 free(b);
 free(c);

 return 0;
}

Remove __global__ and replace device code with
 #pragma acc kernels copyin(...) copyout(...)

Allocate host vector memory using malloc()

Initialise vectors on host (for loop)

Device memory allocated inside the copyin() clause

Values copied to device using the copyin() clause

Call vecaddgpu function normally to run on GPU

 Vectors copied back to host using the copyout() clause

Free host memory using free()

Device memory is automatically freed

OpenACC compliant compilers

OpenACC requires a compliant compiler that understands OpenACC

directives.

GCC is NOT one of them (yet…)

The examples used the PGI Accelerator that is part of a software

toolkit called PGI Workstation by The Portland Group.

OpenACC directives in C and Fortran: target GPU + multicore CPU

Also compiles “CUDA Fortran”

Other advanced compiler optimisation routines: often 2x over gcc or VS

See http://www.pgroup.com/ for more information.

http://www.pgroup.com/

Compile and run

Compile your code by entering the following at the command line.

pgcc –acc -ta=nvidia,host -Minfo vecaddgpu.c

pgcc Command to invoke the C Compiler.

–acc Flag to enable the OpenACC #pragma‟s and includes the OpenACC

 runtime library (i.e. #include “openacc.h”).

-ta=nvidia,host Flag to set the NVIDIA GPU or CPU as the target accelerator

 device. Falls back to CPU if no compatible GPU at runtime!

-Minfo Flag that displays compile-time optimization listings.

-Minfo output can be helpful…

pgcc –acc -ta=nvidia -Minfo vecaddgpu.c

vecaddgpu:

5,Generating copyout(c[:n])

Generating copyin(a[:n])

Generating copyin(b[:n])

Generating compute capability 1.0 binary

Generating compute capability 2.0 binary

6, Loop is parallelizable

Accelerator kernel generated

6, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */

CC 1.0 : 5 registers; 60 shared, 4 constant, 0 local memory bytes; 100% occupancy

CC 2.0 : 8 registers; 8 shared, 68 constant, 0 local memory bytes; 100% occupancy

Generates multiple

versions

Sets gangs & vectors

Successful parallelisation

NVIDIA CUDA

Thread

Thread

Block

...

Grid

What are gangs and vectors?

OpenACC

Vector

Gang

...

Grid

Equivalent

The OpenACC execution model has

three levels:

Gang – Thread block

Worker – Warp

Vector – Threads in a Warp

The OpenACC compiler directives can

automatically setup gangs, workers &

vectors when running your code.

Advantage: Less coding effort

Disadvantage: Potentially lower

 speed-ups

Controlling Gangs and Vectors

Inside a ‘kernels’ directive

To improve speed-ups, it is possible to control block and thread

configurations in OpenACC by using the gang and vector clauses.

Example:

#pragma acc kernels loop gang(100) vector(128)

 for (i = 0; i < N; ++i) { ... }

Translation: Use a up to 100 gangs, and up to a vector length of

 128 within each gang.

„loop‟ construct:

Parallelises only the immediately

proceeding loop after this directive

Controlling Gangs and Vectors

Inside a ‘parallel’ directive

To improve speed-ups, it is possible to control block and thread

configurations in OpenACC by using the gang and vector clauses.

Example:

#pragma acc parallel num_gangs(100) vector_length(128)

 #pragma acc loop

 for (i = 0; i < N; ++i) { ... }

Translation: 1st pragma: Use 100 gangs, each with vector length 128.

 2nd pragma: Share the work in the loop across workers

„parallel‟ directive only fires up the

requested workers… requires you to

explicitly identify which loops to

use them on!

OpenACC Process Flow

Useful environment variables

C:\Working_Dir\vecaddgpu.exe

11: region entered 1 time

 time(us): total=404,000 init=45,000 region=359,000

 kernels=47,555 data=300,934

 w/o init: total=359,000 max=359,000 min=359,000 avg=359,000

13: kernel launched 1 times

 grid: [65535] block: [256]

 time(us): total=47,555 max=47,555 min=47,555 avg=47,555

PGI_ACC_TIME=1

PGI_ACC_NOTIFY=1

Vector addition results

GPU initialisation is fixed; therefore it dominates for small n.

Data transfer dominates for large n.

n Total (µs) Init (µs) region (µs) kernels (µs) data (µs) CPU (µs)

1000 48000 45200 2800 7 225.6 0

10000 46800 43800 3000 10.4 303.6 0

100000 49000 45400 3600 54.4 994.6 0

1000000 53400 46000 7400 480.6 4298.6 1400

10000000 82600 43200 39400 4707.6 31800 16200

100000000 403800 46000 357800 47562.4 299881.6 160400

Vector addition speedups

n GPU Speedup

(kernel)

GPU Speedup

(kernel+data)

Data(%)

1000 0 0 0.970

10000 0 0 0.967

100000 0 0 0.948

1000000 2.913 0.293 0.899

10000000 3.441 0.444 0.871

100000000 3.372 0.462 0.863

A 3x speedup achieved without data transfer.

Worse performance when data transfer times are considered.

Need to have higher compute intensity to offset data transfer

overheads.

Each thread needs to do more work to justify the data transfer overhead!

In summary
OpenACC is easy, powerful and portable.

Can target Nvidia GPUs and multicore CPUs.

Use, -ta=nvidia,host flag at the command line.

Can use the kernels directive to automatically parallelise code regions or the

parallel directive or more fine-grained control.

Currently all function calls must be in-lineable.

Changing in OpenACC 2.0.

Important: Find where bottlenecks in your code are.

Use profiling tools (PGPROF, gprof, etc…)

Ask for help 

Thank You

