
Introduction to  

OpenACC 

16 May 2013 



1,000,000’s 

Early Adopters 

Time 

Research 

Universities 
Supercomputing Centers 

Oil & Gas 

CAE 
CFD 

Finance 
Rendering 

Data Analytics 
Life Sciences 

Defense 
Weather 
Climate 

Plasma Physics 

GPUs Reaching Broader Set of Developers  

100,000’s 

2004 Present 



3 Ways to Accelerate Applications 

Applications 

Libraries 

“Drop-in” 

Acceleration 

Programming 

Languages 
OpenACC 

Directives 

Maximum 

Flexibility 

Easily Accelerate 

Applications 



Introducing OpenACC 
The Standard for GPU Directives 

OpenACC allows programmers to provide simple hints, known as 

“directives” to the compiler. 

 

These directives identify which areas of code to accelerate, without 

requiring programmers to modify or adapt the underlying code 

itself.   

 

By exposing parallelism to the compiler, directives allow the 

compiler to do the detailed work of mapping the computation onto 

the accelerator.   



Easy:  OpenACC directives supply an easy path to accelerate  

  compute intensive applications. 

• Modelled on the familiar OpenMP directives format. 

 

Open:  OpenACC is an open GPU directives standard, making GPU  

  programming straightforward and portable. 

• Currently Nvidia GPUs and multicore CPUs. More to come… 

 

Powerful:  GPU Directives allow complete access to the massively  

  parallel power of a GPU. 

Advantages of OpenACC  



High-Level Language... 

Compiler directives to specify parallel regions in C & 

Fortran. 

Offload parallel regions. 

Portable across OSes, host CPUs, accelerators, and compilers. 

 

Create high-level heterogeneous programs. 

Without explicit accelerator initialization. 

Without explicit data or program transfers between host and 

accelerator. 

 



…Low-Level Access 

Programming model allows programmers to start simple.  

Compiler gives additional guidance. 

 

Loop mappings, data location, and other performance 

details. 

 

Compatible with other GPU languages and libraries.  

Interoperate between CUDA C/Fortran and GPU libraries.  

e.g. CUFFT, CUBLAS, CUSPARSE, etc.  



OpenACC Directives Overview 
  

Program myscience 

   ... serial code ... 

!$acc kernels 

   do k = 1,n1 

      do i = 1,n2 

          ... parallel code ... 

      enddo 

    enddo 

!$acc end kernels  

  ... 

End Program myscience 

CPU GPU 

Your original  

Fortran or C code 

Simple Compiler hints 

Compiler Parallelises code 

Works on many-core GPUs & 

multicore CPUs 

OpenACC 

Compiler 

Hint 



Familiar to OpenMP Programmers 

main() { 

  double pi = 0.0; long i; 

 

   

  #pragma omp parallel for reduction(+:pi) 

  for (i=0; i<N; i++) 

  { 

    double t = (double)((i+0.05)/N); 

    pi += 4.0/(1.0+t*t); 

  } 

 

  printf(“pi = %f\n”, pi/N); 

} 

CPU 

OpenMP 

main() { 

  double pi = 0.0; long i; 

 

  #pragma acc kernels 

  for (i=0; i<N; i++) 

  { 

    double t = (double)((i+0.05)/N); 

    pi += 4.0/(1.0+t*t); 

  } 

 

printf(“pi = %f\n”, pi/N); 

} 

CPU GPU 

OpenACC 



Benefits of CUDA vs Time to Implement 

CUDA C/C++ or Fortran are powerful techniques, offering dramatic 

performance increases. 

 

While it has become increasingly user friendly, there are many 

programmers who can't afford the time to learn and apply a parallel 

programming language. 

 

Scientists and engineers also work with huge existing code bases and 

can only make minor changes to their code that are portable across 

hardware and operating systems. 

 

 



Directives: Easy & Powerful 

Real-Time Object 
Detection 

Global Manufacturer of Navigation 
Systems 

Valuation of Stock Portfolios 
using Monte Carlo  

Global Technology Consulting Company 

Interaction of Solvents and 
Biomolecules 

University of Texas at San Antonio 

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours 



Local Success with OpenACC 

The University of 

Melbourne 

Department of Zoology 

Professor Kerry Black 

65x in 48 hours 
 

Better understand complex reasons by 

lifecycles of snapper fish in Port Phillip 

Bay 

* Achieved using the PGI Accelerator Compiler 



OpenACC Specification and Website 

Full OpenACC 1.0 Specification available online. 

Public Comment Draft of 2.0 Specification now 

available online. 

 

www.openacc.org 
 

Quick reference card also available. 

 

Beta implementations available now from PGI, Cray, 

and CAPS. 

http://www.openacc.org/


How does it work? 

Programmers provide simple hints to the compiler. 

 

In C/C++ these hints are implemented using the #pragma acc 
directive (!$acc in Fortan). 

 

The „acc‟ identifier directives tell the compiler to enable 

accelerator functions during the compilation of your program code. 

 

A fully defined accelerator directive should look as follows: 

 #pragma acc directive-name [clause [[,] clause]…] 

 



OpenACC Directives 

There directive-name specifies the type of accelerator action you 

want to perform. 

 

For example, #pragma acc kernels is an OpenACC directive that 

compiles a region of your program into a sequence of kernels to 

execute on your GPU device.  

 

The clause provides specific instructions for the chosen directive. 

 

For example, #pragma acc kernels copyin(A[0:n]) declares that 

array A has values that need to be copied to the device memory. 



OpenACC Directives 

There directive-name specifies the type of accelerator action you 

want to perform. 

 

For example, #pragma acc kernels is an OpenACC directive that 

compiles a region of your program into a sequence of kernels to 

execute on your GPU device.  

 

The clause provides specific instructions for the chosen directive. 

 

For example, #pragma acc kernels copyin(A[0:n]) declares that 

array A has values that need to be copied to the device memory. 

NB: This is NOT array ‘slice’ 

notation (Python, MATLAB, 

Fortran users beware!!) 

This means start at idx 0 and 

copy the following n elements 



Example: Vector Addition Serial Code 

int main ()  

{ 

 ...serial code... 

  

 for( i=0; i < n; i++) { 

  c[i] = a[i] + b[i] 

 } 

  

 ...serial code... 

} 
CPU 

for 

loop 

for loop 

vectorizable 



Vector Addition Device Code (CUDA) 

Launch a CUDA kernel for the Vector addition 
 

__global__ void vecaddgpu(float *r, float *a, float *b, int n) 

{ 

    // Get global thread ID 

    int id = blockIdx.x*blockDim.x+threadIdx.x; 

  

    // Make sure we do not go out of bounds 

    if (id < n) 

        c[id] = a[id] + b[id]; 

} 
 GPU 



Vector Addition Device Code (OpenACC) 

Accelerator Kernel launched with #pragma acc 
 

void vecaddgpu( float *restrict r, float *a, float *b, int n ) 

{ 

 //Launch GPU Accelerator Kernel 

 #pragma acc kernels copyin(a[0:n],b[0:n]) copyout(c[0:n]) 

 

  for( int i = 0; i < n; ++i ) { 

  c[i] = a[i] + b[i]; 

  } 

} 

GPU 



Device Code: What’s Similar? 

 

Both techniques require an accelerator (i.e. GPU) kernel to be 

launched on the device. 

 

The host variables (e.g. arrays) need to be copied from the host 

memory to the device memory. 

 

Values in the device memory need to be copied back to the host 

memory at the end of the accelerator region. 



Device Code: What’s Changed? 

#pragma acc directive replaces __global__ as the GPU kernel 

generator.  

 

Variables are copied from host to device (and vice versa) using 

#pragma acc (copyin() & copyout()) directive clauses instead of 

using cudaMemcpy() in the host code. 

 

Thread id allocation (blockIdx.x*blockDim.x+threadIdx.x) is 

handled „behind the scenes‟ by OpenACC. 

 

A restrict keyword is placed on array „r‟ (explained later). 



 



Kernels Construct 

Each loop is executed as a separate kernel on the GPU. 
 

#pragma acc kernels 
 for (i=0; i<n; i++){ 

     a(i) = 0.0 
     b(i) = 1.0 
     c(i) = 2.0 

 } 
 

 for (i=0; i<n; i++){  
     a(i) = b(i) + c(i) 

 } 

 

kernel 1 

kernel 2 

The two kernels will execute 

synchronously by default 



Kernels Clauses 

if( condition ) 

Generates two copies of the construct (host and device) and executes one of the 
copies when an IF condition is reached. 

 

async [( scalar-integer-expression )]  

The kernels region will be executed by the accelerator device asynchronously while 
the host process continues with the code following the region. 

 

copy( list )  

Allocates memory on the GPU and copies the data from the host when entering the 
region, and copies data back to the host when exiting region. 

 

copyin( list )  

Allocates GPU memory and copies data from the host when entering the region. 

 



Kernels Clauses 

copyout( list )  

Allocates host memory copies data to the host when exiting the region. 

 

create( list )  

Allocates memory on the GPU but does not copy. 

 

Other clauses include:  

present( list )  

present_or_copy( list )  

present_or_copyin( list ) 

present_or_copyout( list )  

present_or_create( list )  

deviceptr( list ) 

For more information on clauses: 
 

http://www.openacc.org/sites/defa

ult/files/OpenACC.1.0_0.pdf 

http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf
http://www.openacc.org/sites/default/files/OpenACC.1.0_0.pdf


The restrict keyword 

Applied to a pointer. For example: 

 float* restrict r 

 

Without the restrict keyword, pointer aliasing may occur, 

whereby the same memory location can be accessed using different 

names. 

 

OpenACC compilers often require the restrict keyword to 

determine independence of memory locations. 

Otherwise the compiler can‟t parallelize loops that access r. 

 

http://en.wikipedia.org/wiki/Restrict 

http://en.wikipedia.org/wiki/Restrict


Vector Addition Host Code (CUDA) 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
  
// CUDA kernel. Each thread takes care of one element of c 
__global__ void vecaddgpu(float *d_a, float *d_b, float *d_c, int n) 
{ 
    //Device Code 
} 
  
int main( int argc, char* argv[] ) 
{ 
    // Size of vectors 
    int n = 100000; 
    float *h_a; 
    float *h_b; 
    float *h_c; 
    float *d_a; 
    float *d_b; 
    float *d_c; 
 
    // Allocate memory for each vector on host 
    size_t bytes = n*sizeof(float); 
    h_a = (float*)malloc(bytes); 
    h_b = (float*)malloc(bytes); 
    h_c = (float*)malloc(bytes); 
  
    // Allocate memory for each vector on GPU 
    cudaMalloc(&d_a, bytes); 
    cudaMalloc(&d_b, bytes); 
    cudaMalloc(&d_c, bytes); 
  
    // Initialize vectors on host 
    int i; 
    for( i = 0; i < n; i++ ) { 
        h_a[i] = sinf(i)*sinf(i); 
        h_b[i] = cosf(i)*cosf(i); 
    } 
  
    // Copy host vectors to device 
    cudaMemcpy( d_a, h_a, bytes, cudaMemcpyHostToDevice); 
    cudaMemcpy( d_b, h_b, bytes, cudaMemcpyHostToDevice); 
  
    // Execute the kernel 
    int blockSize, gridSize; 
    blockSize = 1024; 
    gridSize = (int)ceil((float)n/blockSize); 
    vecaddgpu<<<gridSize, blockSize>>>(d_a, d_b, d_c, n); 
  
    // Copy array back to host 
    cudaMemcpy( h_c, d_c, bytes, cudaMemcpyDeviceToHost ); 
  
    // Sum up vector c and print result divided by n, this should equal 1 within 
error 
    float sum = 0; 
    for(i=0; i<n; i++) 
        sum += h_c[i]; 
    printf("final result: %f\n", sum/n); 
  
    // Release device memory 
    cudaFree(d_a); 
    cudaFree(d_b); 
    cudaFree(d_c); 
  
    // Release host memory 
    free(h_a); 
    free(h_b); 
    free(h_c); 
  
    return 0; 
} 

Device kernel __global__ void vecAddGpu( ... ) 

Explicitly define separate host h_x and device d_x vectors 

Allocate host vector memory using malloc() 

Allocate device vector memory using cudaMalloc() 

Initialise vectors on host (for loop) 

Copy initialised values to device using cudaMemcpy()  

Launch kernel to do work vecaddgpu<<< ... >>> 
 Copy result vector from device to host using cudaMemcpy() 
 

Free device memory using cudaFree() 

Free host memory using free() 



Host Code: OpenACC 

What is one of the most significant differences between host-only and combined 

host+accelerator based programs? 

 

MEMORY 
 

In accelerator programming languages such as CUDA, data movement between the 

memories can dominate the user‟s host code.  

 

In the OpenACC model, data movement between the memories is implicit and 

managed by the compiler. 

 

Controlled by the directives from the programmer (e.g. copyin(list)) 

 



Host Code: OpenACC 

 

While less code-intensive, programmers must be aware of the 

potentially separate memories for reasons including (but not limited 

to): 

 

Memory bandwidth between host and device, which determines the 

compute intensity required to accelerate a region of code. 

 

Device memory size, which can prohibit offloading regions of code 

that operate on very large amounts of data.  

 

 

 



Vector Addition Host Code (OpenACC) 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
  
// CUDA kernel. Each thread takes care of one element of c 
void vecaddgpu(float *d_a, float *d_b, float *restrict d_c, int n) 
{ 
    #pragma acc kernels copyin(d_a[0:n],d_b[0:n]) copyout(d_c[0:n]) 
    for (int i = 0; i < n; ++i) 
        d_c[i] = d_a[i] + d_b[i]; 
} 
  
int main( int argc, char* argv[] ) 
{ 
    // Size of vectors 
    int n = 100000; 
    float *h_a; 
    float *h_b; 
    float *h_c; 
    float *d_a; 
    float *d_b; 
    float *d_c; 
 
    // Allocate memory for each vector on host 
    size_t bytes = n*sizeof(float); 
    h_a = (float*)malloc(bytes); 
    h_b = (float*)malloc(bytes); 
    h_c = (float*)malloc(bytes); 
  
    // Allocate memory for each vector on GPU 
    cudaMalloc(&d_a, bytes); 
    cudaMalloc(&d_b, bytes); 
    cudaMalloc(&d_c, bytes); 
  
    // Initialize vectors on host 
    int i; 
    for( i = 0; i < n; i++ ) { 
        h_a[i] = sinf(i)*sinf(i); 
        h_b[i] = cosf(i)*cosf(i); 
    } 
  
    // Copy host vectors to device 
    cudaMemcpy( d_a, h_a, bytes, cudaMemcpyHostToDevice); 
    cudaMemcpy( d_b, h_b, bytes, cudaMemcpyHostToDevice); 
  
    // Execute the kernel 
    int blockSize, gridSize; 
    blockSize = 1024; 
    gridSize = (int)ceil((float)n/blockSize); 
    vecaddgpu<<<gridSize, blockSize>>>(d_a, d_b, d_c, n); 
  
    // Copy array back to host 
    cudaMemcpy( h_c, d_c, bytes, cudaMemcpyDeviceToHost ); 
  
    // Sum up vector c and print result divided by n, this should equal 1 within 
error 
    float sum = 0; 
    for(i=0; i<n; i++) 
        sum += h_c[i]; 
    printf("final result: %f\n", sum/n); 
  
    // Release device memory 
    cudaFree(d_a); 
    cudaFree(d_b); 
    cudaFree(d_c); 
  
    // Release host memory 
    free(h_a); 
    free(h_b); 
    free(h_c); 
  
    return 0; 
} 

Remove __global__ and replace device code with  
    #pragma acc kernels copyin(...) copyout(...) 

Define host h_x and device d_x vectors 

Allocate host vector memory using malloc() 

Allocate device vector memory using cudaMalloc() 

Initialise vectors on host (for loop) 

Copy initialised values to device using cudaMemcpy()  

Launch kernel to do work vecaddgpu<<< ... >>> 
 Copy result vector from device to host using cudaMemcpy() 
 

Free device memory using cudaFree() 

Free host memory using free() 

“regular” for loop 



Vector Addition Host Code (OpenACC) 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
  
// CUDA kernel. Each thread takes care of one element of c 
void vecaddgpu(float *a, float *b, float *restrict c, int n) 
{ 
    #pragma acc kernels copyin(a[0:n],b[0:n]) copyout(c[0:n]) 
    for (int i = 0; i < n; ++i) 
        c[i] = a[i] + b[i];} 
} 
 
int main( int argc, char* argv[] ) 
{ 
    // Size of vectors 
    int n = 100000; 
    float *a; 
    float *b; 
    float *c; 
 
 
 
 
    // Allocate memory for each vector on host 
    size_t bytes = n*sizeof(float); 
    a = (float*)malloc(bytes); 
    b = (float*)malloc(bytes); 
    c = (float*)malloc(bytes); 
  
  
 
 
 
 
    // Initialize vectors on host 
    int i; 
    for( i = 0; i < n; i++ ) { 
        a[i] = sinf(i)*sinf(i); 
        b[i] = cosf(i)*cosf(i); 
    } 
  
 
 
 
 
    // Execute the kernel 
    vecaddgpu(a, b, c, n); 
  
  
 
 
 
 
 
    // Sum up vector c and print result divided by n, this should equal 1 within 
error 
    float sum = 0; 
    for(i=0; i<n; i++) 
        sum += c[i]; 
    printf("final result: %f\n", sum/n); 
 
  
 
 
 
 
    // Release host memory 
    free(a); 
    free(b); 
    free(c); 
  
    return 0; 
} 

Remove __global__ and replace device code with  
    #pragma acc kernels copyin(...) copyout(...) 

Allocate host vector memory using malloc() 

Initialise vectors on host (for loop) 

Free host memory using free() 

Call vecaddgpu() function normally to run on GPU  

 

“regular” for loop 



Vector Addition Host Code (OpenACC) 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
  
// CUDA kernel. Each thread takes care of one element of c 
void vecaddgpu(float *a, float *b, float *restrict c, int n) 
{ 
    #pragma acc kernels copyin(a[0:n],b[0:n]) copyout(c[0:n]) 
    for (int i = 0; i < n; ++i) 
        c[i] = a[i] + b[i];} 
} 
 
int main( int argc, char* argv[] ) 
{ 
    // Size of vectors 
    int n = 100000; 
    float *a; 
    float *b; 
    float *c; 
 
    // Allocate memory for each vector on host 
    size_t bytes = n*sizeof(float); 
    a = (float*)malloc(bytes); 
    b = (float*)malloc(bytes); 
    c = (float*)malloc(bytes); 
 
    // Initialize vectors on host 
    int i; 
    for( i = 0; i < n; i++ ) { 
        a[i] = sinf(i)*sinf(i); 
        b[i] = cosf(i)*cosf(i); 
    } 
 
    // Execute the kernel 
    vecaddgpu(a, b, c, n); 
 
    // Sum up vector c and print result divided by n, this should equal 1 within 
error 
    float sum = 0; 
    for(i=0; i<n; i++) 
        sum += [i]; 
    printf("final result: %f\n", sum/n); 
 
    // Release host memory 
    free(a); 
    free(b); 
    free(c); 
  
    return 0; 
} 

Remove __global__ and replace device code with  
    #pragma acc kernels copyin(...) copyout(...) 

Allocate host vector memory using malloc() 

Initialise vectors on host (for loop) 

Device memory allocated inside the copyin() clause 

Values copied to device using the copyin() clause 

Call vecaddgpu function normally to run on GPU  

 Vectors copied back to host using the copyout() clause 

Free host memory using free() 

Device memory is automatically freed 



OpenACC compliant compilers 

OpenACC requires a compliant compiler that understands OpenACC 

directives. 

 

GCC is NOT one of them (yet…) 

 

The examples used the PGI Accelerator that is part of a software 

toolkit called PGI Workstation by The Portland Group. 

OpenACC directives in C and Fortran: target GPU + multicore CPU 

Also compiles “CUDA Fortran” 

Other advanced compiler optimisation routines: often 2x over gcc or VS 

See http://www.pgroup.com/ for more information. 

 

http://www.pgroup.com/


Compile and run 

Compile your code by entering the following at the command line. 

pgcc –acc -ta=nvidia,host -Minfo vecaddgpu.c 

 

pgcc  Command to invoke the C Compiler. 

 

–acc  Flag to enable the OpenACC #pragma‟s and includes the OpenACC 

  runtime library (i.e. #include “openacc.h”). 

 

-ta=nvidia,host Flag to set the NVIDIA GPU or CPU as the target accelerator 

   device. Falls back to CPU if no compatible GPU at runtime! 

 

-Minfo  Flag that displays compile-time optimization listings.    

 

 



-Minfo output can be helpful… 

pgcc –acc -ta=nvidia -Minfo vecaddgpu.c 

vecaddgpu: 

 

5,Generating copyout(c[:n]) 

Generating copyin(a[:n]) 

Generating copyin(b[:n]) 

Generating compute capability 1.0 binary 

Generating compute capability 2.0 binary 

 

6, Loop is parallelizable 

Accelerator kernel generated 

 

6, #pragma acc loop gang, vector(256) /* blockIdx.x threadIdx.x */ 

 

CC 1.0 : 5 registers; 60 shared, 4 constant, 0 local memory bytes; 100% occupancy 

CC 2.0 : 8 registers; 8 shared, 68 constant, 0 local memory bytes; 100% occupancy 

 

Generates multiple 

versions 

Sets gangs & vectors 

Successful parallelisation 



NVIDIA CUDA 

Thread 

Thread  

Block 

... 

Grid 

What are gangs and vectors? 

OpenACC 

Vector 

Gang 

... 

Grid 

Equivalent 

The OpenACC execution model has 

three levels:  

 

Gang – Thread block 

Worker – Warp 

Vector – Threads in a Warp 

 

The OpenACC compiler directives can 

automatically setup gangs, workers & 

vectors when running your code. 

 

Advantage:  Less coding effort 

Disadvantage: Potentially lower 

  speed-ups 



Controlling Gangs and Vectors  

Inside a ‘kernels’ directive 
 

To improve speed-ups, it is possible to control block and thread 

configurations in OpenACC by using the gang and vector clauses. 

 

Example: 

 

#pragma acc kernels loop gang(100) vector(128) 

    for (i = 0; i < N; ++i) { ... } 

 

Translation:  Use a up to 100 gangs, and up to a vector length of 

   128 within each gang. 

 

 

„loop‟ construct: 

Parallelises only the immediately 

proceeding loop after this directive 



Controlling Gangs and Vectors  

Inside a ‘parallel’ directive 
 

To improve speed-ups, it is possible to control block and thread 

configurations in OpenACC by using the gang and vector clauses. 

 

Example: 

 

#pragma acc parallel num_gangs(100) vector_length(128) 

    #pragma acc loop 

        for (i = 0; i < N; ++i) { ... } 

Translation: 1st pragma: Use 100 gangs, each with vector length 128.  

       2nd pragma: Share the work in the loop across workers 

 

„parallel‟ directive only fires up the 

requested workers… requires you to 

explicitly identify which loops to 

use them on! 



OpenACC Process Flow 



Useful environment variables 

C:\Working_Dir\vecaddgpu.exe 

 

11: region entered 1 time 

       time(us): total=404,000 init=45,000 region=359,000 

                 kernels=47,555 data=300,934 

       w/o init: total=359,000 max=359,000 min=359,000 avg=359,000 

        

 

13: kernel launched 1 times 

           grid: [65535]  block: [256] 

           time(us): total=47,555 max=47,555 min=47,555 avg=47,555 

PGI_ACC_TIME=1 

PGI_ACC_NOTIFY=1  



Vector addition results 

GPU initialisation is fixed; therefore it dominates for small n. 

 

Data transfer dominates for large n. 

n Total (µs) Init (µs) region (µs) kernels (µs) data (µs) CPU (µs) 

1000 48000 45200 2800 7 225.6 0 

10000 46800 43800 3000 10.4 303.6 0 

100000 49000 45400 3600 54.4 994.6 0 

1000000 53400 46000 7400 480.6 4298.6 1400 

10000000 82600 43200 39400 4707.6 31800 16200 

100000000 403800 46000 357800 47562.4 299881.6 160400 



Vector addition speedups 

n GPU Speedup 

(kernel) 

GPU Speedup  

(kernel+data) 

Data(%) 

1000 0 0 0.970 

10000 0 0 0.967 

100000 0 0 0.948 

1000000 2.913 0.293 0.899 

10000000 3.441 0.444 0.871 

100000000 3.372 0.462 0.863 

A 3x speedup achieved without data transfer. 

Worse performance when data transfer times are considered. 

Need to have higher compute intensity to offset data transfer 

overheads. 

Each thread needs to do more work to justify the data transfer overhead! 



In summary 
OpenACC is easy, powerful and portable. 

 

Can target Nvidia GPUs and multicore CPUs. 

Use, -ta=nvidia,host flag at the command line. 

 

Can use the kernels directive to automatically parallelise code regions or the 

parallel directive or more fine-grained control. 

 

Currently all function calls must be in-lineable. 

Changing in OpenACC 2.0. 

 

Important: Find where bottlenecks in your code are. 

Use profiling tools (PGPROF, gprof, etc…) 

Ask for help   



Thank You 

 

 


