
Getting Started with CUDA C/C++

Michael Wang

UniMelb/NVIDIA

Thank You to Our Sponsors

GPU CPU

GPGPU Co-Processing

ONCE UPON A TIMEé

Past Massively Parallel Supercomputers

Thinking Machine

MasPar

Cray 2

Goodyear MPP

1.31 TFLOPS on

DGEMM

Today

Made Possible by Graphics

1992

1993

1996

1997

1999

2004
2011

2013

2013 1999

CPU

GPU

Fully
Programmable

Pipeline

Leveraging The Power of Graphics

Fixed
Function
Pipeline

GENERAL PURPOSE

GPU CPU

GPGPU Co-Processing

Low Latency vs High Throughput

CPU

Optimized for low-latency access to

cached data sets

Control logic for out-of-order and

speculative execution

GPU

Optimized for data-parallel,

throughput computation

Architecture tolerant of memory

latency

More transistors dedicated to

computation

Low Latency or High Throughput?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other thread warps

GPU Stream Multiprocessor ï High Throughput Processor

CPU core ï Low Latency Processor

Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch

W1

W2

W3

W4

T1

T2

T3

T4

K20X: 3x Faster Than Fermi

0.17
0.43

1.22

0

0.5

1

1.5

Xeon E5-2687Wc
(8 core, 3.1 Ghz)

Tesla M2090 (Fermi) Tesla K20X

DGEMM
TFlops

GPUs: Two Year Heart Beat

16

2

4

6

8

10

12

14

G
F

L
O

P
S

 p
e
r

W
a

tt

2008 2010 2012 2014

Tesla
Fermi

Kepler

Maxwell

CUDA Parallel Computing Platform

 Hardware

 Capabilities

GPUDirect SMX Dynamic Parallelism HyperQ

 Programming

 Approaches
òDrop-inó Acceleration

Programming

Languages

OpenACC

Directives

Maximum Flexibility Easily Accelerate Apps

 Development

 Environment

Nsight IDE
Linux, Mac and Windows

GPU Debugging and Profiling

CUDA-GDB debugger

NVIDIA Visual Profiler

 Open Compiler

 Tool Chain
Enables compiling new languages to CUDA platform, and

CUDA languages to other architectures

Libraries

Getting Started with CUDA

GPU Accelerated Science Applications

Over 110+ Accelerated science apps in our catalog. Just a few:

www.nvidia.com/teslaapps

AMBER GROMACS LAMMPS

Tsunami RTM
NWChem

http://www.nvidia.com/teslaapps

GPU Accelerated Workstation

Applications
Fifty accelerated workstation apps in our catalog. Just a few:

www.nvidia.com/object/gpu-accelerated-applications.html

http://www.nvidia.com/object/gpu-accelerated-applications.html
http://www.nvidia.com/object/gpu-accelerated-applications.html
http://www.nvidia.com/object/gpu-accelerated-applications.html
http://www.nvidia.com/object/gpu-accelerated-applications.html
http://www.nvidia.com/object/gpu-accelerated-applications.html

3 Ways to Accelerate Applications

Applications

Libraries

òDrop-inó

Acceleration

Programming

Languages

Maximum

Flexibility

OpenACC

Directives

Easily Accelerate

Applications

Why should you use libraries?

No need to reinvent the wheel

Implement complex algorithms

Deal with details of the platform

High Performance

Layers of optimizations

In depth knowledge of architecture

Low Maintenance

Rigorous testing/quality -assurance

Have someone to file bugs against

GPU Accelerated Libraries
òDrop-inó Acceleration for your Applications

NVIDIA cuBLAS NVIDIA cuRAND NVIDIA cuSPARSE NVIDIA NPP

Vector Signal
Image Processing

GPU Accelerated
Linear Algebra

Matrix Algebra on
GPU and Multicore NVIDIA cuFFT

C++ STL Features
for CUDA

Sparse Linear
Algebra IMSL Library

Building-block
Algorithms for CUDA

ArrayFire Matrix
Computations

