Skip to Content

Vacation Scholarships in Astronomy at CAS

The Centre for Astrophysics & Supercomputing (CAS) accepts applications for Vacation Scholarships from enthusiastic university students with excellent scholastic records who are in the last, or second last, year of their undergraduate or Honours/Masters degree.

With 16 research faculty and more than 30 post-docs and PhD students, CAS is a vibrant, friendly environment for studying most fields of astronomy. Swinburne astronomers have guaranteed access to the twin Keck 10-m Telescopes in Hawaii - the world's premier optical observatory - and CAS owns and operates one of Australia's most powerful supercomputers - the Green & Gstar Machines . We also develop advanced immersive 3D data visualization facilities and create 3-D animations and movies promoting and explaining astronomy to the broader community.

Swinburne's Hawthorn campus is situated in a lively, urban setting just minutes by public transport from Melbourne's city centre.

Our Vacation Scholarship program aims to provide undergraduate students with some insight into how exciting research is and how it is conducted. Students will join a research project, or maybe help start a new one, in one of the many areas of astronomy in which CAS staff and post-docs are experts. The various projects on offer are listed below. Projects can involve all aspects of astronomical research, from proposing or carrying out new telescope observations, to analysing some of the data or conducting theoretical calculations or advanced simulations. Many previous students have eventually published peer-reviewed research articles on some of their Vacation Scholarship research.

Applications can be made at any time throughout the year. We particularly encourage applicants to work over the summer months, December to February.

This program is open to undergraduates at Australian & New Zealand universities. Applications from students outside of Australia & New Zealand with exceptional scholastic records may also be considered.

Scholarships will generally last between 6 and 10 weeks, to be negotiated between the student and their nominated supervisor. Vacation Scholars are paid a tax-free stipend of $500 per week.

Applications should include the following:

  • A cover letter (see below for further information);
  • A copy of your official academic record, including an explanation of the grading system used;
  • Your Curriculum Vitae;
  • Any supporting documentation of previous research.

Applicants should also ask a lecturer or supervisor at their current university to send a letter of recommendation. This should be sent by the lecturer/supervisor directly; applicants should not include reference letters in their own application.

Applications and reference letters should be emailed to Dr. Thibault Garel (tgarel@astro.swin.edu.au) with the above information attached (preferably as PDF documents).

The cover letter is important and should
(i) set out why you are interested in undertaking a vacation scholarship at Swinburne and
(ii) list at least two research projects you are interested in working on. See below for the current list of projects on offer.




Potential Vacation Scholarship research projects

The following list outlines particular projects currently on offer. Contact the staff member(s) listed for more information. Other projects, not listed here, may be possible; contact the staff member whom you feel is most suited to your ideas and discuss other possible projects of mutual interest.

(Updated 30/01/2014)
  • Does the Universe have a preferred cosmological rest-frame?
    The standard model of cosmology assumes the Universe is smooth and homogeneous. However, in reality it contains a clumpy network of clusters of galaxies and empty regions called voids. Does this invalidate the manner in which we apply Einstein's equations to the expanding Universe? A controversial result has recently been proposed which appears to cast doubt on the validity of the standard homogeneous cosmological rest-frame (see this article). In this project we will test this result in more detail using cosmological simulations and new data.
    Supervisor: A Prof. Chris Blake.