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Abstract

This thesis reports on the recent results of a continuing, high-precision pulsar timing
project, currently focused on the nearby, binary millisecond pulsar, PSR J0437−4715.
Pulse arrival time analysis has yielded a remarkable series of constraints on the
physical parameters of this system and evidence for the distortion of space-time as
predicted by the General Theory of Relativity.

Owing to the proximity of the PSR J0437−4715 system, relative changes in the
positions of the Earth and pulsar result in both annual and secular evolution of the
line of sight to the pulsar. Although the changes are miniscule, the effects on the
projected orbital parameters are detectable in our data at a high level of significance,
necessitating the implementation of an improved timing model.

In addition to producing estimates of astrometric parameters with unparalleled
precision, the study has also yielded the first three-dimensional orbital geometry of
a binary pulsar. This achievement includes the first classical determination of the
orbital inclination, thereby providing the unique opportunity to verify the shape of
the Shapiro delay and independently confirm a general relativistic prediction.

With a current post-fit arrival time residual RMS of 130 ns over four years, the
unrivaled quality of the timing data presented herein may eventually contribute to
the most stringent limit on the energy density of the proposed stochastic gravita-
tional wave background. Continuing the quest for even greater timing precision, a
detailed study of the polarimetry of PSR J0437−4715 was undertaken. This effort
culminated in the development of a new, phase-coherent technique for calibrating
the instrumental response of the observing system.

Observations were conducted at the Parkes 64-m radio telescope in New South
Wales, Australia, using baseband recorder technologies developed at York Univer-
sity, Toronto, and at the California Institute of Technology. Data were processed
off-line at Swinburne University using a beowulf-style cluster of high-performance
workstations and custom software developed by the candidate as part of this thesis.
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Chapter 1

Introduction

1.1 Pulsars

Since their discovery in 1967 (Hewish et al. 1968), pulsars have continued to chal-
lenge and fascinate both observers and theorists alike. They were originally dubbed
LGM, or “Little Green Men”, by the astronomers who happened upon a remark-
able, regularly-pulsed radio signal from space. And although the association with
extraterrestrial intelligence was promptly discounted, perhaps the accepted physical
explanation is no less exotic. For it was soon proposed that the pulsating radio sig-
nal originated from a rapidly spinning, highly magnetized neutron star, born during
a cataclysmic supernova explosion (Gold 1968).

The existence of neutron stars had been hypothesized more than 30 years before
the discovery of the pulsar (Baade & Zwicky 1934) as one possible state that a star
may assume at the end of its main-sequence lifetime. Having spent its nuclear fuel
of lighter elements, the outward radiation pressure driven by the release of fusion
energy ceases to support the stellar material against contraction under the force of
gravity. Depending upon its initial mass, the exhausted progenitor star will end in
one of three degenerate states: a white dwarf; a neutron star; or a black hole.

The gravitational contraction of a stellar core smaller than the Chandrasekhar
(1931) limit of approximately 1.4 solar masses (M�) results in the formation of a
white dwarf. Though the heat produced during collapse is not sufficient to ignite
further nuclear fusion, the atoms in the star will become completely ionized. The
Fermi pressure of the degenerate electron gas increases rapidly and opposes further
gravitational contraction, resulting in an approximately Earth-sized object, a white
dwarf. As it radiates away its residual thermal energy, the white dwarf will gradually
cool and fade out of sight. Its ionic constituents will depend largely upon both
its initial mass and evolutionary history. For instance, in a binary system, the
progenitor may be disrupted by Roche lobe overflow and sustained mass loss to its
more compact companion. With insufficient core density to initiate helium fusion to
carbon, the resulting low-mass white dwarf will be primarily composed of degenerate
helium.
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2 CHAPTER 1. INTRODUCTION

In those stars with a core mass of approximately 1.4 – 3 M�, the electron degen-
eracy pressure does not grow as quickly as the inward pressure due to gravity. As the
electrons are confined to an increasingly small space, their kinetic energies become
sufficient to initiate inverse beta decay. Each electron fuses with a proton in the ionic
nuclei, producing a neutron and electron neutrino. The neutrinos stream out of the
core, carrying thermal energy away from the star and thereby accelerating the rate
of gravitational collapse and inverse beta decay. When the core density surpasses
the neutron drip point (∼ 4.3 × 1011 g cm−3), the Fermi energies of the neutrons
exceed the strong nuclear force and they begin to occupy continuum states (Baym,
Pethick & Sutherland 1971). The free neutrons form Cooper pairs and, when the
star cools below the neutron degeneracy temperature, undergo Bose condensation
to enter a neutron superfluid phase.

Approximately 20 km in diameter, the resulting neutron star achieves a density
of about 1014 g cm−3, greater than that of the atomic nucleus. However, it has
been proposed that matter may exist at even higher densities. Strange matter,
a self-bound plasma of up, down, and strange quarks, may be the ground state
of the hadrons (Itoh 1970). Based on this conjecture, evolutionary arguments have
been presented for the existence of both neutron stars with quark interiors, known as
quark stars, and stars completely composed of stable quark matter, known as strange
stars (Alcock, Farhi & Olinto 1986; Belczynski, Bulik & Kluźniak 2002). However,
as the existence of strange matter remains purely hypothetical, the neutron star
continues to be the most favoured basis for pulsar models.

The compactness of a neutron star is given by C ≡ Gm/Rc2 ∼ 0.2, where m
and R are the star’s mass and radius, respectively. Relative to objects such as the
Sun (C� ∼ 2 × 10−6) the compactness of a neutron star is close to the theoretical
maximum of 0.5, corresponding to that of a black hole. These are created in the
supernova implosion of a stellar core with mass greater than ∼ 3 M�, during which
gravity overwhelms even the neutron degeneracy pressure and the star collapses
into a singularity behind an event horizon. Extreme phenomenon such as black
holes and neutron stars were considered to be not much more than mere theoretical
fancy before the discovery of the radio pulsar. The pulsar therefore provided the
first direct observation into the realm of nature described by the equation of state
of super-dense matter and the non-linear, strong-field regime of general relativity.

Like a celestial radio lighthouse, a pulsar generates a narrowly focused beam of
radio emission at the poles of its powerful magnetic field. The magnetic axis is not
necessarily aligned with the spin axis, and the beam traces out a cone with every
rotation of the neutron star. As observed from Earth, the intensity of the pulsar’s
emission peaks every time the beam swings around to face us. The period between
pulse peaks, P , is therefore equal to the spin period of the underlying neutron star.
Assuming that magnetic dipole radiation is primarily responsible for the loss of
rotational energy, measurement of the rate at which the pulsar spins down permits
an estimate of the magnetic field strength, which can be as high as 1013 Gauss (cf.
the average geomagnetic field strength of 1 G). From the extremely high brightness
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temperature, T ∼ 1025 Kelvin (K), of the observed radiation it has been inferred
that a coherent plasma process must be responsible for the emission (Melrose 1992),
a conjecture supported by the recent detection of coherent emission from pulsars
(Jenet, Anderson & Prince 2001b).

Although the precise mechanism by which the radio emission is generated re-
mains in debate, the pulsar magnetosphere is generally believed to contain a dense
corotating plasma (Goldreich & Julian 1969) composed primarily of ultra-relativistic
electrons and positrons generated by pair cascade (Sturrock 1971; Daugherty &
Harding 1982). Similar to the best vacuum that may be obtained with laboratory
ion pumps, the charged particle density in the pulsar magnetosphere (∼ 1011cm−3)
is about one billion times that found in the Earth’s inner plasmasphere. These par-
ticles remain trapped on closed magnetic field lines and corotate with the pulsar
out to the light cylinder radius, the distance from the neutron star spin axis, rlc,
at which the rotational velocity, 2πrlc/P , equals the speed of light, c. Beyond the
light cylinder, closed magnetic field lines cannot be causally maintained and the
plasma escapes in a relativistic magnetohydrodynamic (MHD) wind. This wind is
believed to consist of electrons, positrons, and possibly ions, which emit coherent
curvature, synchrotron and/or cyclotron radiation as they are accelerated along the
open field lines which spiral away from the poles (Ruderman & Sutherland 1975;
Cheng & Ruderman 1980). The outward flow of relativistic particles may shock the
cold interstellar medium (ISM), resulting in collisional excitation of the hydrogen
surrounding the pulsar. The Hα nebula generated by this interaction is known as a
pulsar wind nebula (PWN) (Kulkarni & Hester 1988). Conversely, the inward flow
of relativistic particles from the acceleration zones may impact upon the polar caps
of the neutron star surface, heating these regions up to X-ray temperatures (Arons
1981; Hibschman & Arons 2001; Zavlin et al. 2002).

Interestingly, this description of the pulsar magnetospheric polar region as an
ultra-relativistic cosmic particle accelerator may also provide the answer to another
outstanding problem in astrophysics. Since the mid-1990s, numerous detections of
ultra-high energy cosmic ray (UHECR) events have continued to challenge the notion
that cosmic rays are of extragalactic origin. Cosmic rays are the most energetic
particles in the universe and are detected by the giant airshowers of secondary
particles created when they collide with the Earth’s atmosphere. Although their
origin and nature is currently unknown, it is expected that a cosmic ray proton with
energy greater than ∼ 5× 1019 eV (∼ 8 Joules!) will lose energy by interacting with
the cosmic microwave background through photopion production. Consequently, it
is believed that UHECR must originate within a ∼ 50 Mpc radius, and it has been
proposed that neutron stars may be their mysterious source. Most recently, Blasi,
Epstein & Olinto (2000) have suggested that UHECR might be iron nuclei stripped
from young, highly magnetized neutron stars and accelerated to ultra-high energies
by the pulsar’s relativistic MHD wind. Another model has been presented in which
protons are accelerated in magnetic reconnection sites outside of the magnetospheres
of young millisecond pulsars born during the accretion-induced collapse of a white
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dwarf (de Gouveia Dal Pino & Lazarian 2000). Recent observations of the pulsar
wind nebula surrounding PSR B1509-58 made with the Chandra X-Ray Observatory
(Gaensler et al. 2002) lend credence to the candidacy of young pulsars as the
energetic sources of ultra-relativistic particles raining down on Earth.

1.2 Pulsar Timing

Some fundamental questions remain about the nature of the pulsar, its internal
structure, and the complex physics taking place in its magnetosphere and surround-
ing environment. For these reasons alone, pulsars remain an intrinsically interesting
field of study. However, pulsars have also been shown to have exceptional long-term
rotational stability (Kaspi, Taylor & Ryba 1994, see also Figure 6.4), allowing the
clockwork nature of the pulsed radio emission to be utilized as a unique astrophysical
probe. Like a formidable celestial flywheel, the pulsar’s rotational stability derives
from its huge moment of inertia. During the gravitational collapse of the progenitor
stellar core, a large fraction of its angular momentum is conserved, producing a
neutron star with an initial spin period of the order of tens of milliseconds. Rota-
tional energy is gradually lost to magnetic dipole/multipole radiation and the radial
outflow of the pulsar MHD wind, which carries away angular momentum. These
contributions to the spin-down torque on the neutron star result in a population of
pulsars normally found with spin periods ranging from ∼ 33 ms to ∼ 3 s, with the
slowest pulsar known at P ∼ 8.5 s (Young, Manchester & Johnston 1999).

The fastest pulsar ever discovered, with a spin period of ∼ 1.6 ms (Backer et al.
1982), is also the first to be recognized as belonging to a special class of pulsars,
known as the millisecond pulsars (MSP). The MSP population differs from the
“normal” population in a number of ways (see Figure 1.1). Normal pulsars have
period derivatives of the order of 10−14 to 10−16, from which may be inferred surface
magnetic field strengths of ∼ 1012 G and characteristic spin-down ages of the order
of Megayears. MSPs, on the other hand, have smaller period derivatives, ∼ 10−19 to
10−20, much weaker surface magnetic field strengths, ∼ 108 G, and spin-down ages
of the order of Gigayears.

Due to these primary observational differences, millisecond pulsars are thought
to be the result of a unique evolutionary process. It is believed that they are spun up
to their rapid rotation rates by the accretion of matter and angular momentum from
a binary companion (Smarr & Blandford 1976; Alpar et al. 1982). This conjecture
is well-supported by the large percentage of MSPs found in binary systems (see
Figure 1.1), many of which contain a low-mass companion such as a white dwarf.
However, it remains in question whether the accretion episode occurs before or after
the supernova explosion during which the neutron star is formed. In one model, a
normal pulsar lives out its life with a main sequence companion, which eventually
expands beyond its Roche lobe and transfers some fraction of its mass to the neutron
star, spinning it up. In light of this probable evolutionary history, MSPs are suitably
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Figure 1.1: The above distribution of pulse period, P , versus Ṗ demonstrates the
distinction between “normal” (upper right) and “millisecond” (bottom left) pulsar
populations. A total of 702 pulsars are plotted, out of which 46 are found in a binary
system, as shown using a circle. Note the large fraction of millisecond pulsars found
binary systems. The millisecond pulsar, PSR J0437−4715, is marked with a target
symbol. Dotted lines plot constant characteristic spin-down age, τc = P/2Ṗ , and
dashed lines plot constant surface magnetic field strength.

known as recycled pulsars. In the accretion-induced collapse model, a white dwarf
is found in a binary system with a main sequence companion. The accretion process
tips the white dwarf mass over the Chandresekhar limit, the white dwarf implodes
and a millisecond pulsar is born. Regardless of the exact formation scenario, it has
been suggested that the low inferred magnetic field strengths of MSPs may be a
consequence of magnetic field burial during the accretion episode (Taam & van den
Heuvel 1986).

The long-term rotational stability of millisecond pulsars has been shown to be
comparable to the best atomic time standards here on Earth (Taylor 1991; Kaspi,
Taylor & Ryba 1994). The observed radio signal may therefore be treated as a
highly accurate astrophysical frequency standard. The shape of the observed radio
intensity as a function of pulse phase is known as the pulse profile. Although this
profile generally fluctuates considerably from pulse to pulse, an average profile may
be formed by integrating the received pulse train modulo the apparent topocentric
pulsar spin period; a process known as folding. When folded over a few hundred
pulses, the average profile is generally quite stable (Helfand, Manchester & Taylor
1975; Rankin & Rathnasree 1995). By integrating over long periods of time, the
effects of system noise may be diminished to produce a standard profile with a high
signal-to-noise ratio (S/N). The phase of any given pulse train relative to the epoch
of its observation may be determined by fitting the average profile to the high S/N
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standard, yielding an estimate of the pulse time of arrival (TOA) in the reference
frame of the observatory (see Section 3.1). The TOA is the fundamental datum in
an experimental treatment known as pulsar timing.

A wealth of astrophysical information has been derived from pulsar timing, a
technique that is primarily sensitive to changes in the observatory–pulsar line of
sight. For instance, the first extrasolar planetary system was discovered around
the pulsar, PSR B1257+12, by detecting its wobble about the system’s centre of
mass (Wolszczan & Frail 1992). Similarly, the motion of the Earth around the Sun
induces Doppler variations of pulse TOA that depend strongly on the direction to the
pulsar in the sky. These variations have been modeled and utilized for the purposes
of precision astrometry, first yielding estimates of pulsar position (Manchester &
Peters 1972) and proper motion (Manchester, Taylor & Van 1974). Accurate position
estimates are necessary in order to identify the pulsar at other wavelengths, such as
optical or X-ray, and measurements of pulsar proper motion and spin-down age have
been used to associate pulsars with the supernova remnants of their birth events (see
Caraveo (1993) for a comprehensive review). Although the pulsar may currently lie
at some distance from the centre of the nebula, the inferred associations help to
support the currently accepted model of pulsar formation.

The distance to a pulsar may be estimated using a variety of techniques. One
method is based upon the determination of the total column density of free electrons
along the line of sight to the pulsar, known as the dispersion measure (DM). The
group velocity of radio waves propagating through the dispersive ISM varies as a
function of frequency and, consequently, the pulsed emission from higher frequencies
will arrive earlier than that from lower frequencies. The time delay depends on the
difference between the observing frequencies, the distance to the pulsar, d, and the
density of free electrons along the line of sight, ne. Both d and ne are related to the
DM by the integral,

DM =

∫ d

0

nedl. (1.1)

TheDM may be measured from TOA estimates taken at different observing frequen-
cies and, using a model of the Galactic free electron density (Taylor & Cordes 1993),
the distance to the pulsar may be estimated. Alternatively, a model-independent
distance estimate may be derived from the annual trigonometric parallax of the pul-
sar, which was first successfully measured using Very Long Baseline Interferometry
(VLBI) (Gwinn et al. 1986; Bailes et al. 1990) and later accomplished by the high-
precision timing of an MSP (Ryba & Taylor 1991). Using the parallax distance,
the average density of free electrons along the line of sight to the pulsar may be
estimated and used to restrict the model of the ISM. Pulsar distances also constrain
estimates of their birth-rate and, when combined with a determination of proper mo-
tion, can be used to estimate the space velocity of the pulsar perpendicular to the
line of sight. These velocity estimates contribute to our understanding of the pulsar
natal kick, a recoil suggested to arise from asymmetry in the supernova explosions
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from which they originate. In binary pulsar systems, space velocities may also help
to differentiate between recycled pulsar and accretion-induced collapse scenarios of
millisecond pulsar formation (Tauris & Bailes 1996).

1.3 Pulsar Polarimetry

The radio emission from pulsars typically contains a large fraction of polarized ra-
diation. Thus, pulsar polarimetry provides insight into the magnetic field geometry
and the nature of the emission mechanism. For instance, in slow pulsars the position
angle, ψ, of the linearly polarized component generally follows a nearly S-shaped
curve as a function of pulse phase, leading Radhakrishnan & Cooke (1969) to de-
velop the rotating vector model (RVM) of the pulsar dipole magnetic field. In this
model, ψ is expected to vary as (Manchester & Taylor 1977),

tan(ψ − ψ0) =
sinα sinφ

sin ζ cosα− cos ζ sinα cosφ
, (1.2)

where ψ0 is a reference position angle, ζ is the angle between the rotation axis and
the line of sight, α is the angle between the magnetic and rotation axes, and φ is
the pulsar rotational longitude with respect to the magnetic meridian. This model
has proven quite successful in describing the observed position angle sweep of slow
pulsars, enabling the characterization of the magnetic field orientation with respect
to both the spin axis and the line of sight from Earth. Sharp discontinuities in the
S-shaped flow of position angle variation have been attributed to transitions in the
dominance of orthogonal modes of emission (Stinebring et al. 1984).

Following the regular occurrence of double and triple component profiles, com-
ponents of the pulse profiles of slow pulsars are often classified as either core or
conal (Rankin 1983a; Lyne & Manchester 1988). The central, core component typi-
cally has a high fraction of circular polarization, which may also reverse sense across
the component. In slow pulsars, the core component generally has a steeper spec-
tral index than the conal emission region, leading to noticeable changes in pulse
morphology as a function of observing frequency. Millisecond pulsars have more
complex polarimetric profiles that are not well-described by the RVM, suggesting
the existence of multipole magnetic field structure in the emission region (Thorsett
& Stinebring 1990; Xilouris et al. 1998).

Pulsar polarimetry can also provide information about the nature of the Galactic
magnetic field. The tenuous, magnetized plasma of the ISM induces frequency-
dependent Faraday rotation of the position angle, ψ. The change in position angle
is given by ∆ψ = RMλ2, where λ is the wavelength of the radiation and RM is the
rotation measure, given by the integral,

RM =
e3

2πm2
ec

4

∫ d

0

neB||dl. (1.3)
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Here, e and me are the electron charge and mass, respectively, and B|| is the compo-
nent of the Galactic magnetic field parallel to the line of sight. Measurements of the
position angle of a source at different observing frequencies enable determination of
the RM . Combined with a DM estimate, the RM can be used to ascertain 〈B||〉,
the average strength of the Galactic magnetic field component along the line of sight
to the pulsar.

1.4 Tests of General Relativity

The first pulsar found in a binary system, PSR B1913+16 (Hulse & Taylor 1975),
also happens to exist in one of the most relativistic systems ever discovered. Through
pulsar timing, Taylor & Weisberg (1982) were able to model the dynamics of this
double neutron-star binary pair and demonstrate that the orbital period is decreas-
ing as predicted by the General Theory of Relativity (GR). Their measurement of
the orbital decay provided the first indirect proof of the existence of gravitational
waves and is considered to be a major milestone in the verification of Einstein’s
theory of gravity.

Einstein first demonstrated the validity of his theory with its proposal in 1915,
when he correctly derived the rate of Mercury’s perihelion advance. The semi-major
axis of the orbital ellipse traced by Mercury precesses around the Sun by approx-
imately 44 seconds of arc per century, a phenomenon which remains unexplained
by Newton’s theory of gravity. The same precession is seen much more dramat-
ically in the PSR B1913+16 system, where the the rate of periastron advance is
approximately 4.2 degrees per year.

The General Theory of Relativity was also used to predict the apparent bending
of light in a gravitational field, a phenomenon first observed by Sir Arthur Eddington
(1919). Eddington traveled to Principe Island, off the coast of West Africa, to
observe the positions of the stars in the Hyades cluster as the Sun passed near the
line of sight to them during a solar eclipse. The measured deviations of the stellar
positions proved to be in accordance with Einstein’s prediction, and the young
scientist gained considerable overnight fame.

Einstein also predicted that the passage of time depends upon the strength of
the gravitational field in which it is measured. That is, a clock in the curved space
near a massive object will run more slowly than a clock in flat, or empty, space. One
consequence of this time dilation is that light will be red-shifted as it climbs out of
a gravitational potential. For example, if light starts at the surface of the Earth
and travels outward to a greater height, it will be found to have a lower frequency
and, correspondingly, lower energy than it had upon emission. This effect was first
observed by Pound & Rebka, Jr. (1960). They fired very high energy gamma-rays
from radioactive iron (Fe57) up the 21.6 m elevator shaft in the Jefferson Tower
Physics Building at Harvard University. At the top of the shaft, similar iron nuclei
were used to absorb the gamma-rays. However, as predicted, the gamma-rays at the
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top of the shaft had a (slightly) lower frequency than the natural frequency of the
absorbing Fe57 atoms, and the efficiency of absorption was decreased. By moving
the iron absorber with the appropriate velocity, the Doppler shifted gamma-rays
were observed to be more readily absorbed, and the scientists were able to show
that the fractional change in the gamma-ray frequency was within 10 percent of
the general relativistic prediction. Gravitational time dilation also affects the pulsar
“clock” as it climbs in and out of the potential of its companion. This effect is most
readily detected when the companion is massive and the eccentricity of the orbital
ellipse is high, so that the distance between the pulsar and its companion changes
significantly during one orbit.

Soon after the first gravitational red-shift experiment, Shapiro (1964) used Ein-
stein’s theory to show that the speed of light also depends upon the strength of
the gravitational field through which it is propagating. That is, light travels faster
through flat space than it does through the curved space near a massive object. The
amount by which the light is retarded depends on both the mass of the gravitating
object and the distance to the object. Only four years later, Shapiro et al. (1968)
demonstrated this phenomenon by bouncing radar signals off Mercury and Venus
and measuring the change in transit time as the line of sight between these planets
and the Earth passed near the Sun. An additional delay was detected and shown to
vary as predicted by Shapiro using the General Theory of Relativity. Accordingly,
this retardation is known as the Shapiro delay.

On its way to Earth, the signal from a pulsar may be retarded by the gravitating
mass of its companion. This Shapiro delay varies with binary phase as the distance
between the companion and the line of sight between the pulsar and the Earth
changes. In a highly-inclined system, the line of sight passes near to the companion
at superior conjunction, and the Shapiro delay increases sharply. In less inclined
systems, the change in Shapiro delay is more gradual. The functional form, or
“shape”, of the Shapiro delay is therefore related to the inclination of the orbit, and
its peak-to-peak magnitude, or “range”, is determined by the companion mass.

The masses of the pulsar and its companion often remain poorly constrained
due to the unknown orbital inclination angle (see the discussion regarding the mass
function in Section 3.2). However, where two or more general relativistic effects can
be measured, the component masses of the binary system may be determined. High-
precision pulsar timing has yielded a limited number of such measurements. For
instance, the rate of periastron advance, ω̇, and the time dilation and gravitational
redshift, γ, have been measured in the PSR B1913+16 (Taylor & Weisberg 1982),
PSR B1534+12 (Wolszczan 1991), and PSR B2127+11C (Deich & Kulkarni 1996)
systems. There have also been two significant detections of the Shapiro delay in
the highly inclined neutron star–white dwarf binary system, PSR B1855+09 (Ryba
& Taylor 1991) and the double neutron star system, PSR B1534+12 (Stairs et al.
1998). In systems with a low-mass companion, especially those with less inclined,
nearly circular orbits, the shape, s ≡ sin i, and range, r ≡ Gm2/c

3, of the Shapiro
delay become degenerate with the Keplerian orbital parameters. For this reason,
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an attempt at measuring this effect in the PSR J1713+0747 system provided only
weak, one-sided limits on these parameters (Camilo, Foster & Wolszczan 1994).

In many of these cases, GR has been assumed correct and utilized in order to
determine or limit the component masses of the binary system. Population statis-
tics of neutron star mass determinations aid in the development of plausible pulsar
formation scenarios, and also provide insight into the evolution of binary systems
(Bhattacharya & van den Heuvel 1991; Thorsett & Chakrabarty 1999). Mass es-
timates may also be used to constrain the poorly understood equation of state
of the extremely dense neutron star matter (Lattimer & Prakash 2001). Where
more than two general relativistic effects can be measured, as in the PSR B1913+16
and PSR B1534+12 systems, the set of equations describing the system is over-
determined. In this case, the gravitational theory used to derive the equation set may
be tested for self-consistency. By this means, the PSR B1913+16 and PSR B1534+12
timing experiments have provided the most rigorous proofs of the self-consistency
of GR in the strong-field regime. However, no independent means of determining
either the orbital geometry or the component masses is available in either of these
experiments.

Independent verification may be obtained by determining the orientation of a
binary pulsar system using only classical geometric constraints. Sections 3.2 and 4
describe such an alternative means in which the orbital inclination angle is ascer-
tained by utilizing purely kinematic and geometric effects. This classical determina-
tion of the orbital inclination permits an independent prediction of the shape of the
Shapiro delay and a unique test of GR. Combined with a significant detection of the
Shapiro delay, the technique may also be used to estimate the component masses in
the binary system. This method is applied to the nearby binary millisecond pulsar,
PSR J0437−4715.

1.5 PSRJ0437−4715

Discovered in the Parkes 70cm survey (Johnston et al. 1993; Manchester et al. 1996),
PSR J0437−4715 remains the closest and brightest millisecond pulsar known. It is
also the first MSP to have its X-ray emission detected and studied in detail (Becker
& Trümper 1993). A number of properties make this pulsar an excellent candidate
for high-precision timing. Owing to its relative proximity and correspondingly small
dispersion measure (DM ∼ 2.65 pc cm−3), random fluctuations of electron density
along the line of sight will be comparatively small (Backer et al. 1993). Therefore,
the contribution of turbulence in the ISM to the arrival time residual noise of this
pulsar is expected to be small (see Section 6.1.2). In addition, the narrow main
peak of the total intensity profile (see Figure 1.2), short spin period (∼ 5.75 ms),
and relatively high flux (∼ 90 mJy at 1.4 GHz) of this pulsar combine to yield highly
accurate arrival time estimates from modest integration lengths (see Section 3.1).
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Figure 1.2: Mean polarimetric pulse profile of PSR J0437−4715 at 1510 MHz. The
bottom panel displays the total intensity, Stokes I (upper solid line), the linearly
polarized component, L (lower solid line), and the circularly polarized component,
Stokes V (dotted line). The position angle, ψ, is shown in the upper panel.

However, this is only part of the story. As discussed in Section 5.2, the polar-
ized component of the pulsed emission can distort the total intensity profile and
systematically alter arrival time estimates. Although this mixing is invertible with
precision polarimetric calibration, this has proven to be a non-trivial and elusive
goal. The large swings in both position angle and the sense of circular polarization
near the peak of PSR J0437−4715’s central pulse (see Figure 1.2) therefore present a
significant challenge. This problem has provided the main impetus behind the devel-
opment of new calibration techniques (Britton et al. 2000) and sophisticated theo-
retical representations of the propagation and reception of electromagnetic radiation
(Britton 2000). In light of both its precision timing potential and its polarimetric
pathology, this thesis is devoted entirely to the study of this unique pulsar.

Optical observations indicate that PSR J0437−4715 is most likely bound to a
low-mass helium white dwarf companion (Bell, Bailes & Bessell 1993; Danziger,
Baade & Della Valle 1993; Bailyn 1993). The orbit is nearly circular and, as shown
in Section 3.3, general relativistic contributions to the evolution of the binary system
are negligible. However, owing to the relative proximity and large proper motion of
the system, variations of the apparent orbital parameters are dominated by three
main kinematic effects. The heliocentric orbit of the earth induces periodic variations
of both the projected semi-major axis, x, and longitude of periastron, ω, an effect
known as the annual-orbital parallax (Kopeikin 1995). In addition, secular evolution
of x and ω (Kopeikin 1996) and an apparent orbital period derivative (Damour &
Taylor 1991) arise from the system’s large proper motion, µ.
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A first estimate of µ was made by pulse time of arrival analysis of filter bank data
(Bell et al. 1995). The pulsar proper motion compared well with that derived by
optical observations of the white dwarf companion (Danziger, Baade & Della Valle
1993), further strengthening the argument for the binary association. With a post-
fit arrival time residual root-mean-square (RMS) of στ=2.7µs, the Bell et al. result
also confirmed the existence of a bow-shock PWN in the direction of the pulsar
proper motion. This nebula was later imaged and modeled by Fruchter (1995); who
suggested that the pulsar’s velocity may be oriented out of the plane of the sky at
an angle of approximately 37 degrees. Bell & Bailes (1996) note that the proper
motion contribution to orbital period derivative dominates over those terms arising
from general relativity, acceleration in the galactic potential, and galactic differen-
tial rotation, permitting an independent distance estimate, dβ (see Section 3.3.2).
They anticipate that the accuracy of dβ will improve with time as t2.5 and will, for
PSR J0437−4715, surpass that derived from the annual trigonometric parallax in
approximately five years (Bell & Bailes 1996). Sandhu et al. (1997) first determined
the annual parallax, π, and an improved estimate of µ through TOA analysis of data
from the Caltech autocorrelation spectrometer (FPTM). Noting the negligibility of
any relativistic contribution, Sandhu et al. also used the proper motion contribution
to ẋ to set an upper limit on the orbital inclination, i < 43◦. Despite a factor of
five decrease in στ to 500 ns, it was recognized that the accuracy of the analysis was
limited by:

1. residual dispersion smearing in each frequency channel;

2. incomplete correction of digitization artifacts; and

3. polarization calibration errors.

In order to fully appreciate the significance of these three main areas of concern, it
will prove useful to review both the observational challenges and instrumentation
commonly encountered in pulsar astronomy.

1.6 Apparatus of Pulsar Observations

Various technical hurdles present themselves to pulsar observers. The primary chal-
lenge arises from the relative weakness of pulsar signals (see Section 2.1.3), which
have flux densities between approximately 0.1 and 5000 mJy at 400 MHz. In order to
increase the signal-to-noise ratio, long integration times, large bandwidths, and sen-
sitive equipment with low system temperatures must be utilized (see Equation 2.6).
The observation of pulsars therefore necessitates cutting-edge receiver design, which
typically includes a cryogenically-cooled receiver system with stable response over
a wide range of frequencies. However, with an increase in bandwidth, the amount
of dispersion smearing observed across the band also increases (see Section 2.4.2).
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Therefore, the observing system must also be able to correct for the effects of in-
terstellar dispersion. This is usually achieved by dividing the wideband signal into
a number of narrow sub-bands, or channels, in which the dispersion smearing is
either decreased or may be considered negligible. To perform this task, three main
categories of conventional instrumentation have been employed: filterbanks, spec-
trometers, and baseband recording/processing systems.

A filterbank system consists of an array of N narrow bandpass analog filters,
each tuned to evenly spaced frequency intervals across the observing band. The
received radio frequency (RF) signal is mixed to an intermediate frequency (IF)
that matches the operating range of the filterbank. The IF is then multiplexed to
each of the N filters, the outputs of which are square-law detected, averaged, and
digitized. The digitized power may be folded using a predictive model of pulse phase
and/or recorded to tape for off-line data reduction at a later time. The end result
is a set of N pulse profiles which may be shifted by the relative dispersion delays
between each channel before summing the power across the band.

Filterbank systems have proven to be a powerful tool in the search and study of
pulsars (see, for example, Edwards et al. (2001)). However, they suffer from some
fundamental limitations. For instance, depending upon the DM of the observed
pulsar, there remains some degree of residual dispersion smearing across each of the
channels in a filterbank. Also, as the rise-time of each filter is inversely proportional
to the width of its bandpass, there exists a fundamental limit to the time resolution
that may be achieved with a filterbank system. Ideally, one would balance the
dispersion smearing and rise-time in each channel. However, this would necessitate
a different set of filters for each DM range of interest; an unrealistic requirement.

Digital spectrometers offer a little more flexibility in this respect. There are two
main classes of this type of backend: the FFT spectrometer and the autocorrela-
tion spectrometer, an example of which is the Caltech Fast Pulsar Timing Machine
(FPTM) (Navarro 1994). In these systems, the RF signal is mixed to baseband and
digitally sampled at the Nyquist frequency. The digital data are then divided into
segments from which either the Fast Fourier Transform (FFT) or autocorrelation as
a function of lag (ACF) is computed. In the former case, each FFT is square-law
detected to yield the power spectral density (PSD). The PSD or ACF estimates are
then folded modulo the topocentric pulse period. In the latter case, the average PSD
is computed from the average ACF after folding. (By the Wiener-Khinchin theorem,
the average PSD is simply the Fourier transform of the average ACF.) Both systems
yield the average power as a function of frequency and pulse phase. As with the
filterbank data, the pulse profile in each frequency channel is shifted to compensate
for dispersion delay before further integrating the power across the band. The width
of each channel in a digital spectrometer is inversely proportional to the number of
points in the FFT or number of lags computed in the autocorrelation function, N .
The “rise time” in each channel is therefore proportional to N times the Nyquist
sampling interval. By choosing an appropriate value of N , the residual dispersion
smearing in each channel may be balanced with the minimum time resolution.
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Both filterbanks and digital spectrometers are used to perform what is known
as incoherent dedispersion. That is, dispersion delays are removed from the de-
tected power of each frequency channel before integrating the total power across the
band. These systems suffer to some extent from residual dispersion smearing across
the smallest band in which the power is detected. By utilizing a fundamentally
different approach, in which the undetected voltage waveform is corrected, the dis-
persion smearing may effectively be completely eliminated. This technique is known
as phase-coherent dispersion removal, or coherent dedispersion (see Section 2.4.2).
Note that, in this context, “phase-coherent” describes a system in which the phase
information of the received electromagnetic radiation is preserved. This differs from
the more widely used definition of phase coherence which describes the degree to
which two signals maintain a fixed phase relationship with each other.

Coherent dedispersion may be performed either in real-time, using specially-
designed digital signal processing (DSP) hardware, or during a stage of off-line data
reduction, using a high-performance computing facility and custom-designed soft-
ware. In the latter case, a baseband recorder is used to store a digitized version of the
undetected voltage waveform for later use. As the received signal must be sampled
and stored at the Nyquist rate, baseband recording necessitates high-speed digital
equipment with large storage capacities, such as magnetic tape media. For this
reason, early baseband recording/processing systems were limited to much smaller
bandwidths than available using the conventional instrumentation (correlators and
filterbanks) of the time (e.g. 125 kHz (Hankins 1971), 1.25 MHz (Hankins & Bori-
akoff 1978), and 250 kHz (Stinebring & Cordes 1983)). An early hardware coherent
dedisperser, based on an integrated circuit that performs the Chirp-Z transform,
was able to process a bandwidth of 1.5 MHz in real-time (Hankins, Stinebring &
Rawley 1987).

Despite the decrease in S/N due to the (currently) smaller available bandwidths,
the application of phase-coherent dispersion removal can vastly improve the accu-
racy of arrival time estimates. As previously mentioned, a system that performs
incoherent dedispersion is limited by its individual channel bandwidth. The resid-
ual smearing in each sub-band broadens the average pulse profile, thereby increasing
the arrival time estimation error (see Equation 3.3). In addition, the power from
all radio frequencies within each sub-band of an incoherent system is improperly
assigned the centre frequency of the channel. The presence of a sufficiently narrow
scintillation band within a sub-band will bias the output of that channel toward
the radio frequency of the scintillation maximum, thereby systematically distorting
the average pulse profile and corrupting arrival time estimates. By properly assign-
ing and correcting all radio frequencies within the observing band, the technique of
coherent dedispersion does not suffer from these errors.

In addition, data reduction on cluster computing facilities offers two main ad-
vantages over the use of custom-designed, hardware-based observing systems. First,
software algorithms are more easily developed than hardware components, afford-
ing greater flexibility in design. For instance, the spectral leakage of the discrete
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Fourier transform may be improved in software by the use of a variety of apodizing
functions. Increasingly sophisticated radio frequency interference (RFI) excision al-
gorithms may also be employed in software. Second, the computational power of
baseband data processing software closely follows the continual growth of affordable,
commercial computing and data storage technologies, which are becoming increas-
ingly available at institutions around the world.

By the mid-1990s, a number of baseband recording/processing systems were in
use at observatories around the world. The Princeton Mark IV system, capable
of continuously two-bit sampling a 10 MHz bandpass (Shrauner 1997; Stairs 1998;
Stairs et al. 2000) was in use at the Arecibo and Jodrell Bank observatories. Also
at Arecibo, the Caltech Baseband Recorder (CBR) could also two-bit sample a
10 MHz bandpass. The Wide Bandwidth Digital Recording (WBDR) system, capa-
ble of recording a 50 MHz bandpass (Jenet et al. 1997) and the S2 VLBI recorder,
a 16 MHz system (Wietfeldt et al. 1998), were both used at Parkes. Versions of the
coherent Berkeley Pulsar Processor (cBPP), a real-time hardware coherent dedis-
perser developed at Berkeley and capable of correcting a bandpass of up to 112 MHz
(depending on pulsar DM), were installed at Green Bank, Effelsberg, and Arecibo
(Backer et al. 1997).

The work presented in this thesis is based on observations made using two differ-
ent baseband recorder technologies: the S2 VLBI Record Terminal (S2-RT), and the
Caltech Parkes Swinburne Recorder (CPSR) (van Straten, Britton & Bailes 2000),
a 20 MHz system similar in design to the CBR (see Section 2.3). The data reduction
and analysis software developed and used in this work addresses the three main
areas of concern outlined in Section 1.5, implementing:

1. phase-coherent dispersion removal (Hankins & Rickett 1975);

2. two-bit quantization error corrections (Jenet & Anderson 1998); and

3. arrival time estimation from the polarimetric invariant profile (Britton 2000).

A complete description of the observing instrumentation and processing tech-
niques is presented in Chapter 2. The computation and analysis of arrival time
estimates are described in Chapter 3, which also includes an account of the ad-
ditions made to the standard pulsar timing model. The new model is applied in
Chapter 4 to yield a geometric determination of the PSR J0437−4715 orbital incli-
nation and thereby provide an independent confirmation of the shape of the general
relativistic Shapiro delay introduced by the pulsar’s companion. In Chapter 5, it
is shown that phase-coherent data analysis provides the opportunity for superior
calibration of the system’s polarimetric response. A new calibration technique is
developed and applied to observations of PSR J0437−4715. The main findings of
this work are summarized in Chapter 6, following a discussion of both outstanding
problems and possible future research directions.
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Chapter 2

The Data Path

This thesis presents the primary results of both timing and polarimetry observations
of PSR J0437−4715 made at the Parkes Observatory. However, the baseband data
processing system developed for this work has been utilized in a variety of other
applications. In addition to regular timing observations of a number of pulsars,
the software has been used in single-pulse polarimetry and Hi studies. It has also
been applied to the reduction of baseband data from a number of other observa-
tories, including the ATNF Compact Array, Arecibo, Tidbinbilla, Urumqi, and the
Westerbork Synthesis Radio Telescope. Therefore, the signal processing method is
described in detailed but general terms, covering the complete data reduction path
from the reception of the pulsar’s radio signal to the integration of the mean po-
larimetric pulse profile. In each section, the relevant mathematical representations
are briefly reviewed while discussing both the equipment used and the algorithms
implemented in software.

2.1 Reception of Electromagnetic Radiation

The phenomenon of radio may be understood as a transverse electromagnetic wave.
For a plane-propagating wave, there exist two independent solutions to Maxwell’s
equations, representing two orthogonal senses of polarization. Receiver systems must
differentiate between these two senses in order to fully describe the vector state of
the observed radiation. A dual-polarization receiver is therefore designed with two
receptors, or probes, which are ideally sensitive to orthogonal polarizations. As
linear dipole probes are most commonly used, a Cartesian basis will be employed
throughout this thesis. In this basis, the radiation propagates in the direction of the
ẑ axis, and the electric field is measured by its projection along the x̂ and ŷ axes.

Some receivers employ waveguide structures (for example, a quarter waveplate)
in order to convert from linear to circular polarization. The theories and techniques
developed for linear feeds apply equally well to circularly polarized feeds after a
change of mathematical basis (see Section 2.4.4). Regardless of feed design, the
electric field component of the radiation impinging on the receiver feed horn in-
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duces a voltage in each of the receptors. The voltage signal from each receptor is a
real-valued function of time, or process, that may be represented by its associated
analytic signal.

2.1.1 The Analytic Signal

The analytic signal, also known as Gabor’s complex signal, is a complex-valued
representation of a real-valued process that provides its instantaneous amplitude
and phase. In order to define the analytic signal associated with a process, x(t), it
is first necessary to define the Hilbert transform (Papoulis 1965),

x̂(t) ≡ 1

π

∫ ∞

−∞

x(τ)

t− τ
dτ. (2.1)

The discontinuity in x̂(t) at t = τ is avoided by taking the Cauchy principal value.
The analytic signal associated with x(t) is then defined by

z(t) = x(t) + ix̂(t). (2.2)

As it is derived from the real-valued process, the analytic signal does not con-
tain any additional information. However, the analytic signals from two orthogonal
senses of polarization, z1(t) and z2(t), permit calculation of the coherency matrix,

ρ = 〈z(t) ⊗ z†(t)〉, (2.3)

where z(t) = (z1(t), z2(t)) is a column 2-vector, z†(t) is the Hermitian transpose of
z(t), the ⊗ symbol represents the vector direct (or outer) product, and the angular
brackets denote time averaging. As discussed in Section 5.2, the coherency matrix
is directly related to the average Stokes parameters, commonly used to describe the
polarization state of observed radiation. The analytic signal therefore proves to be a
useful representation in radio polarimetric studies and in the theoretical description
of quadrature down-conversion (see Section 2.2.1).

2.1.2 The Quadrature Filter

The Hilbert transformation of Equation 2.1 may also be written as the convolution,
x̂(t) = h(t) ∗ x(t), where

h(t) =
1

πt
,

and the ∗ symbol is used to represent the convolution operation,

h(t) ∗ x(t) ≡
∫ ∞

−∞

x(τ)h(t− τ)dτ . (2.4)
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x(t) X(ν)

cos(2πν0t)
1
2
(δ(ν + ν0) + δ(ν − ν0))

sin(2πν0t)
i
2
(δ(ν + ν0) − δ(ν − ν0))

h(t) = (πt)−1 H(ν) =

{

−i ν > 0
i ν < 0

π(t) = sinc(π∆νt) Π(ν/∆ν) =







0 |ν/∆ν| > 1/2
1/2 |ν/∆ν| = 1/2
1 |ν/∆ν| < 1/2

Table 2.1: Useful Fourier Transform pairs. The left column lists functions of time.
In the right column, the corresponding Fourier transform is given as a function of
oscillation frequency, ν. The filters, H(ν) and Π(ν), are known as the quadrature and
rectangle functions, respectively.

By the convolution theorem, this transformation is equivalent to X̂(ν) = H(ν)X(ν),
where

H(ν) =

{

−i ν > 0
i ν < 0

(2.5)

is the Fourier transform of h(t), known as the quadrature filter (Papoulis 1965).
Referring to the other commonly used functions and their Fourier transforms in
Table 2.1, it is trivial to show that the Hilbert transform of cos(ν0t) is equal to
sin(ν0t), enabling the quadrature filter to be understood as a 90◦ phase shifter.
Using the quadrature filter, it can also be shown that the Fourier transform of the
analytic signal, Z(ν), is equal to zero for ν less than zero:

Z(ν) = X(ν) + iX̂(ν)

= X(ν) + iH(ν)X(ν)

=

{

2X(ν) ν > 0
0 ν < 0

Conversely, the analytic signal associated with x(t) may be produced by suppression
of the negative frequencies in X(ν).

2.1.3 The Signal-to-Noise Ratio

Flux density is a measure of the power received per unit area, per unit frequency
interval, from a source of electromagnetic radiation. In radio astronomy, the stan-
dard unit of flux density is the Jansky (Jy), where 1 Jy = 10−26 W m−2 Hz−1. The
intensity of a pulsar signal is generally much weaker than that of the radio noise in-
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duced by the thermal motion of electrons in the receiver system and the background
radio noise from the Galaxy (or sky). The combined noise flux of the receiver and
sky is called the system temperature, Tsys. Note that the terms: “intensity”, “flux”,
“power”, “flux density”, and “temperature” are loosely interchanged in many texts.
The use of the word “temperature” derives from the relationship, P = kT , between
the temperature of a blackbody, T , and the radio noise power that it generates per
unit of bandwidth, P , defined by Boltzmann’s constant, k = 1.3807 × 10−23J K−1

(Kraus 1986). As a consequence of this proportionality, Tsys is commonly expressed
in Kelvin.

The signal-to-noise ratio, S/N , is the ratio of the signal power to the system
noise power and, for a time-averaged periodic signal, is given by

S/N =
KS
√

Npoltobs∆ν

Tsys

, (2.6)

where K is the sensitivity of the radio telescope in Kelvin per Jansky, S is the flux
density of the signal in Jansky, Npol is the number of polarizations observed (one
or two), tobs is the duration over which the signal is averaged or integrated, and
∆ν is the bandwidth of the observing instrumentation. Through Equation 2.6, the
system temperature may be related to the Noise Equivalent Flux Density (NEFD),
which is defined by the flux required to produce a S/N of unity after one second of
integration. Antenna sensitivity is given by (Kraus 1986)

K =
ηAA0

2k
, (2.7)

where A0 is the collecting area of the primary reflector and ηA is the aperture ef-
ficiency. Equations 2.6 and 2.7 motivate the use of a large dish with cryogenically
cooled receivers in order to maximize S/N . Accordingly, all of the data presented
in this thesis are derived from observations made using the 64 m radio telescope at
the Parkes Observatory. The 20 cm timing observations were made using both the
H-OH receiver and the centre element of the Multibeam receiver. Both receivers are
dual-polarization systems with orthogonal linear (dipole) receptors. The Multibeam
receiver has a frequency range of 1230 MHz to 1530 MHz, and an average noise tem-
perature of 23.5 K (measured over a 64 MHz bandpass at 1394.5 MHz). The H-OH
receiver has a frequency range of 1200 MHz to 1800 MHz, and an average noise tem-
perature of 28 K (Reynolds 2003). Each receiver was interfaced with one of two
different baseband recorder backends: an S2 VLBI Record Terminal (S2-RT) (Can-
non et al. 1997) coupled with an ATNF Data Acquisition System (DAS) digitizer;
and the Caltech Parkes Swinburne Recorder (CPSR) (van Straten, Britton & Bailes
2000), based on a similar recorder described by Jenet et al. (1997). The epoch
during which each combination of receiver and backend was used is summarized
in Table 2.2.
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Table 2.2: Dates and equipment used

Date Range Receiver Backend
1997 Jul 11 → 1998 Mar 03 S2-Aa Multibeam
1998 Mar 04 → 1998 Mar 05 S2-Aa H-OH
1998 Apr 25 → 1998 Apr 29 S2-Db H-OH
1998 Aug 20 → 1999 Aug 08 CPSR H-OH
1999 Aug 10 → CPSR Multibeam
a S2 Recorder with analog filters
b S2 Recorder with digital filters

2.2 Down-Conversion

By the Nyquist Theorem, a signal must be sampled at a rate equal to twice its band-
width in order to completely represent the information discretely. Therefore, subject
to the finite recording rate of digital observatory equipment, a radio astronomy ex-
periment must be constrained to observe a limited portion of the radio spectrum.
The intermediate process by which the signal from the receiver is band-limited and
made ready for baseband recording is known as down-conversion.

Consider the incoming radio signal, x(t), and its Fourier transform, X(ν), known
as the spectrum, or spectral density of x(t). The band-limited signal of interest,
xb(t), is parameterized by its centre frequency, ν0, and bandwidth, ∆ν. Baseband
down-conversion is the process by which the spectral information originally con-
tained in the range [ν0 − ∆ν/2, ν0 + ∆ν/2] is shifted down to [0, ∆ν]. It is worth
noting that this definition of baseband differs slightly from the more widely accepted
use in the telecommunications industry, where baseband refers to the original band
of frequencies of a signal before it is used to modulate a carrier of much higher
frequency.

The spectral information is shifted to baseband by demodulating or mixing the
radio frequencies (RF) with a local oscillator (LO). This is equivalent to multiplying
the signal, x(t), with a pure tone, l(t) = a cos(2πνlt)+b sin(2πνlt). By application of
the convolution theorem, and reference to Table 2.1, mixing may also be understood
as a convolution with a pair of (complex) delta functions in the frequency domain.
This understanding proves useful in the following sections.

In addition to mixing to lower frequencies, the signal must also be band-limited
before analog-to-digital conversion. Otherwise, power from frequencies higher than
the Nyquist frequency will be reflected back into the band of interest, a pollution
known as aliasing. The ideal low-pass filter is represented by the rectangle function
(see Table 2.1) so that a bandpass filter with centre frequency, ν0, and bandwidth,
∆ν, is given by

Π

( |ν| − ν0

∆ν

)

. (2.8)
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Note that the absolute value of ν in the first term of the above equation creates a
bandpass window at both positive and negative frequency values.

Down-conversion therefore refers to the combined operation of mixing and band-
limiting. The following sections describe in detail two commonly used methods of
down-conversion: dual-sideband (DSB) and single-sideband (SSB). These are also
represented graphically in Figures 2.1 and 2.2. The process of down-conversion is
performed separately and (ideally) identically on each of the two orthogonal senses
of polarization from the receiver feed.

2.2.1 Dual-Sideband Down-Conversion

During dual-sideband down-conversion (DSB, see Figure 2.1), also known as quadra-
ture mixing, the voltages from the receiver are split equally into two signal paths.
One signal is mixed with a local oscillator, producing

i(t) = x(t) cos(2πν0t+ θ).

The other signal is mixed with the same local oscillator phase-shifted by 90 degrees,

q(t) = x(t) cos(2πν0t+ θ − π/2) = x(t) sin(2πν0t+ θ).

Both i(t) and q(t) are low-pass filtered with a cutoff frequency of νc = ∆ν/2, pro-
ducing ib(t) = i(t) ∗ sinc(π∆νt) and qb(t) = q(t) ∗ sinc(π∆νt). The low-pass filtered
signals are then digitally sampled at the Nyquist rate of 2νc = ∆ν. The signals,
ib(t) and qb(t) are known as the in-phase and quadrature components, respectively,
of x(t) with respect to ν0.

During playback, the analytic signal associated with x(t) is formed by taking:

zb(t) = ib(t) + iqb(t)

= [x(t) cos(2πν0t) + ix(t) sin(2πν0t)] ∗ sinc(π∆νt)

= [x(t)e2πiν0t] ∗ sinc(π∆νt)

where the distributive property of convolution has been applied and the arbitrary
phase angle, θ, has been set to zero without loss of generality. In the Fourier domain,

Zb(ν) = X(ν + ν0)Π(ν/∆ν).

That is, the spectrum of zb(t) is equivalent to the band-limited portion of x(t) centred
at ν0. The negative frequency components, centred at −ν0, have been suppressed
by low-pass filtering, forming the analytic signal associated with x(t).

The CPSR utilizes an analog dual-channel quadrature down-converter with four
10 MHz anti-aliasing low-pass filters in order to simultaneously perform DSB down-
conversion of two 20 MHz bandpasses; one from each of the linear polarizations from
the receiver feeds. The mixer LO is provided by an external signal generator.
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Figure 2.1: During dual-sideband down-conversion (DSB), the real signal, X(ν), is
split during mixing into its in-phase, I(ν), and quadrature, Q(ν), components before
low-pass filtering. The centre frequency and bandwidth of interest are ν0 and ∆ν,
respectively. Each of the signals, Ib(ν) and Qb(ν), have bandwidth ∆ν/2. The complex
signal, Zb(ν)=Ib(ν)+iQb(ν), is the band-limited analytic signal associated with X(ν).

2.2.2 Single-Sideband Down-Conversion

During single-sideband down-conversion (SSB, see Figure 2.2), the signal of interest,
x(t), is first bandpass filtered, producing xb(t) whereXb(ν) = X(ν)Π((|ν| − ν0)/∆ν).
The band-limited signal is then mixed with a LO with frequency, ν1, producing
xm(t) = xb(t) cos(2πν1t+ θ), where ν1 set to either ν0 + ∆ν/2 (lower-sideband) or
ν0 −∆ν/2 (upper-sideband). After another stage of low-pass filtering, xu(t) is then
digitally sampled at the Nyquist rate, 2∆ν. As bandpass filtering is performed
before mixing, the filter used in the first stage must be tunable over the range of
interesting centre frequencies, unlike the low-pass filter in a DSB down-converter.
For this reason, DSB is often the more economical means of down-conversion.

During playback, the analytic signal associated with x(t) may be formed in
practice by taking the real-to-complex Fast Fourier Transform (FFT)1, followed by
the complex-to-complex inverse FFT. Most real-to-complex FFT implementations
automatically omit the redundant negative frequencies (F (−ν) = F ∗(ν)) from their

1The Fastest Fourier Transform in the West (FFTW) is used in the reduction software. See
http://www.fftw.org.
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Figure 2.2: During single-sideband down-conversion (SSB), the real signal, X(ν), is
bandpass filtered before mixing. The centre frequency and bandwidth of interest are
ν0 and ∆ν, respectively. The band-limited signal, Xb(ν), may be mixed with a local
oscillator set to ν0 +∆ν/2 (lower-sideband) or ν0−∆ν/2 (upper-sideband, shown here).
The resulting signal, Xm(ν), is low-pass filtered, producing Xu(ν) with bandwidth ∆ν.

output, implicitly producing the analytic signal (see Section 2.1.2). Since the main
data-reduction operation (see Section 2.4.2) is performed in the Fourier domain, the
cost of calculating the analytic signal is transparent.

A combination of analog filters and frequency translators is used to perform
SSB down-conversion on each of two linear polarizations before presenting the two
16 MHz bandpasses to the ATNF DAS digitizer. As listed in Table 2.2, the analog
filters were replaced by digital filters in April of 1998.

2.3 Digitization

The band-limited voltage wave-form, xb(t), is an analog signal that must be con-
verted into digital form before it may be recorded on digital media and manipulated
using digital electronics. The process of analog-to-digital (A/D) conversion is most
directly parameterized by the sampling rate, r, the number of bits per sampled da-
tum, nb, and the set of Q− 1 sampling thresholds, xk; 0 < k < T , where Q = 2nb is
the total number of unique digitizer output states.
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As previously mentioned, the sampling rate is directly related to the bandwidth
of the observation by the Nyquist Theorem, that is, r = 2∆ν. In the DSB case, two
channels representing the real and imaginary components of the analytic signal are
sampled at half the Nyquist rate; however, the total number of samples produced per
time interval is identical to SSB. The CPSR system performs DSB down-conversion
and the 20 MHz bandpass is digitized with a sampling interval of ts = 50 ns. As
will be shown in Section 3.3, the RMS residual of this high-precision pulsar timing
experiment is currently less than 130 ns. Therefore, an error in the sampling clock
phase, εs . 50 ns, will make a non-trivial contribution to the residual timing noise.
The signal generator used to provide the sampling clock is phase-locked to a hy-
drogen maser frequency standard, the “station 1-Hz”. However, the absolute phase
of the generator is not preserved when its settings are changed or when its power
is cycled. Therefore, beginning in May 2000, the relative phase between sampling
clock and station 1-Hz was regularly calibrated to better than 5 ns accuracy using
a digital oscilloscope.

The station 1-Hz is in turn monitored with reference to the Coordinated Univer-
sal Time (UTC) standard broadcast by the Global Positioning System (GPS). The
Parkes Totally Accurate Clock (TAC) records the difference, ∆C(1) = UTC(PKS)-
UTC(GPS), every five minutes, resulting in a daily average estimate, 〈∆C(1)〉, with a
standard deviation of 6 ns (pre-October 2000) and 4 ns (post-October 2000) (Reynolds
2001). The difference between UTC(GPS) and International Atomic Time (TAI),
∆C(2), is monitored by the International Bureau of Weights and Measures (BIPM)
and published monthly in the BIPM Circular T. (Note that UTC differs from TAI
only by an integral number of seconds.) According to BIPM, TAI should not lose
or gain more than 100 ns per year and the daily estimate of the mean, 〈∆C(2)〉, has
an error of the order of 10 ns. Using the TAC and BIPM tables of corrections, the
time estimates derived from the observatory sampling clock may be retroactively
corrected to reflect UTC with an accuracy of approximately 20 ns.

The number of bits per sample and the values of the sampling thresholds are
related to the dynamic range of the system. The dynamic range of an A/D converter
is the ratio of the maximum signal power, or saturation level, to the system noise
power. This is similar to the definition of S/N , except that dynamic range is based
on the system noise power when no signal is present. As shown in Appendix A, the
average instantaneous S/N of PSR J0437−4715 is approximately 0.16. Therefore,
the incoming noise waveform may be sampled with low dynamic range and nb may
be small.

The total data rate, RT , is simply the product of the sampling rate and the
number of bits per sample, RT = rnb. Therefore, given the maximum recording
capacity in bits per second of the digital storage medium, a trade-off must be made
between bandwidth and dynamic range, such that the S/N is maximized. The S/N
is proportional to the square root of the bandwidth (see Equation 2.6) and the
fractional loss in S/N due to halving the bandwidth is 1-2−1/2 ∼0.293. Referring to
Table 2 of Jenet & Anderson (1998), the fractional S/N lost by sampling with two
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instead of four bits is ∼0.126. Therefore, two-bit sampling is utilized and the total
data rate for CPSR is

RT = 4(channels) × 2 bits/sample × 20 Msamples/s = 20 MB/s,

where the four analog input channels represent the in-phase and quadrature com-
ponents of the two orthogonal senses of polarization.

The Q − 1 sampling thresholds, xk, define the range of values of the incoming
voltage, xb(t), that correspond to one of theQ digitized output states. Each digitized
state is later assigned an output value, yk. The sampling thresholds and digitized
output values are chosen in order to minimize signal distortion and quantization
noise (Jenet & Anderson 1998). As the experimental aim is to measure the power
as a function of pulse phase, xk and yk are optimized in order to produce unbiased
power estimates. For a two-bit sampler, Q = 4, and the optimal sampling thresholds
are given by x3 = −x1 = 0.9674σn and x2 = 0, where σ2

n is the average power of
the input signal, xb(t) (Jenet & Anderson 1998). The optimal assignment of the
output levels, yk, is discussed in detail in Section 2.4.1.

The system and sky temperatures change as a function of time, and it is necessary
to monitor the both the mean, 〈xb(t)〉, and the power, σ2

n, of the input signal in
order to maintain optimal sampling thresholds. An on-line program performs this
monitoring task by interfacing with the CPSR raw data buffer and sending level-
setting commands to the CPSR Fast Flexible Digitizer (FFD) over a RS-232 serial
port connection.

Synchronized to the external sampling clock, the FFD is used to two-bit sample
each of the four 10 MHz bandpasses. Digitized data are sent via 16-bit parallel dig-
ital connection to a Sun Ultra SPARC 60 with 512 MB RAM and a commercially
available Direct Memory Access (DMA) card (Engineering Design Team’s PCD20
DMA card). Control software running on the Sun workstation stripes the incoming
data to six 8.5 GB SCSI disks. From disk, approximately one-minute (1 GB) seg-
ments of data are gathered and written to one of four DLT 7000 tape drives. As each
continuous one-minute block is written to one tape, only one drive is required during
playback. As each DLT 7000 tape can store up to 35 GB, 32 one-minute blocks are
written to each tape, allowing up to 2 hours between tape changes.

The ATNF DAS two-bit samples each of the two 16 MHz bandpasses, corre-
sponding to the two orthogonal polarizations. The DAS monitors the power of
the incoming analog signal and every ten seconds updates its sampling thresholds.
Therefore, no additional monitoring software is required while the S2/DAS system
is in use. The digitized data are sent from the DAS to the S2-RT User Interface
Card (UIC) at a rate of 16 MB/s, along with a synchronization clock signal and
the station 1-Hz. On the S2-RT, UTC time stamps, synchronization codes, and
auxiliary user information are written with the digitized data to an array of eight
S-VHS tape recorders. A single S2 tape-set (consisting of eight S-VHS tapes) can
record up to 500 GB of data, for an unattended record time of up to 8.5 hours.
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As the S2 system records data onto S-VHS tapes, the cost of storage media
is quite low. However, the playback terminal (S2-PT) is not as cost efficient and
requires specialized engineering skills for both maintenance and repair. Although
the capabilities of the S2 Tape-to-Computer Interface (Wietfeldt et al. 1998) were
expanded to use network resources more efficiently, the playback method proved
to be detrimental to both the transport units and the overall playback terminal
performance. Therefore, the decision was made to switch to a new baseband recorder
technology. The CPSR was designed in cooperation with colleagues at Caltech and
installed at Parkes in August of 1998. It consists entirely of commercially available
components and is also easier to wire up and operate, compared to the S2/DAS.

This convenience of operation was vitally important to the observing strategy
undertaken at the beginning of the year 2000. As the three-dimensional modeling of
the orbital geometry presented in Section 3 requires excellent day-of-year coverage,
it was decided to increase the frequency of our observations. Assistance was enlisted
from the technical staff at Parkes, and the much simpler interface to CPSR greatly
reduced the probability of experimental error.

The complete recording process is presented in Figure 2.3. Both the Multibeam
and H-OH receivers serve at different times as the Prime Focus Receiver. The RF
signal from the receiver is mixed to an intermediate frequency (IF) before it is sent
from the Focus Cabin to the Observatory Control Rack. Here, the IF is further
amplified or attenuated and, if more than one backend is used for observing, split
into the required number of signal paths. Depending upon the operating range of
the baseband down-converter, the IF may be shifted by mixing before presentation
to the Baseband Down-Conversion system. Either SSB or DSB down-conversion is
performed, depending on the Baseband Recorder used. The baseband signal is then
two-bit sampled in synchronization with the Sampling Clock, and recorded to tape.

2.4 Reduction

Data are read from tape and subsequently processed off-line at Swinburne University
using a beowulf-style cluster of high-performance workstations. This cluster under-
went a number of upgrades and expansions over the course of this thesis. Table 2.3
lists the new equipment added to the cluster during each upgrade, including the
additional storage and computing capacity.

CPSR data are transferred to disk using a DLT 7000 tape drive and commercially
available tape robot. Each S2 tape-set is transferred to disk using the S2 Tape-to-
Computer Interface, S2-TCI (Wietfeldt et al. 1998). Data reduction software is
executed in parallel on the cluster using the mpich Message Passing Interface (MPI)
library (Gropp et al. 1996). The data reduction algorithm is outlined in the flow-
chart in Figure 2.7, and described in detail in the following sections.
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Figure 2.3: Overview of baseband recording. Although only one signal path is shown
from receiver to recording, two orthogonal senses of polarization are received and
propagated along separate signal paths. The specifics of the observing configuration
(for example, the number of IF conversions) may vary between different receiver and
recorder combinations.

Table 2.3: Computing facility expansions

Date Equipment Added Storage (GB) Gflops
1998 Jan 16 Digital 500 MHz ev56 180 16
1998 Dec 8 Digital 600 MHz ev56 22 9.6
1999 Mar 41 Compaq 500 MHz ev6 880 41
2000 Jan Compaq ES450 4×667 MHz ev67

+ 1TB RAID
1,110 5.3

2001 Jan 16 Dell Dual PIII 933 MHz 340 59.7

The actual performance of each machine did not scale linearly with the theoretical
Gflops rating. For instance, the ev6 chip includes both divide and square-root
operators that accelerate its performance, effectively increasing its computing power
to approximately twice that of the ev56 processor.

2.4.1 Dynamic Output Level Setting

The pulsar signal is a source of amplitude-modulated wide-band noise, and may
be treated statistically as a non-stationary stochastic process. The instantaneous
power, σ2, fluctuates on the time-scale of the pulsar period, which is necessarily
much shorter than the interval over which the estimate of σn is calculated, where
σn is the average power estimate on which the optimized sampling thresholds are
based. The fluctuation of σ away from σn results in a slight deviation away from
the optimal state of two-bit sampling, and therefore increases the level of distortion.
To compensate for this deviation during playback, each two-bit digital datum is re-
interpreted in the context of a local estimation of the undigitized power and assigned
an optimal output floating-point value such that the distortion to the output signal
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power is minimized (Jenet & Anderson 1998).

During this process of dynamic output level setting, the data is divided into
consecutive segments of L digitized samples. In each segment, the number of states,
M , that correspond to undigitized voltage levels between x1 and x3 (low voltage
states) are counted. The undigitized power, σ2, in this segment of L points is then
estimated by inverting

Ψ =
M

L
=

∫ x3

−x3

P (x)dx. (2.9)

Where P (x) is the probability density function of the analog signal, xb(t). Assuming
that xb is distributed normally,

P (x) =
1√
2πσ

exp

(

− x2

2σ2

)

, (2.10)

and Equation 2.9 may be re-written as

Ψ = erf

(

x3√
2σ

)

, (2.11)

where the error function,

erf(x) =
2√
π

∫ x

0

e−y2

dy. (2.12)

Equation 2.11 is solved for σ by inverting the error function. In order to obtain
a statistically meaningful estimate of σ, L must large enough that estimation er-
rors (∝ L−1/2) are small. However, L × ts must also be smaller than the short-
est time-scale over which σ is expected to fluctuate. As will be discussed in Sec-
tion 2.4.2, this minimum time-scale is given by the dispersion smearing time, td. For
PSR J0437−4715, which has a dispersion measure of approximately 2.65 pc cm−3,
observed with a bandwidth of 20 MHz and centre frequency of 1413 MHz, Equa-
tion 2.15 yields td ∼ 155µs, so that L ≤ 3100 points. The chosen value of L = 512
yields power estimation errors of the order of 4%.

The inverse error function is determined using an iterative technique (the Newton-
Raphson method), and it is computationally prohibitive to perform this calculation
for every L-point segment of data. However, given fixed L, there are a limited num-
ber of possible values of Ψ = M/L, where 0 < M ≤ L, and the use of a lookup
table containing the output levels corresponding to each given value of M greatly
improves the efficiency of this calculation.

The values of M corresponding to each segment of L digitizer samples are stored
in parallel with the output, two-bit corrected time samples. Under certain circum-
stances, these values may be utilized during a second stage of digitization correction
known as “scattered power correction” (Section 2.4.4). It is also useful to store in
the header of each reduced archive data file a histogram of occurrences of M , which



30 CHAPTER 2. THE DATA PATH

may be used as a diagnostic tool when later assessing the quality of the baseband
recording.

2.4.2 Coherent Dedispersion

As mentioned in Section 1.6, the primary data reduction task performed in software
is phase-coherent dispersion removal (Hankins 1971; Hankins & Rickett 1975). In
this context, dispersion refers to the broadening of the pulse profile that arises from
the frequency-dependent group velocity of electromagnetic radiation propagating in
the interstellar medium (ISM). By modeling the ISM as a cold, tenuous plasma,
Hankins & Rickett (1975) derive a dispersion frequency response function,

H(ν + ν0) = exp

(

i
2πDν2

ν2
0(ν + ν0)

)

, (2.13)

that may be used to invert the effect of the ISM. Here, ν0 is the centre frequency
of the observation and the dispersion, D, is related to the more commonly used
dispersion measure, DM , by (Backer et al. 1993)

DM (pc cm−3) = 2.410331(2) × 10−4D (s MHz2). (2.14)

The dispersion measure is, in turn, given by the integral of the free electron density
along the line of sight to the pulsar (Section 1.2).

Pre-detection, or phase-coherent, dispersion removal is performed by convolv-
ing the data with the inverse of the dispersion impulse response function. By the
discrete convolution theorem, this operation may be more efficiently performed in
the frequency domain by multiplication with the inverse of the discrete form of
Equation 2.13 (Bracewell 1986). However, the discrete convolution theorem is valid
only under the assumption that the input data are periodic, with period equal to
the length of the transform. That is, xb(tk) = xb(tk+lN), where N is the number
of points in the transform (necessarily equal to the size of the discrete frequency
response function, H−1(νk)) and l is an arbitrary integer. The discrete convolution
operation therefore results in cyclical convolution, as described in Chapter 18 of
Bracewell (1986) and § 13.1 of Numerical Recipes (Press et al. 1992, hereafter NR).

By comparing Figure 2.4 of this text with Figure 13.1.3 of NR, it can be seen
that each time sample output by the cyclical convolution operation will depend upon
the n+

d = rt+d points preceding it and the n−
d = rt−d points following it, where r is

the rate at which xb(t) is sampled. Therefore, the first n+
d points in the cyclical

convolution product will be erroneously mixed with data wrapped around from the
end of the data segment, and the last n−

d points of the result will be erroneously
mixed with time samples from the beginning of the input segment (see also Figure
18.4 of Bracewell (1986)). To compensate for this effect, the polluted points (called
the wrap-around region) from the result of each transformation are simply discarded,
a technique that forms part of the overlap-save method of discrete convolution. This
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Figure 2.4: The magnitude of the dedispersion impulse response function, |h−1(ti)|, is
calculated from the inverse FFT of the frequency response function, H−1(νk). For this
example, ν0=600 MHz, ∆ν=20 MHz, DM=2, and N=65536 points. The smearing in
the upper half of the band, t+d = 750µs, and lower half of the band, t−d = 788µs, result
in asymmetry about t = 0. Note that t+d and t−d correspond to m+ and m− in Figure
13.1.3 of Numerical Recipes.

method, depicted in Figure 2.5, also accounts for the fact that the duration of the
impulse response function is generally much shorter than that of the time-series to
be convolved.

The duration, or rise time, of the dispersion impulse response function is called
the sweep or smearing time, td (note that td = t−d + t+d ). It is equivalent to the width
of a band-limited delta-function after passage through the ISM, and is a function of
the bandwidth, ∆ν, and centre frequency, ν0, such that

td = D(ν−2
min − ν−2

max), (2.15)

where νmin = ν0 − ∆ν/2, and νmax = ν0 + ∆ν/2 are given in MHz. Coherent
dedispersion restores the original delta-function by advancing the signal from lower
frequencies and delaying the signal from higher frequencies so that all coincide with
the arrival of the signal from the centre frequency. Noting the quadratic form of
Equation 2.15, it can be seen that the lowest frequency must be advanced by an
amount greater than the delay applied to the highest frequency. This results in
asymmetry of h(ti) around t = 0, such that n+

d < n−
d , and must be accounted when

discarding wrap-around points from the result of each cyclical convolution operation.

As nd = n−
d + n+

d points are discarded, N must be greater than nd and is chosen
by maximizing the efficiency,

E =
N − nd

OFFT(N)
(2.16)

where OFFT(N) is the order of the FFT operation, assumed to be N logN when N is
a power of two. In practice, OFFT(N) will be dominated by the physical parameters
of the computing workstation, such as cache size. For instance, when the memory
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N
Input Voltage Data

Output Voltage Data

nd

Figure 2.5: During overlap-save, the input data (top) are divided into over-lapping
segments of N points. The amount by which they overlap is the number of non-
zero points, nd, in the discrete dedispersion impulse response function. Each N-point
segment is separately transformed into the Fourier domain, multiplied by the discrete
dedispersion frequency response function, H−1(νk), and transformed back into the
time domain (middle). Polluted points from the wrap-around region (shaded grey)
are discarded before copying the result into the output dataset (bottom).

required to store the transform (and its plan) exceeds the cache size, the overhead
of cache page-swapping will adversely affect performance.

2.4.3 Coherent Filterbank Dedispersion

Coherent dedispersion allows the original temporal resolution of the digitized dataset
to be retained. However, this high time resolution is often integrated away into an
average profile with phase bin interval much larger than the sampling interval, ts.
It therefore proves useful to trade some time resolution for frequency resolution by
dividing the observed band into a number of sub-bands, or channels. There are
a number benefits to be gained by forming a “synthetic” or “software” filterbank.
First, the smearing time, td, in each sub-band is reduced, resulting in smaller nd and
required transform length, N , thereby improving the efficiency of data reduction
(see Equation 2.16). Second, by retaining frequency resolution, the measured polar-
ization may be better calibrated using post-detection techniques (see Section 5.2).
Finally, individual sub-bands containing narrow-band radio-frequency interference
(RFI) may be discarded, or a better estimate of DM may be used at a later time
to correct the dispersion delays between each sub-band before further integrating in
frequency.

During synthetic filterbank construction, the time-series of discretely sampled
voltages, xb(ti), is divided into Nc sub-bands using the FFT. In the simplest case,
the data are divided into non-overlapping segments of Nc complex points (or 2Nc

real points). Each segment is transformed into the Fourier domain, where each of
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Figure 2.6: Corruption due to spectral leakage. PSR B1937+21 was observed at
1405 MHz using 64 MHz of the CPSR-II band. The observation was processed using
a synthetic filterbank with 128 channels (top panel) and 64 channels (bottom panel).
With DM ∼ 71.04, the dispersion delay between neighbouring channels (∼ 114 µs and
228 µs, respectively) can be readily seen between the main peak and the leakage
artifacts to either side of it.

the Nc complex spectral values, Xb(νk), is treated as a time-sample in one of Nc

independent analytic signals, each with bandwidth, ∆ν ′ = ∆ν/Nc, and sampling
rate, r′ = r/Nc. Phase-coherent dispersion removal is then separately performed
on each of the Nc resulting time-series using unique dedispersion frequency response
functions, each tuned to the centre frequencies, νk, of the output filterbank channels.

This method of synthetic filterbank formation suffers from spectral leakage, as
described in Section 13.4 of NR. Owing to the square time-domain window func-
tion inherent to the discrete Fourier transform, a significant amount of power (up
to ∼20%) from neighbouring frequency components is convolved into each output
filterbank channel. When the inter-channel dispersion delay is large, the artifacts of
spectral leakage can be readily seen as delayed images of the pulse profile, as shown
in Figure 2.6.

The spectral leakage function may be improved by the application of a tapering
function in the time domain, a technique known as “data windowing”. However,
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the corresponding physical bandwidth of the spectral leakage function (NR, Figure
13.4.2) may also be decreased by increasing the length of the Fourier transform by
a factor, N . Where K = N ×Nc, each K-point segment of data is transformed into
the Fourier domain, and the result is divided into Nc non-overlapping segments of
N spectral points. Each segment is inverse transformed back into the time domain,
producing N time samples from Nc independent time-series, or filterbank channels.

Phase-coherent dispersion removal may be performed simultaneously with this
synthetic filterbank technique. While in the Fourier domain, each of the Nc spectral
segments is multiplied by a unique dedispersion frequency response function. In this
case, N must naturally be chosen to match the size of the response function. As
the inverse transform size (N) must be the same in each sub-band, the size of the
response function must be large enough to accommodate the maximum smearing
time, t′d = D(ν−2

min − ν ′ −2
max), corresponding to the sub-band with the lowest centre

frequency, where νmin = ν0−∆ν/2, and ν ′max = νmin+∆ν/Nc. Owing to the quadratic
form of Equation 2.15, t′d & td/Nc. Although the smearing is less severe in those
sub-bands with higher centre frequencies, simplicity dictates that n′

d = r′t′d & nd/N
2
c

wrap-around points are discarded from the result of each of theNc inverse transforms
(cyclical convolution products). Each K-point segment of data in the original time-
series must therefore overlap by Nc × nd points.

Note that the size of the first FFT, K = Nc ×N > nd/Nc, is roughly inversely

proportional to the number of filterbank channels, Nc. As smaller transform lengths
improve processing efficiency, Nc should be chosen to be as large as possible without
sacrificing the desired time resolution of the resulting time-series. This remains true
only up to the limit where the resulting time resolution, t′s = 1/r′, becomes larger
than t′d (ie. where n′

d ≤ 1).

Coherent filterbank dispersion removal may be summarized by the following
algorithm:

1. Divide the time-series into segments of K points (K = Nc ×N) that overlap
by Nc × nd points (cf. top of Figure 2.5).

2. For each segment, perform the K-point FFT, and divide the result into Nc

non-overlapping segments, or sub-bands, of N points.

3. For each of the Nc sub-bands, k = 1 to k = Nc:

(a) multiply the N -point spectrum by the dedispersion frequency response
function specific to centre frequency, νk;

(b) perform an N -point inverse FFT;

(c) discard the n′
d points from the wrap-around region;

(d) copy the remaining points into the kth time-series.
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2.4.4 Detection and Integration

Typically, only the total intensity pulse profile is utilized for the purposes of pulsar
timing. However, as discussed in Section 5.2, the polarimetric response of a receiver
can significantly alter the observed total intensity, thereby systematically skewing
estimates of pulse time-of-arrival (TOA). Apart from the concerns of high-precision
timing, the characteristics of the pulsar’s polarized radiation may offer insight into
the emission mechanism, the geometry of the pulsar’s magnetic field, and the mag-
netic field of the ISM. Therefore, it is a vital part of pulsar astronomy to retain
and accumulate all of the polarization information, commonly represented using the
Stokes parameters.

It proves useful to organize the four, real-valued components of the Stokes pa-
rameters into scalar and vector components, writing [S0,S], where S0 is the total
intensity, S = (S1, S2, S3), is the polarization vector, and S0, S1, S2, and S3 cor-
respond to the more commonly used Stokes I, Q, U, and V, respectively (Britton
2000; Hamaker 2000). The Stokes parameters may be mapped onto a point in the
Poincare sphere by p = S/S0, and related to the coherency matrix (Equation 2.3)
by (Britton 2000)

ρ = (S0I + S · σ)/2, (2.17)

where I is the 2 × 2 identity matrix, and σ is a 3-vector whose components are the
Pauli spin matrices. In the Cartesian (linear) basis, these are

σ1 =

(

1 0
0 −1

)

σ2 =

(

0 1
1 0

)

σ3 =

(

0 −i
i 0

)

. (2.18)

By expanding Equation 2.3, the Stokes parameters are given in the linear basis by

I ≡ S0 = ρ11 + ρ22 = 〈|z1(t)|2〉 + 〈|z2(t)|2〉 (2.19)

Q ≡ S1 = ρ11 − ρ22 = 〈|z1(t)|2〉 − 〈|z2(t)|2〉 (2.20)

U ≡ S2 = ρ21 + ρ12 = 2Re[〈z2(t)z
∗
1(t)〉] (2.21)

V ≡ S3 = (ρ21 − ρ12)/i = 2Im[〈z2(t)z
∗
1(t)〉], (2.22)

and may be calculated in the circular basis by cyclic permutation of the indices of σ,
such that (1, 2, 3) → (3, 1, 2), (ie. (Q,U,V) → (V,Q,U) in Equations 2.20 to 2.22).

When detecting synthetic filterbank data, the coherency matrix is formed as a
function of frequency, resulting in P̄(νk) (Section 5.2). Each element of this matrix,
P̄mn(νk), is the Fourier transform pair of the average correlation function, ρ̄mn(τi)
(Papoulis 1965), and P̄(ν) may be understood as the spectral density of the co-
herency matrix, ρ = ρ̄(0). Now, in general, the magnitude of the cross correlation,
|ρ12(τi)|, is a small fraction of the total intensity. Therefore ρ12 (and ρ21 = ρ∗12) will
not be affected by the sharp non-linearity in response, ρ̌(ρ) (Jenet & Anderson 1998,
Figure 1), that occurs in the region, ρ & 0.9, where ρ̌ and ρ are the digitized and
undigitized normalized correlation functions, respectively.
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However, the normalized auto-correlations, ρ11(τ)/ρ11 and ρ22(τ)/ρ22, are equal
to 1 at τ = 0 (by definition) and suffer from an additional digitization artifact known
as scattered power. The coherency products, P̄11(νk) and P̄22(νk), may be “scattered
power corrected” using the technique described by Jenet & Anderson (1998) and the
values of M retained during the dynamic output level setting stage (Section 2.4.1).
These are used to approximate the slope,

A =
dρ̌

dρ

∣

∣

∣

∣

ρ=0

(2.23)

for each of the two autocorrelation products. It should be noted that this correction
is performed before any averaging of the detected time-samples occurs.

Time-averaging is performed as a function of topocentric pulse phase during a
process commonly called folding. Apparent topocentric pulse phase is determined
using a polynomial approximation to the pulsar timing model, Pφ(t), generated using
the tempo software package (http://pulsar.princeton.edu/tempo; see also Taylor &
Weisberg (1989)). The time-series of interest, Y (ti), is folded by integrating each of
its samples into one of n equally spaced phase bins, Y (φk), where bin number, k, is
given by

k = (nPφ(ti)) modn, (2.24)

so that 0 ≤ k < n. Here, Pφ has dimensionless phase (turns) and the mod operator
returns the remainder after division.

Normally, a number of time-series, Yi (such as all of the four Stokes parameters
in each of the Nc sub-bands), will be folded in parallel with one count, N(φk), of the
number of time-samples accumulated in each phase bin. The average pulse profile
of each process is then given by

〈Yi(φk)〉 = Yi(φk)/N(φk). (2.25)

The start and end times, t0 and tN , of the integrated data are used to assign the
mean time of the zero phase bin, given by

τ0 = P−1
φ (Pφ((t0 + tN)/2) mod 1) (2.26)

Under the assumption that the polynomial, Pφ, and its inverse may be calculated
to arbitrarily high accuracy, the accuracy of τ0 is given by the accuracy of the
observatory sampling clock.

An overview of the data reduction process described in this section is presented
in Figure 2.7. Following the flow of this diagram, the digitized data are played back
from magnetic tape (DLT 7000 or S-VHS) using an automatic data transfer system
(DLT 7000 tape robot and control software or S2-TCI) and written to storage devices
mounted on the workstation cluster. The two-bit data are later read from disk and
sent in large segments to multiple processing nodes via high-speed ethernet. On
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Figure 2.7: Overview of baseband data reduction. As indicated by the dashed line
in the Detection stage, scattered power correction may be performed only when a
synthetic filterbank has been constructed.

each node, the data are converted to a floating point representation of the voltage
waveform received at the telescope, and corrected for non-linearity of the digitization
process. Following completion of this procedure, a number of data reduction options
are available. The signal may be detected, or coherently dedispersed, or a synthetic
filterbank may be formed. During filterbank construction, each sub-channel may
be simultaneously dedispersed. Data are then detected, producing either the total
intensity, the Stokes parameters, or the coherency matrix, as desired. After detection
of the coherency matrix, filterbank data may be further corrected for the scattered
power digitization artifact. The detected timeseries are then folded by averaging
the samples modulo the topocentric pulse period.

The above process results in an uncalibrated average pulse profile. As described
in the following chapter, each resulting pulse profile is fitted to a standard template
in order to measure the pulse time of arrival. From these arrival time estimates are
derived the physical information of interest in a pulsar timing experiment.
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Chapter 3

Arrival Time Analysis

3.1 Arrival Time Estimation

The process described in the previous section produces an uncalibrated pulse profile
averaged over some arbitrary length of time. For CPSR, the standard size of one raw
data file is 1 GB, equivalent to approximately 53.7 s of recording time. A 32-channel
synthetic filterbank was used to reduce a large portion of the data, and each 53.7 s,
32-channel archive was written to disk and stored for later analysis. There are a
number of advantages to maintaining a relatively short time interval for archived
data. For instance, archives may be corrupted by spurious effects, such as wide-band
RFI; and shorter integrations may be discarded at a later stage without serious loss of
data. Certain observational parameters, such as the parallactic angle, may also vary
with time and result in changes to the polarimetric pulse profile. When averaged
over a sufficiently long timescale, irreversible corruption such as depolarization may
take place. Also, when timing a relatively new pulsar, the ephemeris on which
the polynomial, Pφ(t) (see Section 2.4.4), is based may not accurately reflect the
physical parameters of the pulsar system. In this case, Pφ(t) may drift and no
longer represent the actual topocentric pulse phase, resulting in smearing of the
integrated pulse profile on longer timescales. By maintaining shorter integration
lengths, effects due to parallactic angle rotation and Pφ drift may be corrected
before further integrating in time.

In general, the average total intensity pulse profile is utilized for the purposes of
pulsar timing. However, as discussed in Section 5.2, the total intensity (or Stokes I)
may be corrupted by instrumental mixing with the other Stokes parameters. High-
precision timing is therefore intrinsically dependent upon high-precision polarimetric
calibration. Alternatively, calibration may be robustly circumvented by forming an
average pulse profile based on the polarimetric invariant interval (Britton 2000),

S2
inv = I2 − Q2 − U2 − V2. (3.1)

which remains invariant under those linear transformations of the electric field vector

39
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Figure 3.1: Average Stokes parameters as a function of pulse phase at 1413 MHz,
integrated over approximately 4.6 hours. Polarimetric calibration was performed us-
ing the phase-coherent matrix convolution technique introduced in Section 5.2. Note
that the off-pulse baseline in each of the profiles (approximately 17.1 uncalibrated
flux units in Stokes I) is due to the system temperature.

commonly encountered in radio astronomy. The mean invariant profile, 〈Sinv(φk)〉,
will remain unaffected by changes in the system response, including (among many
other factors) the rotation of the receiver feeds with respect to the sky, or parallactic
angle, ψI . Note that each of the Stokes parameters (I,Q,U,V) consists of the sum of
the pulsar signal and the system temperature, Tsys (see Figure 3.1). Consequently,
the Tsys baseline must be removed from each of the Stokes parameter profiles before
calculation of the invariant interval.

The mean invariant profile, 〈Sinv(φk)〉, is formed in each of the 32 sub-bands of
each 53.7 s archive before removing the inter-channel dispersion delay and further
integrating in frequency and time, producing single-channel, hour-long average in-
variant profiles. A selection of these hour-long integrations was chosen to be further
integrated into a high signal-to-noise standard, 〈S(φk)〉, representing the mean pro-
file from ∼ 100 hours of observing time. Each hour-long integrated profile, 〈Pj(φk)〉,
represents a noisier version of the standard, and may be modeled as

〈Pj(φk)〉 = ∆Tsys + b〈S(φk − φ)〉 + σ(φk), (3.2)
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where ∆Tsys is the offset in system temperature (or baseline) between the standard
and the profile, b is an intensity scale factor, φ is the phase shift required to align
the profile and the standard, and σ(φk) is a Gaussian noise function. Estimates
of ∆Tsys, b, φ, and the formal errors in each of these estimates are obtained by a
least-squares fit in the Fourier domain (Taylor 1992).

From the pulse phase shift, φ, an estimate of the pulse time-of-arrival (TOA)
is simply given by τ = τ0 + φP , where τ0 is the epoch of the zero phase bin, as in
Equation 2.26, and P is the mean topocentric pulse period. The theoretical TOA
estimation error, σi(τ), is approximately given by

σi(τ) ≈
1

2

Pw

S/N
, (3.3)

where P and w are the pulse period and duty cycle, respectively, and S/N is propor-
tional to the intensity of the pulsar signal (see Equation 2.6). For PSR J0437−4715,
the average estimated error for each hour-long integration is around 100 ns. A set
of pulse arrival times with formal error estimates, T = {τi, σi(τ)} was produced for
PSR J0437−4715 using each of the hour-long average invariant profiles over a 3.4
year time-span.

3.2 The Timing Model

Physical parameters of the PSR J0437−4715 system are derived from the arrival
time data by fitting them to a timing model using least-squares minimization. The
timing model begins with a description of the spinning pulsar and incorporates the
various delays experienced by the pulsed radiation during its propagation from the
pulsar to earth. Pulse phase as a function of the proper time in the pulsar reference
frame, T , is simply given by the Taylor series expansion,

φ(T ) = φ0 + ν(T − T0) +
1

2
ν̇(T − T0)

2 +
1

6
ν̈(T − T0)

3 + . . . , (3.4)

where φ0 is the pulse phase at time, T0, ν = 1/P is the mean pulse (or spin)
frequency, ν̇ is its first time derivative, etc.

The arrival time estimates, T , are made in the reference frame of the observatory
sampling clock, or topocentric reference frame. It is in modeling the transformation
of topocentric time to proper time at the pulsar that most of the information of
physical interest is derived from T . To first order, the transformation depends solely
on the geometric distance between Earth and the pulsar, and the time required for
the radiation to travel this distance. In order to calculate this distance and remove
the kinematic effects of the Earth’s motion, the position of the observatory, r, is
conventionally specified with respect to the inertial reference frame of the Solar
System barycentre (SSBC). The pulsar’s position, rp, is given with respect to the
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binary system barycentre (BSBC). (In the case of a solitary pulsar, rp=0.) The
vector pointing from the SSBC to the BSBC is specified by d=dK0, where d is
the distance between the SSBC and BSBC and K0 is a unit vector pointing in the
direction of the pulsar, as defined by the right ascension, α, and declination, δ. The
geometric distance between the pulsar and observatory is therefore simply given by
DG = |d + rp − r|. The vector, d, is of course much larger than either of rp or r,
and the distance may be approximated by (Kopeikin 1995)

DG ' d−r ·K0+rp ·K0+
1

2d
[(r×K0)

2+(rp×K0)
2]− 1

d
(r×K0)(rp×K0). (3.5)

In general, the distance to the pulsar, d, is unknown and the first term may be
dropped from consideration by redefinition of φ0 in Equation 3.4. Note that any
ḋ will simply manifest itself as an unknown Doppler shift of the measured spin
period and, if applicable, measured orbital period. The geometric propagation time
delay under consideration is therefore given by ∆G = (DG − d)/c, where c is the
speed of light. The second and third terms in Equation 3.5 result in the Roemer
delays, ∆R� and ∆Rp, in the Solar System and pulsar binary system, respectively.
The fourth term is the annual (trigonometric) parallax, the fifth term is the orbital
parallax, and the last term, known as the annual-orbital parallax (Kopeikin 1995),
will be discussed in more detail below. Notice that all of the parallax terms become
less significant as the distance to the pulsar increases. In fact, no pulsar timing
experiment has yet been reported to include a determination of the orbital parallax
of a binary system, and the measurement of annual-orbital parallax presented by
van Straten et al. (2001) is the first and only such detection to be made to date.

The proper motion of the pulsar, µ = (µα ≡ α̇ cos δ, µδ ≡ δ̇), causes the unit
vector, K0, to vary with time. This variation results in a position error that grows
linearly with time, most significantly manifesting itself as a changing Solar System
Roemer delay, ∆R�. Recently, Kopeikin (1996) demonstrated that the changing
binary system Roemer delay, ∆Rp, will be significant for pulsars with large proper
motion. The secular evolution of ∆Rp manifests itself as a change in the projected
binary system parameters, as discussed below.

The position of the observatory with respect to the SSBC, r, must be known
with great accuracy for the purposes of high-precision pulsar timing. The Earth’s
barycentric position, r⊕, is calculated using the DE200 Solar System ephemeris
(Standish 1990) maintained by NASA’s Jet Propulsion Laboratory (JPL). The vec-
tor pointing from the Earth’s centre of mass to the observatory is calculated using the
position of the telescope in the International Terrestrial Reference Frame (ITRF),
as determined using geodetic Very Long Baseline Interferometry (VLBI), and the
Earth’s rotation angle about the pole, UT1. The International Earth Rotation Ser-
vice (IERS) maintains a table of TAI-UT1 corrections, published monthly in the
IERS Bulletin B. These are retroactively applied to the determination of r.

In addition to the geometric time delay in the Solar System, the masses of the
Sun and planets result in general relativistic propagation effects. The timing model
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must therefore calculate and compensate for both the Einstein delay, ∆E�, arising
from gravitational redshift and time dilation effects, and the Shapiro delay, ∆S�,
due to the retardation of light in warped spacetime.

In the case of a binary system, the pulsar’s position, rp, may be modeled to
yield information about the nature of its orbit. The conventional three-dimensional
description of a binary orbit is specified using seven Keplerian orbital parameters:
the semi-major axis of the orbital ellipse, a; the eccentricity of the orbital ellipse,
e; the orbital inclination, i; the longitude of the ascending node, Ω; the longitude
of periastron, ω; the epoch of periastron, T0; and the orbital period, Pb. However,
astrometric observations generally provide only partial information about the binary
motion of a star. For instance, in a visual binary, motion may be measured only
in the projection of the orbit onto the plane of sky. For spectroscopic and radio
pulsar binaries, it is possible to detect only stellar motion along of the line of sight.
Consequently, a complete three-dimensional description of a stellar binary system
is not generally possible. In pulsar timing experiments, the rotation about the
line of sight, Ω, is omitted from the model and both i and a are absorbed into
the projected semi-major axis, x = a sin(i). The five remaining Keplerian orbital
parameters describe a classical binary system that may be readily determined from
a first order Doppler analysis of the arrival time data.

When only the projected semi-major axis, x, is known, Kepler’s third law may
be re-expressed in terms of x and related to the component masses by Newton’s law,
producing the mass function,

f(mp,mc, i) =
4π2

G

x3

P 2
b

=
(mc sin i)3

(mp +mc)2
, (3.6)

where mp is the mass of the pulsar and mc is the mass of the companion. Given
only the mass function, the component masses remain unknown due to the undeter-
mined inclination angle. However, a minimum companion mass may be derived by
assuming a minimum pulsar mass and setting sin i = 1.

As mentioned in Section 1.4, the component masses may in some cases be de-
termined by measurement of two or more general relativistic effects in the binary
system. Relativistic corrections to the timing model may be applied in a theory-
independent manner using the post-Newtonian treatment introduced by Damour
& Deruelle (1986). Their model (hereafter, the DD model) incorporates various
post-Keplerian orbital parameters, such as the orbital period derivative, Ṗb, and the
advance of periastron, ω̇. It also includes the Shapiro delay induced by the pulsar
companion, ∆S, parameterized by the shape, s ≡ sin(i), and range, r ≡ Gm2/c

3,
where m2 is the mass of the companion.

With the binary motion thus parameterized, rp, may be calculated as a function
of time and substituted into the expression for ∆G. The transformation from pulsar
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proper time, T , to proper time at the observatory, τ , is then given by

T = τ − τ0 − ∆G + ∆E� + ∆S� + ∆S (3.7)

Substitution of T into Equation 3.4 produces the timing model, φ(τ). Physical
parameters of the system are derived from T by minimizing the objective function,

χ2 =
N
∑

i=1

(

φ(τi) − ni

σi

)2

, (3.8)

where ni = ([φ(τi)+0.5] mod 1) is the nearest integer pulse number at τi and
σi = σi(τ)/P . The timing model (Taylor & Weisberg 1989) and least-squares fitting
algorithm is implemented in the program, tempo, maintained by the Princeton and
ATNF pulsar groups (http://pulsar.princeton.edu/tempo). Written in Fortran 77,
tempo performs the retroactive clock and observatory position corrections, and im-
plements various different models to describe the pulsar binary system. However,
the last two terms in ∆G (the orbital and annual-orbital parallaxes) are largely in-
significant in most pulsar timing experiments, and they are not included in tempo

by default. Therefore, the DD model was extended to include the effects of both the
annual-orbital parallax (Kopeikin 1995) and the changing binary system Roemer
delay caused by proper motion (Kopeikin 1996).

The annual-orbital parallax manifests itself as an annual, periodic variation of
both the projected semi-major axis, x, and the longitude of periastron, ω, such that:

xobs(t) = xint[1 − cot i

d
J ′

· r(t)], (3.9)

ωobs(t) = ωint − csc i

d
I ′

· r(t), (3.10)

where I ′ = cos ΩI0 + sin ΩJ0, J ′ = − sin ΩI0 + cos ΩJ0, (and K ′ = K0) are the
basis vectors in the reference frame rotated by Ω about the line of sight, K0. For
the definitions of the commonly-used triad of basis vectors, (I0, J0, K0), consult
Figure 4.1, where Ω′ = −J ′. Note that the superscripts “obs” and “int” refer to
the observed and intrinsic values, respectively. The proper motion results in secular
evolution of x and ω, such that the observed values are described by:

xobs(t) = xint[1 + cot iJ ′
· µ(t− t0)], (3.11)

ωobs(t) = ωint + csc i I ′
· µ(t− t0). (3.12)

Equations 3.9 to 3.12 were added to tempo by implementing a new binary model,
called the Damour, Deruelle, and Kopeikin (DDK) model. This addition necessi-
tated the introduction of two new model parameters: the longitude of the ascending
node, Ω (new tempo key-word: KOM); and the orbital inclination, i (new tempo

key-word: KIN). Note that, because i may vary from 0 to π radians in a full, three-
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Figure 3.2: Day-of-year arrival time residuals of data taken between July 1997 and
December 2000 and fit using the DDK model. The intensive, almost daily, coverage
starting at approximately day 115 is a result of the regular timing observations made
by the Parkes Observatory staff since the beginning of May 2000.

dimensional model of the pulsar orbit, the shape parameter, s ≡ sin(i) (tempo
key-word: SINI), no longer sufficiently describes the orientation. Therefore, the
SINI parameter is ignored in the DDK model, and the shape is calculated from the
value of i specified by KIN. Also, when using the DDK model, only Equations 3.9
and 3.10 are active by default. To activate Equations 3.11 and 3.12, the K96 flag
must be enabled (with a corresponding value of 1) in the tempo parameter file.

The longitude of the ascending node, Ω, defines the orientations of I ′ and J ′,
thereby determining the day-of-year when J ′ · r reaches its maximum in Equa-
tion 3.9. The annual-orbital parallax timing signature therefore provides a direct
constraint on Ω that greatly benefits from excellent day-of-year coverage of arrival
time estimates (see Figure 3.2). Furthermore, under certain circumstances, the K96

flag can be used to constrain the relationship between i and Ω:

1. First, general relativistic and other contributions to ẋ must be negligible; so
that the observed ẋ is dominated by the system’s proper motion contribution,
as calculated in Equation 3.11.

2. Second, ẋ and µ must be measurable; the accuracy of their estimation deter-
mines the degree to which i and Ω may be constrained.

Under these circumstances, which will be called the “i(Ω) conditions”, the K96 flag
may be enabled and the XDOT model parameter omitted in the tempo parameter
file, forcing the timing model to compensate for the observed ẋ signature through
Equation 3.11. Given the separately determined and non-covariant estimations of
µ and Ω, the correct ẋ can be achieved only by proper choice of i. Therefore,
Equations 3.9 through 3.12 may be used to provide a purely geometric constraint
on the inclination angle in binary systems with small intrinsic ẋ.
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3.3 Modeling Results

The fitting procedure implemented by tempo is used to yield estimates of the physical
parameters of the PSR J0437−4715 system, including their formal one sigma (1σ)
errors. Before development of the DDK model, the best-fit parameters from the
DD model were used to provide preliminary estimations of the expected values of
certain post-Keplerian parameters, such as ẋ and Ṗb. The general theory of relativity
predicts that (Taylor & Weisberg 1982)

Ṗ gr
b = −192π

5
T

5/3
� n5/3f(e)mpmcM

−1/3, (3.13)

and
ω̇gr = 3T

2/3
� n5/3(1 − e2)−1M2/3, (3.14)

where mp and mc are the masses of the pulsar and its companion, respectively,
M = mp +mc is the total system mass, n = 2π/Pb is the orbital angular frequency,
T� ≡ GM�/c

3 = 4.925490947µs is a commonly used constant, and

f(e) = (1 − e2)−7/2

(

1 +
73

24
e2 +

37

96
e4
)

. (3.15)

Assuming that relativistic spin-orbit coupling is negligible, ẋ may be related to Ṗb

by simple application of Kepler’s Third Law (P 2
b ∝ x3), so that

ẋgr =
2

3

x

Pb

Ṗ gr
b . (3.16)

Substituting the binary parameters from the DD model in Table 3.1 yields:
Ṗ gr

b = −4.1 × 10−16, ω̇gr = 0.017◦yr−1, and ẋgr = −1.8 × 10−21. The observed value,
ẋ = (7.88 ± 0.01) × 10−14, is many orders of magnitude larger than the general
relativistic contribution, and the first i(Ω) condition (see the end of Section 3.2) is
satisfied. The accuracies with which the observed ẋ and µ = (µα, µδ) are determined
(see Table 3.1) satisfy the second i(Ω) condition. Therefore, the DDK model may
be used with the K96 flag in order to constrain the relationship between i and Ω.
In fact, in the PSR J0437−4715 system, the proper motion vector is nearly parallel
to J ′, so that δi/δΩ is close to zero, and i may be estimated with much greater
accuracy than that of Ω. The precision of the Ω estimate is in turn improved by the
excellent day-of-year coverage of the arrival time data (see Figure 3.2).

The partial derivatives of χ2 (Equation 3.8) with respect to i and Ω are small, and
the curvature of the χ2 surface is not constant. Therefore, the ∆χ2 ≡ χ2(Ω, i)−χ2

min

surface is mapped in the vicinity of the global minimum, χ2
min, as shown in Figure 3.3.

Here, χ2(Ω, i) is the value of χ2 minimized by variation of the remaining model
parameters, given constant i and Ω. Projections of the ∆χ2 = 1 contour provide
the 1σ confidence intervals of i and Ω included in Table 3.1.
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Figure 3.3: Contour map of ∆χ2(Ω, i) in the vicinity of the global minimum. Moving
outward from the global minimum, marked with a ‘+’ (plus) sign, the contour lines
map ∆χ2 equal to 1, 4 and 9. Projections of the ∆χ2 = 1 contour onto the i and Ω axis
provide the 1σ confidence intervals for each parameter.

In addition to providing best-fit model parameters, tempo also outputs a table
of arrival time residuals, given by Ri = (φ(τi) mod 1). These may be investigated
for obvious departures from the timing model or, as discussed in Section 3.3.1,
non-Gaussian statistical behaviour. One commonly found systematic error is due
to poor polarimetric calibration, which primarily manifests itself in our data as a
variation of TOA with parallactic angle, ψI (see Figure 3.4). It was expected that
the formation of the invariant profile, 〈Sinv(φk)〉, would eliminate most polarimetric
corruption of the arrival time estimates. However, Sinv remains invariant only under
transformation by a system with linear response and, in late January 2000, it was
discovered that a failure in the FFD was resulting in less than optimal two-bit sam-
pling of the baseband signal. The resulting non-linear distortion of the polarimetric
profile cannot be treated by formation of the invariant profile and is non-invertible.
However, the functional form of the residual parallactic angle dependence may be ap-
proximated using a polynomial expression. The TOA data from observations made
between 17 March and 27 October 1999 were corrected by removing the polynomial,

R1(ψI) = (−5.815× 10−3ψI − 3.042× 10−4ψ2
I +7.571× 10−7ψ3

I +1.870× 10−8ψ4
I )µs,

where ψI is the parallactic angle in degrees, and R1(ψI) (shown in Figure 3.4) is
found by a least-squares fit to the arrival time residuals.
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Figure 3.4: Corrupted arrival time residuals as a function of parallactic angle, ψ. Data
were obtained between 17 March and 27 October, 1999, using the CPSR 20 MHz
bandpass centered at 1413 MHz, with a faulty digitizer board (FFD). Each arrival
time estimate is derived from an hour-long integration of the invariant profile and is
plotted with its 1σ error bar. The solid line is the best-fit polynomial, R1(ψI), used
to remove the systematic trend from the arrival time data.

A replacement FFD was installed in CPSR and tested during the mid-March
2000 observing run. Since this repair, online monitoring software has been used to
maintain optimal sampling thresholds at record time for all CPSR observations. This
careful attention to sampling optimization has proved to be rewarding, as shown by
comparison of Figures 3.4 and 3.5. However, as evident in Figure 3.5, there still
remains some parallactic angle dependence of the arrival time residuals after the
repair. These data were therefore also corrected by removing a second polynomial,

R2(ψI) = (1.532× 10−3ψI − 7.799× 10−5ψ2
I − 2.024× 10−7ψ3

I + 4.215× 10−9ψ4
I )µs,

that is smaller than, but similar to, the first. Each of R1(ψI) and R2(ψI) include a
constant offset that is not shown in the above expressions because the difference is
absorbed by the JUMP parameters included in the model fit performed by tempo. A
total of 4 jumps are included in the fit, as detailed in Figure 3.6. The consequences of
these required jumps and some conjecture regarding the inviolability of the invariant
profile and the failure to completely eliminate the systematic distortion of arrival
time estimates is discussed in Section 6.1.1.

A second round of model-fitting the corrected TOAs produces the final results
presented in Table 3.1. As no other model parameter is covariant with ψI , it is
expected that this correction should serve only to reduce the residual RMS, στ .
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Figure 3.5: Arrival time residuals as a function of parallactic angle, ψ, after repair
of the FFD board. Data were obtained using the CPSR 20 MHz bandpass centered
at 1413 MHz. Each arrival time estimate is derived from an hour-long integration of
the invariant profile and is plotted with its 1σ error bar. Shown only for comparison,
the solid line is the polynomial, R1(ψI), used to remove the systematic trend from the
corrupted arrival time data presented in Figure 3.4.

For the purposes of comparison, Table 3.1 includes the best-fit parameters deter-
mined using three different binary models: the Blandford & Teukolsky (1976) model
(BT), the Damour & Deruelle (1986) model (DD), and the Damour, Deruelle, and
Kopeikin model (DDK). When using the DD model, sin(i) is poorly constrained,
and the SINI parameter is set using the best-fit value of i, as determined using the
DDK model. In order to constrain i geometrically, the DDK model is used with
the K96 option enabled and the XDOT parameter is set to zero (as described above).
Except for the estimates of ω̇, all of the binary parameters derived from the DD and
DDK models agree within their 1σ uncertainties. Though the ω̇ values are within
1.5σ of each other, it is noted that the estimate derived using the DDK model agrees
more closely with the general relativistic prediction. Indicating the validity of the
DDK solution, its arrival time residual RMS, στ , is approximately 25 ns (∼ 16%) less
than that of the DD model, and the DDK χ2 has dropped by 300 (∼ 30%) with the
addition of only two degrees of freedom (Nfree). Note that both the DD and DDK
models are expected to disagree with the BT model-derived binary parameters, as
the BT model does not include the effect of the Shapiro delay. Also, the estimates
of second period derivative, P̈ , are neither statistically significant nor required in
order to achieve the χ2 shown. They are included in the fit only for the purposes of
discussing an upper limit to the timing noise in our data (see Section 6.1.2).
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Table 3.1: Best-fit parameters determined using three binary models

Model BT DD DDK

Astrometric Parameters

Epoch (MJD) 51194 51194 51194
P (ms) 5.757451831071979(8) 5.757451831071982(8) 5.757451831072006(8)

Ṗ (10−20) 5.72910(5) 5.72904(5) 5.72906(5)

P̈ (10−32) -3.3(1.7) -0.4(1.7) 1.2(1.7)
α (J2000.0) 04h37m15.s7865126(8) 04h37m15.s7865144(8) 04h37m15.s7865147(7)
δ (J2000.0) -47◦15′08.′′46160(1) -47◦15′08.′′46160(1) -47◦15′08.′′46158(1)
µα (mas yr−1) 121.446(6) 121.435(6) 121.438(6)
µδ (mas yr−1) -71.447(8) -71.449(8) -71.436(8)
π (mas) 7.46(14) 7.39(14) 7.17(14)

Binary Parameters

Pb (days) 5.741044(3) 5.741043(3) 5.741046(3)
x (s) 3.366693430(8) 3.3666914(9) 3.36669155(14)
e (10−5) 1.9199(5) 1.9182(5) 1.9186(5)
T0 (MJD) 51194.6343(3) 51194.623(3) 51194.6238(8)
ω (◦) 1.850(14) 1.17(16) 1.19(5)
Ω (◦) . . . . . . 238(4)†

i (◦) . . . . . . 42.75(9)†

sin(i) . . . 0.67(11) . . .
mc (M�) . . . 0.26(17) 0.237(18)

Ṗb (10−12) 3.56(20) 3.80(20) 3.64(20)
ẋ (10−12) 0.07847(19) 0.07894(20) . . .
ω̇ (◦yr−1) 0.005(10) 0.002(10) 0.016(10)

Derived Parameters∗

µ (mas yr−1) 140.903(7) 140.895(7) 140.891(7)
φµ (◦) 120.468(3) 120.471(3) 120.466(3)
mp (M�) . . . 1.8(2.1) 1.60(20)
dπ (pc) 134(2) 135(2) 139(3)
dβ (pc) 149(8) 159(8) 152(8)
β (10−20s−1) 647(12) 652(12) 673(13)

Ṗ int (10−20) 2.01(7) 1.97(7) 1.86(8)

Goodness of Fit∗

στ (ns) 166 151 125
χ2 1156 957 656
Nfree 596 594 596

∗ parameter(s) not included in fit
† uncertainty determined using χ2 map

The symbols used for each parameter are defined both in the main text and in Ap-
pendix B. Number(s) shown in parentheses represent the formal uncertainty in the last
digit(s) quoted.
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Figure 3.6: Best-fit arrival time residuals by epoch, as calculated using the DDK
model. Four jumps (represented by vertical, dashed lines) are included in the fit,
separating five sets of arrival time data. From left to right, the first and second
sets of data were taken using the S2 with analog (S2-A) and digital (S2-D) filters,
respectively. The remaining data were recorded using the CPSR. The fourth and
fifth datasets were corrected for parallactic angle dependence using the polynomials,
R1(ψI) and R2(ψI), respectively.

3.3.1 Analysis of Measurement Error

The model parameter estimates returned by the χ2 minimization technique imple-
mented by tempo are valid maximum likelihood estimators if and only if the arrival
time measurement errors are normally distributed (Press et al. 1992, Section 15.6).
The validity of the formal errors, as calculated using the covariance matrix produced
during the minimization procedure, is also dependent upon the condition of random
error. Departures from random, Gaussian experimental error may be detected by
examination of the statistical properties of the post-fit arrival time residuals.

Following Taylor & Weisberg (1989), the normalized post-fit residual is defined
as the post-fit residual divided by its estimated uncertainty. The histogram of
normalized post-fit residuals presented in the plot on the left in Figure 3.7 reasonably
approximates the Gaussian bell-curve shape, indicating normal measurement errors.
A second test is provided by creating a new set of mean residuals, each formed by
averaging n consecutive post-fit residuals, and calculating the RMS in the new set
as a function of n. Data with normally distributed measurement errors will result
in RMS∝ n−1/2, as indicated by the line with slope equal to −0.5 in the plot on the
right in Figure 3.7. The departure from this line beginning at RMS< 80 ns indicates
non-Gaussian correlations between adjacent arrival time measurements, most likely
due to systematic errors. The sources of systematic error might range from poor
polarimetric response, resulting in correlations on the timescale of a day, to errors
in the clock corrections and planetary ephemeris, which might result in correlations
on the timescale of months or years. For instance, tempo currently does not include
corrections for the Earth’s polar motion. As this experiment is currently pushing
the limits of high-precision pulsar timing, it is not surprising that systematic errors
should dominate at the < 100 ns level.
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Figure 3.7: Statistical tests of measurement errors. The histogram on the left plots
the approximately Gaussian distribution (shown with a dashed line) of normalized
post-fit arrival time residuals. On the right, arrival time residual RMS is plotted
versus the number of consecutive post-fit residuals averaged. The dashed line, with a
slope of −1/2, indicates the behaviour expected from data with normally distributed
measurement errors.

3.3.2 Discussion

It is expected that, on account of the accretion episode during which it was spun up
to a millisecond pulsar, PSR J0437−4715’s spin axis should be aligned with its or-
bital angular momentum. The orbital inclination angle, i, should therefore be equal
to ζ, the angle between the pulsar spin axis and the line of sight (see Section 1.3).
Under this assumption, the value of i presented in Table 3.1 compares well with the
value of ζ estimated by polarimetric observations (Manchester & Johnston 1995)
and by modeling the pulsed X-radiation light curve (Pavlov & Zavlin 1997). The
estimation of i conflicts with the value of ζ ' 20◦ derived through the use of a
relativistic rotating vector model that includes a polar cap populated by multiple,
drifting emission regions which contribute to the average profile’s conal components
(Gil & Krawczyk 1997). However, nearly aligned magnetic and spin axes would allow
continuous viewing of the neutron star polar cap region, which is thought to be the
hot spot from which the thermal component of the X-radiation is emitted. There-
fore, the Gil & Krawczyk (1997) result is difficult to reconcile with observations
of the strongly modulated X-ray and Extreme Ultra-violet light curves (Danner,
Kulkarni & Thorsett 1994; Edelstein, Foster & Bowyer 1995; Halpern, Martin &
Marshall 1996; Zavlin et al. 2002), which imply that the polar cap rotates out of
view with each turn of the pulsar. The assumption that i ' ζ obviates any apparent
need to devise complicated emission models, such as the squeezed polar cap model
(Chen, Ruderman & Zhu 1998), in order to resolve any seeming paradox.

In addition to the kinematic contributions to ẋ and ω̇ described by Kopeikin
(1996), the proper motion of a pulsar also causes a quadratic Doppler shift of the
observed spin (Shklovskii 1970) and orbital (Damour & Taylor 1991) period deriva-
tives, a phenomenon known as the Shklovskii effect. Although the pulsar’s space
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velocity, v, remains constant, the component of its velocity along the line of sight,
vr = v · K0, changes as the pulsar moves across the sky. The apparent change in
radial velocity, vr, can be trivially shown to be

v̇r = dµ2, (3.17)

where µ = |µ| is the composite proper motion, and d is the distance to the pulsar.
Now, the first three orders of Doppler effect are as follows:

T obs = T int(1 +
vr

c
) (3.18)

Ṫ obs = Ṫ int(1 +
vr

c
) + T int v̇r

c
(3.19)

T̈ obs = T̈ int(1 +
vr

c
) + 2Ṫ int v̇r

c
+ T int v̈r

c
, (3.20)

where T is the period of interest (spin, P , or orbital, Pb), and c is the speed of
light. As long as the radial velocity remains unknown, both the spin and orbital
periods derived by modeling will contain an undetermined (linear) Doppler shift
factor, given by 1 + vr/c. When both the distance (such as the parallax distance,
dπ) and proper motion are determined, the apparent quadratic Doppler shift factor,
β = v̇r/c = dµ2/c may be calculated and used to correct the observed spin and
orbital period derivatives, yielding their intrinsic values. Values of both β and the
intrinsic spin period derivative, Ṗ int, are included in Table 3.1.

When the intrinsic period derivative is expected to be negligible, the observed
period derivative may be used to calculate another distance estimate (Bell & Bailes
1996), dβ = cβ/µ2, where β ' Ṫ /T . For PSR J0437−4715, the observed orbital
period derivative, Ṗb = (3.64±0.2)×10−12, is much larger than that expected due to
the emission of gravitational waves (as discussed in Section 3.3) or other factors such
as acceleration in the Galactic potential (discussed below) and the above condition
holds. Estimates of the Bell & Bailes distance, dβ, derived from both β = Ṗb/Pb and
the composite proper motion, µ, are included in Table 3.1. These estimates agree
with the parallax distance to within approximately 1.5 σ. The precision of dβ is
anticipated to improve with time as t5/2, and will provide an independent distance
estimate with relative error of approximately 1% within the next three to four years.

Other factors, such as those arising from Galactic differential rotation and grav-
itational acceleration of the pulsar in the Galactic potential, contribute to the
quadratic Doppler shift of observed period derivatives. The z-component of Galactic
gravitational acceleration, Kz, varies as a function of height, z, above the Galactic
plane. This height may be estimated using the parallax distance and the Galactic
latitude. The Galactic longitude and latitude of PSR J0437−4715 are l = 253.◦394
and b = −41.◦964, respectively, so that

z = dπ sin b ' −93 pc, (3.21)
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and Kz ' 2.6 × 10−11 m s−2 (Bahcall 1984, Figure 7). An expression for the
Galactic differential rotation component along the line of sight, based on observable
quantities, was derived by Damour & Taylor (1991),

gR = −Θ0

R0

(

cos l +
λ

sin2 l + λ2

)

, (3.22)

where R0 and Θ0 are the Galactocentric distance and circular velocity of the Sun,
respectively, and λ = (dπ/R0) − cos l. Substituting R0 = 7.7 kpc, Θ0 = 222 km s−1

(Damour & Taylor 1991), and the values of l and dπ for PSR J0437−4715, produces
gR ' −3.1 × 10−12 m s−2. Therefore, the Galactic kinematic contribution to the
quadratic Doppler shift term is

βgalactic =
gR

c
− Kz sin b

c
' (−1.0 + 5.9) × 10−20 s−1 = 4.9 × 10−20 s−1, (3.23)

approximately 140 times smaller than that due to proper motion.

After correcting for the Shklovskii effect, the intrinsic spin period derivative,
Ṗ int = Ṗ obs − βP = (1.86 ± 0.08) × 10−20, may be used to provide an improved
estimate of the characteristic age of the pulsar,

τc =
P

2Ṗ int
= 4.9 ± 0.2 Gyr. (3.24)

An independent age estimate is provided by the cooling age of the helium white dwarf
companion, τw. From its apparent I magnitude (Danziger, Baade & Della Valle 1993)
is obtained the absolute magnitude at the parallax distance, MI = 13.7 ± 0.2. Using
the white dwarf cooling curves of Hansen & Phinney (1998), and the estimate of
the companion mass, mc = 0.236 ± 0.017 M�, the cooling age is approximately,
τw ∼ 4.0 – 4.3 Gyr. This may be used to limit the initial spin period of the pulsar
(Hansen & Phinney 1998),

P0 = P
√

1 − τw/τc ∼ 1.6 – 2.6 ms. (3.25)

Following on the derivation of Equation 3.17, it is also trivial to show that

µ̇ = −2µ
vr

d
(3.26)

and
v̈r = −3vrµ

2. (3.27)

Equations 3.17 and 3.27 may be applied to Equation 3.20 to produce

T̈ obs = T̈ int(1 +
vr

c
) +

µ2

c
(2Ṫ intd− 3T intvr), (3.28)
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so that both the proper motion and radial velocity contribute to the second pe-
riod derivative. For PSR J0437−4715, if one assumes a generous radial veloc-
ity of 100 km s−1, the proper motion contribution to the observed P̈ is given by
P̈µ ' −2.70 × 10−33s−1. In approximately three years of timing data, the P̈ term
arising from radial velocity will contribute a ∼ 100 ns (peak-to-peak) trend in the
times of arrival. However, most of this trend will be absorbed in the linear and
quadratic phase terms of the timing model (P and Ṗ ). Over ten years, the peak-to-
peak difference will be over 2 µs, but the unabsorbed signature will be approximately
100 ns. Assuming negligible intrinsic P̈ , an eventual experimental determination
of P̈ might enable an estimate of the radial velocity of the PSR J0437−4715 sys-
tem. Such a measurement would provide additional dynamical information that may
prove relevant to the modeling of the PSR J0437−4715 bow-shock nebula (Mann,
Romani & Fruchter 1999), for instance.

Equation 3.26 may also be applied to the produce the following vector equation:

µ̇ =
d

dt
(µθ) = µ̇θ + µθ̇ = −2

vr

r
µ − µ2K0. (3.29)

Here, θ = µ/µ is a unit vector in the I0–J0 plane that points in the direction of
proper motion. To first order, the timing signature due to proper motion derivative
is given by

∆µ̇ =
1

2c
µ̇ · r(t− t0)

2. (3.30)

Assuming the same radial velocity of 100 km s−1, it can be shown that this term
will have a peak-to-peak amplitude of ∼100 ns in approximately 30 years, yielding
another independent estimate of the system’s radial velocity or perhaps enabling the
separation of intrinsic and kinematic P̈ contributions. Again, the current likelihood
of such a detection seems negligible. However, it may become necessary to include
the ∆µ̇ term in a future timing model in order to decrease the residual timing noise.

Further discussion regarding the results of our analysis is presented in the fol-
lowing chapter and in the conclusion.
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Chapter 4

A Test of General Relativity

This chapter was previously published as W. van Straten, M. Bailes, M.C. Brit-
ton, S.R. Kulkarni, S.B. Anderson, R.N. Manchester & J. Sarkissian, 2001, “A test
of general relativity from the three-dimensional orbital geometry of a binary pul-
sar,” Nature 412, 158–160. Minor alterations have been made in order to maintain
consistency of style.

Binary pulsars provide an excellent system for testing general relativity because
of their intrinsic rotational stability and the precision with which radio observations
can be used to determine their orbital dynamics. Measurements of the rate of orbital
decay of two pulsars have been shown to be consistent with the emission of gravita-
tional waves as predicted by general relativity (Taylor & Weisberg 1982; Stairs et al.
1998), providing the most convincing evidence for the self-consistency of the theory
to date. However, independent verification of the orbital geometry in these systems
was not possible. Such verification may be obtained by determining the orientation
of a binary pulsar system using only classical geometric constraints, permitting an
independent prediction of general relativistic effects. Here we report high-precision
timing of the nearby binary millisecond pulsar PSR J0437−4715, which establish
the three-dimensional structure of its orbit. We see the expected retardation of the
pulse signal arising from the curvature of space-time in the vicinity of the companion
object (the ‘Shapiro delay’), and we determine the mass of the pulsar and its white
dwarf companion. Such mass determinations contribute to our understanding of the
origin and evolution of neutron stars (Thorsett & Chakrabarty 1999).

Discovered in the Parkes 70-cm survey (Johnston et al. 1993), PSR J0437−4715
remains the closest and brightest millisecond pulsar known. It is bound to a low-
mass helium white dwarf companion (Bell, Bailes & Bessell 1993; Danziger, Baade
& Della Valle 1993) in a nearly circular orbit. Owing to its proximity, relative mo-
tion between the binary system and the Earth significantly alters the line of sight
direction to the pulsar and, consequently, the orientation of the basis vectors used
in the timing model (see Figure 4.1). Although the physical orientation of the or-
bit in space remains constant, its parameters are measured with respect to this
time-dependent basis and therefore also vary with time. Variations of the inclina-
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tion angle, i, change the projection of the semi-major axis along the line of sight,
x ≡ ap sin i/c, where ap is the semi-major axis of the pulsar orbit.

The heliocentric motion of the Earth induces a periodic variation of x known as
the annual-orbital parallax (Kopeikin 1995),

xobs(t) = xint[1 +
cot i

d
r⊕(t) · Ω′]. (4.1)

The superscripts ‘obs’ and ‘int’ refer to the observed and intrinsic values, respec-
tively, r⊕(t) is the position vector of the Earth with respect to the barycentre
of the Solar System as a function of time, d is the distance to the pulsar, and
Ω′ = sin ΩI0 − cos ΩJ0 (see Figure 4.1). Similarly, the proper motion of the binary
system induces secular evolution of the projected semi-major axis (Kopeikin 1996;
Sandhu et al. 1997), such that:

ẋobs = ẋint − x cot i µ · Ω′; (4.2)

where µ = µαI0 + µδJ0 is the proper motion vector with components in right
ascension, µα, and declination, µδ. An apparent transverse quadratic Doppler effect
(known as the Shklovskii effect) also arises from the system’s proper motion and
contributes to the observed orbital period derivative (Damour & Taylor 1991):

Ṗ obs
b = Ṗ int

b + βPb; (4.3)

where β = µ2d/c, and µ = |µ|.
Observations of PSR J0437−4715 were conducted from 11 July 1997 to 13 De-

cember 2000, using the Parkes 64 m radio telescope. Over 50 Terabytes of baseband
data have been recorded with the S2 Recorder (Cannon et al. 1997) and the Caltech
Parkes Swinburne Recorder (CPSR) (van Straten, Britton & Bailes 2000), followed
by off-line reduction at Swinburne’s supercomputing facilities. Average pulse profiles
from hour-long integrations were fitted to a high signal-to-noise template (Taylor
1992), producing a total of 617 pulse arrival time measurements with estimated
errors on the order of 100 ns.

Previously considered negligible, the annual-orbital parallax has been largely
ignored in experimental arrival time analyses to date. However, our initial estimates
of its peak-to-peak amplitude for PSR J0437−4715 (∼ 400 ns) demonstrated that
it would be clearly detectable. As can be seen in Equation 4.1, xobs varies with a
period of one year and phase determined by Ω′. Its inclusion in our timing model
therefore provides a geometric constraint on Ω. We also note that the value of
ẋobs = (7.88 ± 0.01) × 10−14 observed in our preliminary studies is many orders
of magnitude larger than the intrinsic ẋ expected as a result of the emission of
gravitational waves, ẋGR = −1.6 × 10−21. Neglecting ẋint, the relationship between
i and Ω defined by Equation 4.2 is parameterized by the well determined physical
parameters x, ẋ and µ. Also, because µ is fortuitously nearly anti-parallel to Ω′,
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Figure 4.1: The three-dimensional orientation of the pulsar orbit is determined using
a classical geometric model. With the centre of mass of the binary system at the
origin, the basis vectors, I0, J0 and K0, define east, north, and the line of sight from
Earth, respectively. The orientation of the normal vector, n, is defined with respect to
this basis by the longitude of the ascending node, Ω, and the inclination angle, i. The
plane of the sky, or I0–J0 plane, (shown stippled) intersects the orbital plane at the
“line of nodes” (dashed line). Below the I0–J0 plane, the orbital path has been drawn
with a dotted line. The unit vector, Ω′, lies in the I0–J0 plane and is perpendicular
to the line of nodes. The pulsar is shown at superior conjunction, where radio pulses
emitted toward Earth experience the greatest time delay due to the gravitating mass
of the companion on the opposite side of the centre of mass.

δi/δΩ is close to zero, and incorporation of Equation 4.2 in our timing model provides
a highly significant constraint on the inclination angle.

The orbital inclination parameterizes the shape of the Shapiro delay, that is, the
delay due to the curvature of space-time about the companion. In highly inclined
orbits, seen more edge-on from Earth, the companion passes closer to the line of sight
between the pulsar and the observatory, and the effect is intensified. As the relative
positions of the pulsar and companion change with binary phase, the Shapiro delay
also varies and, in systems with small orbital eccentricity, is given by:

∆S = −2r ln[1 − s cos(φ− φ0)]. (4.4)

Here, s ≡ sin i and r ≡ Gmc/c
3 are the shape and range, respectively, φ is the

orbital phase in radians, and φ0 is the phase of superior conjunction, where the
pulsar is on the opposite side of the companion from Earth (as shown in Figure 4.1).
For small inclinations, the orbit is seen more face-on from Earth, and ∆S becomes
nearly sinusoidal in form.

In the PSR J0437−4715 system, the Shapiro effect is six orders of magnitude
smaller than the classical Roemer delay, the time required for light to travel across
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the pulsar orbit. In nearly circular orbits, the Roemer delay also varies sinusoidally
with binary phase. Consequently, when modeling less inclined binary systems with
small eccentricity, the Shapiro delay can be readily absorbed in the Roemer delay by
variation of the classical orbital parameters, such as x. For this reason, a previous
attempt at measuring the Shapiro effect in the PSR J1713+0747 system (Camilo,
Foster & Wolszczan 1994) yielded only weak, one-sided limits on its shape and range.

In contrast, we have significantly constrained the shape independently of general
relativity, enabling calculation of the component of ∆S that remains un-absorbed
by the Roemer delay. The theoretical signature is plotted in Figure 4 against post-
fit residuals obtained after fitting the arrival time data to a model that omits the
Shapiro effect. To our knowledge, this verification of the predicted space-time dis-
tortion near the companion is the first such confirmation (outside our Solar System)
in which the orbital inclination was determined independently of general relativity.

Figure 4.2: Arrival time residuals confirm the predicted space-time distortion induced
by the pulsar companion. The unabsorbed remnant of Shapiro delay is much smaller
than the theoretical total delay, which for PSR J0437−4715 has a peak-to-peak am-
plitude of about 3.8 µs. In the top panel, the solid line models the expected delay
resulting from a companion with a mass of 0.236 M�, at the geometrically-determined
orbital inclination. Measured arrival time residuals, averaged in 40 binary phase bins
and plotted with their 1σ errors, clearly exhibit the predicted signature. In the bot-
tom panel, the same residuals with the model removed have an RMS residual of only
35 ns and a reduced χ2 of 1.13.

The range of the Shapiro delay provides an estimate of the companion mass,
mc = 0.236±0.017 M�, where M� is the mass of the sun. Through the mass function
(Thorsett & Chakrabarty 1999), f(M), we then obtain a measurement of the pulsar
mass mp = 1.58 ± 0.18 M�. Slightly heavier than the proposed average neutron
star mass (Thorsett & Chakrabarty 1999), mavg

p = 1.35 ± 0.04 M�, this value of
mp suggests an evolutionary scenario that includes an extended period of mass and



61

angular momentum transfer. Such accretion is believed to be necessary for a neutron
star to attain a spin period of the order of a millisecond (Taam & van den Heuvel
1986). It is also expected that, during accretion, the pulsar spin and orbital angular
momentum vectors are aligned. Under this assumption, the measured inclination
angle of i = 42.◦75± 0.◦09 does not support the conjecture that pulsar radiation may
be preferentially beamed in the equatorial plane (Backer 1998).

Using the general relativistic prediction of the rate of orbital precession, the
total system mass, M , can also be calculated from the observed value of ω̇. From
M , f(M), and i, we obtain a second consistent estimate of the companion mass,
m′

c = 0.23 ± 0.14 M�, the precision of which is expected to increase with time as
t3/2, surpassing that of the r-derived value in approximately 30 years.

The complete list of physical parameters modeled in our analysis is included in
Table 4.1. Most notably, the pulsar position, parallax distance, dπ = 139 ± 3 pc, and
proper motion, µ = 140.892 ± 0.006 mas yr−1, are known to accuracies unsurpassed
in astrometry. Although closer, dπ lies within the 1.5 σ error of an earlier mea-
surement by Sandhu et al. (1997), 178 ± 26 pc. The parallax distance and proper
motion estimates can be used to calculate β and the intrinsic spin period derivative,
Ṗ int = Ṗ obs−βP = (1.86±0.08)×10−20, providing an improved characteristic age of
the pulsar, τc= P/(2Ṗ int) = 4.9 Gyr. Another distance estimate may be calculated
using the observed µ and Ṗb by solving Equation 4.3 for d, after noting the relative
negligibility of any intrinsic contribution (Bell & Bailes 1996). The precision of the
derived value, dB = 150 ± 9 pc, is anticipated to improve as t5/2, providing an inde-
pendent distance estimate with relative error of about 1% within the next three to
four years.

With a post-fit RMS residual of merely 130 ns over 40 months, the accuracy of
our analysis has enabled the detection of annual-orbital parallax. This has yielded
a three-dimensional description of a pulsar binary system and a new geometric
verification of the general relativistic Shapiro delay. Only the Space Interferometry
Mission (SIM) is expected to localize celestial objects with precision similar to that
obtained for PSR J0437−4715 (including parallax). By the time SIM is launched
in 2010, the precision of this pulsar’s astrometric and orbital parameters will be
vastly improved. Observations of the companion of PSR J0437−4715 using SIM
will provide an independent validation and a tie between the SIM frame and the
solar-system dynamic reference frame.

We also expect that continued observation and study of this pulsar will ultimately
have an important impact in cosmology. Various statistical procedures have been
applied to the unmodeled residuals of PSR B1855+09 (McHugh et al. 1996, and
references therein) in an effort to place a rigorous upper limit on Ωg, the fractional
energy density per logarithmic frequency interval of the primordial gravitational
wave background. As the timing baseline for PSR J0437−4715 increases, our exper-
iment will probe more deeply into the low frequencies of the cosmic gravitational
wave spectrum, where, owing to its steep power-law dependence (McHugh et al.
1996), the most stringent restriction on Ωg can be made.
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Table 4.1: PSR J0437−4715 physical parameters

Right ascension, α (J2000) . . . . 04h37m15.s7865145(7)
Declination, δ (J2000) . . . . . . . . -47◦15′08.′′461584(8)
µα (mas yr−1) . . . . . . . . . . . . . . . . 121.438(6)
µδ (mas yr−1) . . . . . . . . . . . . . . . . . -71.438(7)
Annual parallax, π (mas) . . . . . 7.19(14)
Pulse period, P (ms) . . . . . . . . . 5.757451831072007(8)
Reference epoch (MJD) . . . . . . . 51194.0

Period derivative, Ṗ (10−20) . . 5.72906(5)
Orbital period, Pb (days) . . . . . 5.741046(3)
x (s) . . . . . . . . . . . . . . . . . . . . . . . . . . 3.36669157(14)
Orbital eccentricity, e . . . . . . . . . 0.000019186(5)
Epoch of periastron, T0 (MJD) 51194.6239(8)
Longitude of periastron, ω (◦) . 1.20(5)
Longitude of ascension, Ω (◦) . 238(4)
Orbital inclination, i (◦) . . . . . . 42.75(9)
Companion mass, mc (M�) . . . 0.236(17)

Ṗb(10
−12) . . . . . . . . . . . . . . . . . . . . . 3.64(20)

ω̇ (◦yr−1) . . . . . . . . . . . . . . . . . . . . . 0.016(10)

Best-fit physical parameters and their formal 1σ er-
rors were derived from arrival time data by min-
imizing an objective function, χ2, as implemented
in TEMPO (http://pulsar.princeton.edu/tempo). Our
timing model is based on the relativistic binary model
(Damour & Deruelle 1986) and incorporates additional
geometric constraints derived by Kopeikin (Kopeikin
1995; Kopeikin 1996). Indicative of the solution’s valid-
ity, χ2 was reduced by 30% with the addition of only
one new parameter, Ω. To determine the 1σ confi-
dence intervals of Ω and i, we mapped projections of
the ∆χ2 ≡ χ2(Ω, i)−χ2

min = 1 contour, where χ2(Ω, i) is
the value of χ2 minimized by variation of the remaining
model parameters, given constant Ω and i. Parenthe-
sized numbers represent uncertainty in the last digits
quoted, and epochs are specified using the Modified Ju-
lian Day (MJD).



Chapter 5

Instrumental Calibration

The polarimetric calibration techniques proposed and used to date have fallen short
of completely correcting the systematic distortions of the mean total intensity pulse
profile. Therefore, the arrival time estimates presented in the previous chapters were
derived using the invariant profile proposed by Britton (2000). Though the total
intensity profile contains more power and has greater S/N than the invariant profile,
it was shown to be more susceptible to the instrumental artifacts arising from poor
polarimetric response (Britton et al. 2000). However, as apparent in Figure 3.5,
the invariant profile has failed to provide arrival time estimates that are entirely
free of systematic error. This outstanding problem prompted the development of
a new method of polarimetric calibration, presented in Section 5.2. Owing to the
level setting technique described in Section 2.4.1, it was also necessary to develop a
new method of calibrating the flux of the baseband observations.

5.1 Flux Determination

The original algorithm used for flux calibration was developed for FPTM data.
When observing with FPTM, the attenuation levels and sampling thresholds are
set only once at the beginning of a calibration (CAL) observation. These levels are
maintained throughout both the CAL and the following pulsar (PSR) observations.
Therefore, the scale for converting between the temperature in Jy and the flux
counts in each bin of the integrated CAL and PSR profiles remains constant. This
flux scale is determined in a separate observation of the CAL over a background
source of known intensity (for example, Hydra A is used at Parkes).

However, when baseband recording, regular sampling threshold adjustments were
made throughout each observation in order to maintain linearity of the system re-
sponse. This is not to say that the correlator does not suffer from the same quanti-
zation errors as a baseband recorder; only, in the latter case, greater attention has
been paid toward minimizing signal distortion. The sampling thresholds are altered
between and during the CAL and PSR observations and, as they are not recorded,
no absolute flux scale applies to both observations.

63
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Instead, it is assumed that the system temperature, Tsys, remains constant be-
tween CAL and PSR observations. The ratio between Tsys and the flux of the signal
will remain constant while sampling thresholds are chosen to optimize linearity of
system response. Therefore, the off-pulse baseline of the average CAL and PSR
profiles provides the absolute flux scale by which the observations may be related
and by which the pulsar flux may be calibrated.

In future experiments, the sampling thresholds used by the baseband recording
system may be documented at record time. However, certain digitizer cards, such as
the CPSR-II sampling board installed at Parkes in 2002, use non-linear attenuators
for gain control. In such systems, it is non-trivial to relate fluxes that have been
measured using different attenuator settings, and it is safer to rely on an external
source, such as the system temperature, for flux calibration.

5.2 Polarimetric Response

Previously published as W. van Straten, 2002, “Radio Astronomical Polarimetry
and Phase-Coherent Matrix Convolution,” Astrophysical Journal, 568, 436–442,
this section contains minor stylistic alterations.

A new phase-coherent technique for the calibration of polarimetric data is pre-
sented. Similar to the one-dimensional form of convolution, data are multiplied
by the response function in the frequency domain. Therefore, the system response
may be corrected with arbitrarily high spectral resolution, effectively treating the
problem of bandwidth depolarization, and the original temporal resolution of the
data may be retained. The method is therefore particularly useful in the study of
radio pulsars, where high time resolution and polarization purity are essential re-
quirements of high-precision timing. The technique is applied to full-polarization
baseband recordings of the nearby millisecond pulsar, PSR J0437−4715.

In radio polarimetry, two orthogonal senses of polarization are received and prop-
agated through separate signal paths. Each signal therefore experiences a different
series of amplification, attenuation, mixing, and filtering before sampling or detec-
tion is performed. Whereas efforts are made to match the components of the ob-
servatory equipment, each will realistically have a unique frequency response to the
input signal. Even a simple mismatch in signal path length will result in a relative
phase difference between the two polarizations that varies linearly with frequency.

In fact, any physically realizable system will transform the radiation in a manner
that depends on frequency. Where variations across the smallest bandwidth available
may be considered negligible, post-detection calibration and correction techniques
may be used to invert the transformation and recover the original polarimetric state.
However, the transformation may vary significantly across the band, causing the
polarization vector to combine destructively when integrated in frequency. This
phenomenon is known as “bandwidth depolarization” of the signal, and results in
irreversible decimation of the degree of polarization.
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It is therefore desirable to perform polarimetric corrections at sufficiently high
spectral resolution, which is available only at the cost of temporal resolution unless
phase coherence is maintained. Conventional post-detection correction techniques
therefore prove insufficient when high time resolution is also a necessity. For exam-
ple, certain pulsar experiments require high time resolution in order to resolve key
features in the average pulse profile. It has also been shown that insufficient time
resolution can also lead to depolarization (Gangadhara et al. 1999). These con-
siderations motivate the development of a method for phase-coherent polarimetric
transformation. Further impetus is provided by the growing number of baseband
recording systems at observatories around the world, the enhanced flexibility made
available through use of off-line data reduction software, and the increasing compu-
tational power of affordable facilities.

A method has previously been presented for the phase-coherent correction of
interstellar dispersion smearing. Convolution is performed by multiplying the spec-
trum of baseband data with the inverted frequency response of the interstellar
medium (ISM), as modeled by the cold plasma dispersion relation (Hankins &
Rickett 1975). The current development extends the concept of convolution to
multiplication of the vector spectrum by the inverse of the frequency response ma-
trix. The term “matrix convolution” is used to distinguish this operation from
two-dimensional convolution, such as would be performed on an image. Whereas
the frequency response matrix may be composed of various factors, such as those
arising from the ISM and ionosphere, this chapter will be restricted to considering
only the instrumental response.

Following a brief review of matrix convolution and its relationship to the trans-
formation properties of radiation, a technique is proposed by which the instrumen-
tal frequency response matrix may be determined and used to calibrate phase-
coherent baseband data. As a preliminary illustration, the method is applied to
full-polarization observations of the millisecond pulsar, PSR J0437−4715, from two
different receiver systems. The results agree well with previously published po-
larimetry for this pulsar (Navarro et al. 1997).

5.2.1 Matrix Convolution

Consider a linear system with impulse response, j(t). Presented with an input signal,
e(t), the output of this system is given by the convolution, e′(t) = j(t) ∗ e(t). In
the two-dimensional case, each output signal is given by a linear combination of the
input signals,

e′1(t) = j11(t) ∗ e1(t) + j12(t) ∗ e2(t), (5.1)

e′2(t) = j21(t) ∗ e1(t) + j22(t) ∗ e2(t). (5.2)

Now let e1(t) and e2(t) be the complex-valued analytic signals associated with two
real time series, providing the instantaneous amplitudes and phases of two orthogo-
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nal senses of polarization. By defining the analytic vector, e(t), with elements e1(t)
and e2(t), and the 2 × 2 impulse response matrix, j(t), with elements jmn(t), we
may express the propagation of a transverse electromagnetic wave by the matrix
equation,

e′(t) = j(t) ∗ e(t). (5.3)

By the convolution theorem, Equation 5.3 is equivalent to

E′(ν) = J(ν)E(ν), (5.4)

where J(ν) is the frequency response matrix with elements Jmn(ν), and E(ν) is
the vector spectrum. In the case of monochromatic light, or under the assumption
that J(ν) is constant over all frequencies, matrix convolution reduces to simple
matrix multiplication in the time domain, as traditionally represented using the
Jones matrix. However, because these conditions are not physically realizable, the
Jones matrix finds its most meaningful interpretation in the frequency domain.

The average auto- and cross-power spectra are summarized by the average power
spectrum matrix, defined by the vector direct product, P̄(ν) = 〈E(ν) ⊗ E†(ν)〉,
where E† is the Hermitian transpose of E and the angular brackets denote time
averaging. More explicitly:

P̄(ν) =

(

〈E1(ν)E
∗
1(ν)〉 〈E1(ν)E

∗
2(ν)〉

〈E2(ν)E
∗
1(ν)〉 〈E2(ν)E

∗
2(ν)〉

)

. (5.5)

Each component of the average power spectrum matrix, P̄mn(ν), is the Fourier trans-
form pair of the average correlation function, ρ̄mn(τ) (Papoulis 1965). Therefore,
P̄(ν) may be related to the commonly used coherency matrix,

ρ = 〈E(t) ⊗ E†(t)〉 = ρ̄(0) =
1

2π

∫ ν0+∆ν

ν0−∆ν

P̄(ν)dν, (5.6)

where ν0 is the centre frequency and 2∆ν is the bandwidth of the observation.
The average power spectrum matrix may therefore be interpreted as the coherency
spectral density matrix and, in the limit ∆ν → 0, ρ = P̄(ν0)/2π.

Using Equations 5.4 and 5.5 it is easily shown that a two-dimensional linear
system transforms the average power spectrum as

P̄′(ν) = J(ν)P̄(ν)J†(ν). (5.7)

This matrix equation is a congruence transformation, and forms the basis on which
the frequency response of the system will be related to the input (source) and output
(measured) coherency spectrum. For brevity in the remainder of this chapter, all
symbolic values are assumed to be a function of frequency, ν.
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5.2.2 Isomorphic Representations

The subject of radio astronomical polarimetry received its most rigorous and ele-
gant treatment with the two separate developments of Britton (2000) and Hamaker
(2000). Whereas Britton illuminates the isomorphism between the transformation
properties of radiation and those of the Lorentz group, Hamaker illustrates and uti-
lizes the similarity with the multiplicative quaternion group. The salient features of
both formalisms provide a sound foundation for the current development, and merit
a brief review.

Any complex 2×2 matrix, J, may be expressed as

J = J0I + J · σ, (5.8)

where J0 and J = (J1, J2, J3) are complex, I is the 2 × 2 identity matrix, and σ

is a 3-vector whose components are the Pauli spin matrices. The 4-vector, [J0,J ],
may be treated using the same algebraic rules as those used for quaternions. In
the remainder of this chapter, the equivalent quaternion and 2×2 matrix forms (as
related by Equation 5.8) will be interchanged freely.

If J is Hermitian, then the components of [J0,J ] are real. The average power
spectrum and coherency matrices are Hermitian and, when decomposed in this man-
ner, 2[S0,S] may be interpreted as the mean Stokes parameters, where 2S0 is the
total intensity and 2S is the polarization vector. By writing P̄ = [S̄0, S̄], it is more
easily seen that the integration of Equation 5.6 leads to bandwidth depolarization
when the orientation of S̄ varies with ν.

An arbitrary 2 × 2 matrix may also be represented by the polar decomposition,

J = J Bm̂(β)Rn̂(φ), (5.9)

where J = (detJ)1/2,

Bm̂(β) = exp(σ·m̂β) = [cosh β, sinh β m̂], (5.10)

Rn̂(φ) = exp(i σ· n̂φ) = [cosφ, i sinφ n̂], (5.11)

and m̂ and n̂ are real-valued unit 3-vectors. The matrix, Rn̂(φ), is unitary and,
beginning with Equation 5.7, it can be shown to preserve the degree of polarization
and rotate S about the axis, n̂, by an angle 2φ. Similarly, the Hermitian matrix,
Bm̂(β), can be shown to perform a Lorentz boost on the 4-vector, [S0, S], along the
axis, m̂, by a velocity parameter, 2β (Britton 2000).

As both Bm̂(β) and Rn̂(φ) are unimodular, the congruence transformation
(Equation 5.7) preserves the determinant up to a multiplicative constant, |J |2, ie.
det P̄′ = |J |2 det P̄. Britton notes that det P̄ = S̄2

0 − |S̄|2 = S̄2
inv is simply the

Lorentz invariant, which he calls the polarimetric invariant interval. He also pro-
poses that a mean pulsar profile formed using the invariant interval may be used for
high-precision pulsar timing. Whereas the boost component of the system response
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distorts the total intensity profile in a time-dependent manner, the invariant interval
remains stable, providing a superior basis for arrival time estimates and a robust
alternative to polarimetric calibration. However, the invariant interval is not pre-
served in the presence of bandwidth depolarization, further motivating the current
development.

5.2.3 Determination of the System Response

In principle, any method by which the frequency response matrix may be derived
with sufficiently high resolution could be adapted for use with the matrix convolution
approach. A number of different parameterizations and techniques have previously
been presented for the calibration of single-dish radio astronomical instrumental
polarization (Stinebring et al. 1984; Turlo et al. 1985; Xilouris 1991; Britton
2000). The current treatment follows the parameterization chosen by Hamaker
(2000), including polar decomposition of the system response followed by application
of the congruence transformation. This approach offers a number of significant
advantages. For instance, in the derivation of the solution, it is unnecessary to make
any small-angle approximations and, when compared to the manipulations of 4×4
Mueller matrices, the equivalent quaternion and 2×2 Jones matrix representations
greatly simplify the required algebra. More importantly, Equations 5.7 and 5.9
are specific to no particular basis, permitting the application of the formalism to
a variety of feed designs by proper choice of the basis matrices, σ. Perhaps most
importantly, as shown by Hamaker and discussed below, the polar decomposition
enables the determination of the boost component of the system response using only
an observation of an unpolarized source. This simplification has beneficial impact
on experiments where only the total intensity or fractional degree of polarization
are of concern.

Consider the reception of unpolarized radiation, which has an input average
power spectrum matrix, P̄L=I T0/2, where I is the identity matrix and T0 is the
total intensity. Beginning with Equations 5.7 and 5.9, the output average power
spectrum can be trivially shown to be

P̄′
L = Bm̂(β)2 |J |2T0/2. (5.12)

Notice that the phase of J is lost in the detection of the average power spectrum. For
this reason, the current technique is insensitive to absolute phase terms arising in the
frequency response of the system, and may be used to determine only the relative
phase differences between its components. The scalar factors, |J |2 and T0, are easily
determined in a separate flux calibration procedure that will not be considered
presently. Therefore, Bm̂(β) may be found by taking the positive Hermitian square
root of the measured average power spectrum matrix of an unpolarized source (see
Section 5.2.6).
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This simple result merits closer inspection. The system response may be cor-
rected by inverting Equation 5.4, that is, by calculating E = J−1E′. Notice that,
under the polar decomposition chosen in Equation 5.9, the boost transformation
is the first to be inverted. That is, regardless of the unknown rotation, the boost
solution may be used to completely invert the distortion of total intensity, S0. This
consequence of the polar decomposition has considerable impact in the field of high-
precision pulsar timing, where the average total intensity profile is typically used
to determine the pulse time of arrival. Polarimetric distortions to the total inten-
sity can significantly alter the shape of this profile and systematically alter arrival
time estimates, especially as a function of parallactic angle, or with fluctuations of
ionospheric total electron content. With the boost component thus determined, the
resulting distortions to total intensity can, in principle, be completely corrected.

It remains to solve for the rotation component of J, which may be determined
using observations of calibrators with known polarization. Given the known boost,
Bm̂(β), input polarization state, P̄n, and measured output state, P̄′

n, Equation 5.7
is solved for the rotation, Rn̂(φ). Considering the equivalent three-dimensional
Euclidian rotation, Rn̂

(3)(2φ), of the polarization vector, S, it is easily seen that,
given a single pair of input, S1, and output, S1

′, polarization vectors, the rotations
that solve S1

′ = Rn̂
(3)(2φ)S1, where |S1

′| = |S1|, form an infinite set of rotations
with axes confined only to a plane. Therefore, an observation of a second, non-
collinear calibrator source is required in order to uniquely determine the system
response rotation.

Many receivers are equipped with a linearly polarized noise diode that may be
used to inject a calibrator signal into the feed horn. This noise diode may be
switched using a wide-band, amplitude-modulated square-wave. The “off” or “low”
fraction of the wave consists of only the system plus sky temperature, which shall
be assumed to be unpolarized. The “on” or “high” fraction of the wave contains
additional linearly polarized radiation, described in quaternion form by

P̄H = [1, (cos 2Ψ, sin 2Ψ, 0)] C0/2, (5.13)

where C0 is the flux and Ψ is the position angle of the calibrator diode. A single linear
noise diode provides only one known input calibrator state. Unless another calibrator
is available, the technique must be modified to solve for a reduced representation
of the system response. For the calibration described in this chapter, Rn̂(φ) was
decomposed into two rotations: Rv̂(∆Ψ), allowing imperfect alignment of the noise
diode; followed by Rq̂(ΦI), allowing a differential path length between the two linear
polarizations (see Section 5.2.6). It is important to distinguish ∆Ψ and ΦI from the
actual parameters of the receiver, as the polar decomposition does not model the
order in which the transformations physically occur.
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5.2.4 Calibrator Observations

When observing the artificial calibrator, it is important that the noise diode is
switched on a time-scale much shorter than the interval over which the digitization
thresholds are reset, in order that P̄H may be differentiated from the baseline, P̄L.
However, the calibrator period must also be long enough to provide distinct on-
pulse and off-pulse time samples in the synthesized filterbank. Given the sampling
interval, ts, of the baseband recorder, the calibrator period, TC , should be at least
TC ≥ nbtsN , where N is the number of channels in the synthetic filterbank and nb

is the desired number of phase bins in the integrated calibrator profile. In order
to achieve clear separation of on-pulse and off-pulse states, nb = 64 was chosen. It
was also found that a filterbank with N = 2048 channels sufficiently resolved the
features of the frequency response.

For each hour-long observation of PSR J0437−4715, the pulsed calibrator was
recorded for 4.5 minutes, ensuring sufficient signal-to-noise in each channel of the
synthetic filterbank. Data were reduced off-line using psrdisp, a software pack-
age developed to process pulsar baseband data, described in the following section.
After forming a synthetic filterbank, the Stokes parameters in each channel were de-
tected and folded at the pulsed calibrator period. High and low state polarimetric
passbands were formed from the average on- and off-pulse Stokes parameters of the
calibrator profile in each channel. These passbands were median filtered to remove
spurious radio-frequency interference, and interpolated to the required frequency
resolution, as dictated by the parameters of the coherent dedispersion kernel. From
this high frequency-resolution polarimetric representation of the calibrator, the fre-
quency response matrix was computed as described in Section 5.2.6. Figure 5.1
plots representative examples of the determined frequency response parameters at
660 MHz and 1247 MHz. The inverse of the frequency response matrix was used in
the convolution kernel when reducing the pulsar observations, as described in the
next section.

5.2.5 Pulsar Observations

Baseband data from dual-polarization observations of the nearby, binary millisecond
pulsar, PSR J0437−4715, were recorded during 26-28 June 2001 using the 64 m
dish at the Parkes Observatory. As a test of phase-coherent calibration in the
pathological case (refer to Figure 5.2), the 50 cm receiver was used to record 3.6 hours
of data at 660 MHz. A total of 7 hours was also recorded at 1247 MHz, using the
centre element of the Multibeam receiver. The radio and intermediate frequency
signals were quadrature downconverted, band-limited to 20 MHz, two-bit sampled,
and recorded using the Caltech-Parkes-Swinburne Recorder (CPSR) (van Straten,
Britton & Bailes 2000). The digitized data were processed off-line at Swinburne
University’s supercomputing facilities using psrdisp, a flexible software package
that implements a number of baseband data reduction options.
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Figure 5.1: Frequency response at 50 cm (top) and 20 cm (bottom). For each band,
the upper panel plots the rotation angles, ∆Ψ (dashed line) and ΦI (solid line), and
the lower panel plots the boost components along q̂ (solid line), û (dotted line), and v̂

(dashed line). A signal path length mismatch between the two polarizations from the
Multibeam (20 cm) receiver results in a linear differential phase (ΦI) gradient across
the bandpass.
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Figure 5.2: Average passbands from the two linear polarizations at 660 MHz, plotted
on an uncalibrated linear scale. The gain in Ey (dotted line) varies with frequency by
as much as 3 dB, evidencing the faulty condition of the 50 cm receiver.

Four channels of two-bit quantized data were corrected using the dynamic level-
setting technique (Jenet & Anderson 1998) and combined to form the analytic
vector, e(ti). This vector was convolved while synthesizing a 16-channel coherent
filterbank (Jenet et al. 1997). In each channel, the Stokes 4-vector, [S0,S](νk, tn),
was detected and integrated as a function of pulse phase, given by tn modulo the
predicted topocentric period. Pulse period and absolute phase were calculated using
a polynomial generated by the tempo software package.

Each 1 GB segment of baseband data (representing approximately 53.7 seconds)
was processed in this manner, producing average pulse profiles with 4096 phase bins,
or a resultant time resolution of approximately 1.4µs. Each archive was later cor-
rected for parallactic angle rotation of the receiver feeds before further integrating in
time to produce hour-long average profiles. These were flux calibrated using observa-
tions of Hydra A, which was assumed to have a flux density of approximately 85 Jy at
660 MHz and 48 Jy at 1247 MHz. The flux calibrated archives were then integrated
in time and frequency, producing the mean pulse profiles presented in Figure 5.3. In
these plots, the linearly polarized component, L, is given by L2 = Q2 + U 2 and the
position angle, ψ, where tan 2ψ = U/Q, has been plotted twice, at ψ ± π/2. Com-
parison with the uncalibrated profiles in Figure 5.4 indicates significant restoration
of the polarized component at both frequencies. The calibrated average profiles also
agree satisfactorily with previously published polarization data for PSR J0437−4715
(Navarro et al. 1997).

Discussion

Prior to its reception, the radiation from a pulsar must propagate through the
magnetized plasma of the ISM, resulting in Faraday rotation of the position angle.



5.2. POLARIMETRIC RESPONSE 73

Figure 5.3: Average polarimetric pulse profiles of PSR J0437−4715 at 660 MHz (top)
and 1247 MHz (bottom). The bottom panel of each plot displays the total intensity,
Stokes I (upper solid line), the linearly polarized component, L (lower solid line), and
the circularly polarized component, Stokes V (dotted line). The position angle, ψ,
in the upper panel of each plot is shown without respect to any absolute frame of
reference.
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Figure 5.4: Uncalibrated average polarimetric pulse profiles of PSR J0437−4715 at
660 MHz (top) and 1247 MHz (bottom). Severe differential gain variation in the
50 cm bandpass (see Figure 5.2) has decimated the linearly polarized component at
660 MHz (top plot, lower solid line), whereas the differential phase gradient across
the 20 cm bandpass (see Figure 5.1) has nearly eliminated the circularly polarized
component at 1247 MHz (bottom plot, dotted line).
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The change in position angle is given by ∆ψ = RMλ2, where RM is the rotation
measure and λ is the wavelength of the radiation. Therefore, one motivation for
a pulsar polarimetry experiment is the determination of the RM along the line of
sight to the pulsar. Combined with a dispersion measure estimate, the RM can
provide information about the galactic magnetic field strength and direction. When
the RM is very small, as it is for PSR J0437−4715, ∆ψ is not detectable across a
single 20 MHz bandpass. Therefore, two observations widely separated in frequency
are required in order to obtain an estimate. However, as there exists an unknown
feed offset between 50 cm and Multibeam receivers that remains uncalibrated in the
current treatment, no estimation of rotation measure is presently offered.

For pulsars with known RM, matrix convolution enables phase-coherent Faraday
rotation correction by addition of ∆ψ to ∆Ψ in Equation 5.14. This approach would
further treat the problem of bandwidth depolarization, especially for sources with
large rotation measures observed at lower frequencies.

As phase-coherent calibration corrects the undetected voltages, any measure-
ments derived from these data will also be implicitly calibrated. This includes not
only the coherency products but also other statistical values such as the higher order
moments, modulation index, and polarization covariance. The method may there-
fore find application in experiments which aim to describe pulse shape fluctuations
(Jenet, Anderson & Prince 2001a) or variations of the galactic magnetic field along
the line of sight (Melrose & Macquart 1998), for example.

Although matrix convolution may in principle be used to completely correct
baseband data, a full solution of the system response is lacking in the current treat-
ment. Perhaps a technique may be developed which combines the use of pulsars
(Stinebring et al. 1984; Xilouris 1991) with high-resolution determination of the
frequency response matrix. This approach would include tracking a bright, strongly
polarized pulsar over a wide range of parallactic angles, followed by fitting a model
of the instrumental response to the measured Stokes parameters. As it is non-trivial
to model the effects of phenomena that may change over the course of such a cali-
bration, such as fluctuations in ionospheric total electron content, it may prove more
feasible to install a second artificial noise diode in the receiver feed horn. Oriented
with a position angle offset from the first by approximately 45◦, it would provide a
more readily available and reliable means of regularly solving for Rn̂(φ). Alterna-
tively, a single noise diode could be mechanically rotated with respect to the feeds.
Consideration of these options may benefit future feed horn design.

The observations of PSR J0437−4715 presented in the previous section serve to
illustrate the strength the matrix convolution technique, highlighting its ability to
recover data which has been severely corrupted by the observatory instrumentation.
Perhaps the most rigorous test of the methodology will be derived from the unsur-
passed timing accuracy of PSR J0437−4715 (van Straten et al. 2001). Calibration
errors translate into systematic timing errors, and any deficiency in the characteri-
zation of the system response would manifest itself in the arrival time residuals of
this remarkable pulsar.
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5.2.6 Solution of System Response

The instrumental frequency response matrix used in calibrating the data presented
in this chapter was parameterized by

J = Bm̂(β)Rq̂(ΦI)Rv̂(∆Ψ). (5.14)

The boost component may be solved most easily using the quaternion form of Equa-
tion 5.12,

[L̄′
0, L̄

′
] = exp(2 σ· m̂β)|J |2T0 = [cosh(2β), sinh(2β)m̂] |J |2T0, (5.15)

where [L̄′
0, L̄

′
] are the measured off-pulse Stokes parameters, producing

β =
1

2
tanh−1

(

|L̄′|
L̄′

0

)

and m̂ =
L̄

′

|L̄′|
. (5.16)

The two rotations, Rq̂(ΦI) and Rv̂(∆Ψ), may be determined by considering the
equivalent three-dimensional Euclidian rotations, Rq̂

(3)(2ΦI) and Rv̂
(3)(2∆Ψ), of

the input polarization vector. Given that the noise diodes installed in the receivers
at the Parkes radio-telescope have a position angle nearly equal to 45◦, the input
Stokes parameters are [1, H̄ ]C0, where H̄ = (0, 1, 0) (cf. Equation 5.13). Therefore,
ΦI and ∆Ψ may be found by solving

H̄
′′

= Rq̂

(3)(2ΦI)Rv̂

(3)(2∆Ψ)H̄ , (5.17)

where H̄
′′

is the normalized polarization vector after the observed Stokes parameters
have been corrected for the boost. It is given by

[H̄0, H̄ ]′′ = Bm̂(β)†P̄′
HBm̂(β)/(|J |2C0), (5.18)

where P̄′
H are the observed Stokes parameters. From Equation 5.17,

ΦI =
1

2
tan−1

(−H ′′
3

H ′′
2

)

and ∆Ψ =
1

2
tan−1

(

H ′′
1

H ′′
2 / cos(2ΦI)

)

. (5.19)

Notice that |J |2, T0, and C0 cancel out in each of Equations 5.16 and 5.19, obviating
the need to solve for these parameters at this stage. The vector components of the
boost quaternion, (B1, B2, B3) = sinh β m̂, ΦI and ∆Ψ, are plotted as a function of
frequency in Figure 5.1.
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5.2.7 Performing Matrix Convolution

It is assumed that the reader has some familiarity with the more common, one-
dimensional form of cyclical convolution as it is performed in the frequency domain
using the Fast Fourier Transform (FFT) (Press et al. 1992, §13.1). In the two-
dimensional vector case, there are simply two unique processes sampled at the same
time interval, say p(ti) and q(ti). A one-dimensional, N -point, forward FFT is
performed separately on each of p and q, forming two spectra, P (νk) and Q(νk),
0 ≤ k < N . Corresponding elements from each of the spectra are treated as the
components of a column 2-vector, E(νk) = (P (νk), Q(νk)), and multiplied by the
inverse of the frequency response matrix, forming E ′(νk) = J−1(νk)E(νk) (cf. Equa-
tion 5.4). The components of the result, P ′(νk) and Q′(νk), are once again treated
as unique spectra, and separately transformed back into the time domain using the
one-dimensional backward FFT.

In the case of the pulsar data presented in this chapter, p(ti) and q(ti) are
the signals from the two linear receptors in the feed, and J(νk) consists of the
instrumental frequency response matrix, as determined in Section 5.2.6, multiplied
by the dedispersion kernel, H(νk) (Hankins & Rickett 1975). When synthesizing
an M -channel coherent filterbank, H(νk) is divided in frequency into M distinct
dedispersion kernels, each tuned to the centre frequency of the resulting filterbank
channel.
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Chapter 6

Discussion

This chapter will review some of the outstanding problems that remain to be ad-
dressed before further improvements can be made to the timing accuracy of the
PSR J0437−4715 dataset. Some of these topics will lead quite naturally into a dis-
cussion of possible research directions and conjecture regarding the next generation
of radio instrumentation and methodology.

6.1 Outstanding Problems

The primary challenges to future advancement are divided into three categories:
instrumental errors, physical considerations, and radio frequency interference.

6.1.1 Instrumental Errors

As mentioned in Section 3.1, the arrival time estimates on which the results presented
in this thesis are based were derived using the invariant profile proposed by Britton
(2000). However, in Section 5.2.2, it is shown that the invariant interval is not
preserved when the system response varies significantly across the observing band,
as is commonly the case. Bandwidth depolarization may be one of the reasons
that use of the invariant profile has failed to completely eliminate systematic errors
related to pulse polarization. There may be a solution to this problem. As shown
in Section 5.2.3, the boost component of the system response may be completely
determined using an observation of an unpolarized source and used to invert the
polarimetric distortion to the total intensity, or Stokes I. It therefore seems likely
that the matrix convolution technique may find application in the high-precision
timing of PSR J0437−4715, stimulating a return to TOA estimates based on the
average total intensity profile, with its higher signal-to-noise ratio.

Bandwidth depolarization may not be the main source of invariant profile cor-
ruption. During the development and testing of the matrix convolution technique,
careful attention was paid to the finer details of the average polarimetric profile. It
was found that the profile baseline in recent CPSR observations is contaminated at

79
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the ∼ 1% level, as shown in Figure 6.3. The artifact is not readily attributed to any
linear behaviour of the system and is believed to be related to the “dip” observed by
Jenet et al. (1998). As the invariant profile calculation depends directly upon proper
baseline removal, it is suspected that the formation of 〈Sinv(φk)〉 suffers from this
artifact, consequently affecting arrival time estimates derived from 〈Sinv(φk)〉. As an
extreme example, one day of severely corrupted data, recorded on January 30, 2000,
is presented in Figure 6.1. Although the source of the error remains unexplained, it
should be noted that these data were recorded before the repair of the faulty FFD
and during a period of system testing. The affected data are readily apparent in the
arrival time residuals centred at MJD 51573.5 in Figure 6.2.

Figure 6.1: Extremely non-linear pulse profile corruption. Each panel displays a mag-
nified view of the profile near the baseline, plotting the total intensity, Stokes I (upper
solid line), the linearly polarized component, L (lower solid line), and the circularly
polarized component, Stokes V (dotted line). In the upper panel, the average profile
observed on January 30, 2000 is severely corrupted by an unexplained instrumental
artifact. In the lower panel, data recorded one day later more accurately reflect the
average profile shape.

The pulse profile is not often as significantly distorted as that shown in the
upper panel of Figure 6.1. However, there typically remains an approximately 1%
distortion that is most evident in the profile baseline, as shown in Figure 6.3. The
extent to which the invariant profile and the majority of the arrival time estimates
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Figure 6.2: Severely corrupted data stand out in arrival time residuals. Each arrival
time estimate was derived from an uncalibrated, five-minute integration of the total
intensity. Data recorded on January 30, 2000 (MJD 51573.5) are severely corrupted
by an unexplained instrumental artifact (see Figure 6.1).

presented in this work are affected is not fully understood, and investigation of the
process(es) and/or instrumental component(s) responsible for this non-linearity is
of critical importance.

In addition to the investigation of these non-linear effects, the continued use of
dual-sideband down-conversion systems may also require further consideration. As
the ideal Hilbert transform is not physically realizable, both amplitude and phase
alignment errors in practical quadrature filters result in distortions of the analytic
signal. In practice, it is difficult to align analog circuits with an accuracy much
better than 1% (Hahn 1996), and imperfect image rejection between the in-phase and
quadrature components may currently corrupt our CPSR data at an undetermined
level.

6.1.2 Physical Considerations

Regardless of the precision with which the observing system may be understood and
calibrated, this precision timing experiment may eventually be limited both by the
intrinsic evolution of the pulsar and by propagation effects in the ISM.
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Figure 6.3: Pulse profile corruption in two 20 cm observations. As in Figure 6.1,
each panel displays a magnified view of the pulse profile near the baseline, plotting
the total intensity, Stokes I (upper solid line), the linearly polarized component, L
(lower solid line), and the circularly polarized component, Stokes V (dotted line).
The upper and lower panels display the average pulse profile as observed using the
Multibeam receiver with a centre frequency of 1247 MHz, and 1510 MHz, respectively.
The frequency dependence of the pulse profile distortion may provide clues to its
origin.

Precision pulsar timing is founded on the premise that the shape of the integrated
pulse profile, when averaged over a sufficiently large number of pulses, does not
vary with time (Helfand, Manchester & Taylor 1975; Rankin & Rathnasree 1995).
Kramer et al. (1999) question this assumption, and present evidence for smooth
variations (on timescales of a few hours) in the average pulse profiles of a number of
millisecond pulsars. However, it should be noted that their observations were made
with the Effelsberg 100 m radio telescope. As with any altitude-azimuth mounted
primary reflector, the orientation of the Effelsberg receiver feed rotates with respect
to the Galactic reference frame as the Earth turns beneath the sky. This variation of
parallactic angle has been shown to lead to systematic distortions of the integrated
pulse profile (see Figure 3.4), an effect that is not corrected by simply calibrating
the differential gain and phase of the instrument, as done by Kramer et al. (1999).
Therefore, their findings are most likely based on an instrumental artifact.
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The average pulse profile may also vary as a result of the precession of the neutron
star, which alters the latitude of the line of sight through its magnetic field. Evidence
has recently been presented for the free precession of pulsars (Stairs, Lyne & Shemar
2000; Shabanova, Lyne & Urama 2001), which has been interpreted as a result of
the misalignment between the spin axis and the neutron star axis of symmetry
(Link & Epstein 2001). However, this phenomenon has been observed only in young
pulsars, and there is currently no reason to believe that PSR J0437−4715 is freely
precessing on any measurable timescale that would contribute to the residual RMS
of this timing dataset. Geodetic precession of the spin axis may also arise due to
general-relativistic spin-orbit coupling, an effect that has been well-studied in the
PSR B1913+16 system (Weisberg, Romani & Taylor 1989; Kramer 1998; Weisberg
& Taylor 2002). The rate of precession is given by (Barker & O’Connell 1975,
Equation 4)

Ωp =
3

2
T

5/3
� n5/3(1 − e2)−1 (mc +m/3)M−1/3, (6.1)

where the reduced mass, m = mpmc/M , and all other orbital parameters are defined
in Section 3.3. For PSR J0437−4715, Ωp ∼ 10−3 deg yr−1, and the contribution of
precession to mean pulse profile shape variation is considered to be negligible.

Nevertheless, pulsars are known to exhibit a number of pulse shape variation
phenomena (e.g. nulling, mode-changing, and drifting sub-pulses) and a detailed
study of the long-term stability of PSR J0437−4715’s average pulse profile would
prove useful in future work.

Pulsars have also been shown to deviate from the smooth, deterministic spin-
down behaviour expected due to the loss of rotational energy. For instance, the
pulsar glitch phenomenon, a sharp increase in spin frequency followed by a slow, ex-
ponential decay (or relaxation) back to the regular spin-down, has been observed in
a number of pulsars (see Lyne, Shemar & Smith (2000) for a recent, comprehensive
review). Arrival time data may also be affected by pulsar timing noise (Cordes &
Helfand 1980; Cordes & Downs 1985), an undetermined stochastic process intrinsic
to the pulsar that manifests itself as random fluctuations of the spin-down parame-
ters. Following Arzoumanian et al. (1994), we calculate an upper limit to the timing
noise in our dataset using the stability parameter,

∆(t) < log

(

2σν̈t
3

6ν

)

(6.2)

where ν = 1/P ∼ 173.6 s−1 is the rotational frequency, and σν̈ ∼ 4.8 × 10−28 s−3 is
the formal uncertainty in the second frequency derivative, as determined from the
data in Table 3.1. Substituting these values and t = 108 s into Equation 6.2 yields
∆8 < −6, less than that of all 139 pulsars presented in Figure 1 of Arzoumanian
et al. (1994). Another indication of the low level of timing noise in our dataset is
presented in Figure 6.4.
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Systematic timing errors might also arise from variations of the dispersion mea-
sure along the line of sight to the pulsar (Foster & Cordes 1990). Referring to Fig-
ure 4a of Backer et al. (1993), an upper limit to theDM gradient for PSR J0437−4715
is ∼ 10−3 pc cm−3 yr−1. Using arrival time data from observations made at only a
single frequency, most of the effect of a slowly varying DM would be absorbed in
the polynomial description of pulse phase (see Equation 3.4). However, Figure 4b of
Backer et al. (1993) predicts that the RMSDM may be as high as ∼ 2×10−4 pc cm−3,
corresponding to an RMS arrival time residual of ∼ 400 ns at 1420 MHz. Therefore,
DM variations may currently contribute to perturbations of arrival time estimates
in our dataset, and regular monitoring of DM may be beneficial to the long-term
timing of this pulsar. The new dual-band, 10/50 cm receiver, soon to be commis-
sioned at Parkes, may prove quite useful in this regard.

The observing frequency used for the majority of the data presented in this the-
sis (1413 MHz) was chosen largely based on practical considerations. The almost
permanent availability of the Parkes Multibeam receiver made it the obvious choice
for frequent observations. Also, by keeping the Hi emission line within the chosen
bandpass, a quick confirmation of correct down-conversion wiring and system con-
figuration could be made during the recording. However, a more optimal observing
frequency may improve the quality of future data. For instance, the flux density of
most pulsars varies with frequency according to a simple power law, S ∝ να, where
the average value of the spectral index, α, is 〈α〉 = 1.8 ± 0.2 (Maron et al. 2000)
and the spectral index of PSR J0437−4715 is about −1.5 (Johnston et al. 1993).

Although greater flux density motivates the observation of pulsars at lower fre-
quencies, a number of other factors must be considered. For instance, the intrinsic
width of the pulse profile is greater at lower frequencies (Rankin 1983b, see also
Figure 5.3), background noise due to non-thermal Galactic radio emission is higher,
and propagation effects (such as RM and DM variations in the ionosphere) be-
come increasingly important. Also, the refractive properties of inhomogeneities in
the ISM result in multipath propagation of the pulsar signal and irreversible scatter
broadening of the pulse profile. Under the assumption of a power-law (Kolmogorov)
turbulence spectra, the timescale of broadening is expected to vary with frequency
as ν−4.4 (Lee & Jokipii 1975). The optimal choice of observing frequency should be
carefully considered for future precision timing work.

6.1.3 Radio Frequency Interference

It is undeniable that the popularity of the internet and the accelerating growth of
related industries drive the development of the computing technologies utilized for
the reduction of large datasets in modern research projects. For instance, advances
in the computational power of desktop workstations are currently revolutionizing
the manner in which baseband data are handled. The recording speed and capacity
of magnetic tape storage media are not growing as quickly as that of the internal
hard-drive or the computational power of the commercially-available central process-
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ing unit (CPU). In order to circumvent cumbersome volumes of digital tapes and
their transport, new baseband systems currently under development or construction
are bringing the workstation cluster to the telescope. Elimination of the magnetic
tape bottle-neck allows baseband processing systems to more closely follow the en-
hancements of CPU and data communication technologies, enabling the recording
and reduction of larger bandwidths as well as the implementation of increasingly
complicated algorithms.

Ironically, this same expansion is cause for growing concern in the radio astron-
omy community. The demand for commercial spectrum allocation encroaches on
that of the scientific and amateur communities, and the number of sources of radio
frequency interference (RFI) continues to rise. RFI can be characterized as either
narrow-band (such as the transmission from a terrestrial radio station) or broad-
band (such as the footprint of a telemetry satellite). A number of convenient algo-
rithms, such as the median filter, exist for the excision of narrow-band interference
and may be trivially added to the suite of data reduction routines in the near future.
However, the removal of broad-band interference is a much more challenging and
computationally intensive task, as demonstrated by the work of Bell et al. (2001).
Even after fiber-optic networks are firmly established as the high-bandwidth com-
munication medium of choice, personal computers and other high-speed electronics
will continue to shine in the spectrum of interest to radio astronomers. Therefore,
research in this area will prove increasingly important as technology advances.

6.2 Possible Future Directions

Technological advancements not only necessitate better calibration and RFI exci-
sion techniques, but also stimulate new science. For instance, a number of novel
statistical methods applicable to baseband data have been developed and recently
presented by Jenet, Anderson & Prince (2001a, 2001b). Their ensemble averaging
techniques enable the study of pulsars previously too weak for single-pulse detection,
and have opened a new window into the characterization of pulsar emission. Us-
ing observations of PSR J0437−4715, the closest and brightest millisecond pulsar, it
should prove interesting to calculate, at high time resolution, some of the statistical
measures used by Jenet, Anderson & Prince as well as other higher order moments,
such as the polarization covariance (Melrose & Macquart 1998).

In Section 2.4.4, it is argued that the cross products of the coherency matrix,
ρ12 and ρ21, are generally much smaller than the total intensity, and therefore are
not significantly distorted by the scattered power that afflicts ρ11 and ρ22. This
argument is qualitatively based on the studies of quantization artifacts in the total
intensity (Cooper 1970; Jenet & Anderson 1998). However, no quantitative study of
the effects of digitization on the full polarimetric representation of electromagnetic
radiation has been published to date. Such a study might prove relevant to the
precision polarimetry of pulsars and therefore also to high-precision timing.
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It seems probable that the mathematical bridges built by Britton (2000) and
Hamaker (2000) will promote the development of new, sophisticated formal descrip-
tions of radio polarimetry and advanced calibration techniques. For instance, the
Hamaker formalism may find application in the polarimetric description of an array
of Luneberg lenses, a design currently under consideration as an implementation
of the Square Kilometer Array (SKA). The SKA will provide approximately 300
times greater collecting area than that of Parkes, greatly improving the S/N of
pulsar observations and, consequently, the accuracy of arrival time estimates. Accu-
rate polarimetric characterization of the SKA will be required in order to reap the
benefits of increased sensitivity in pulsar timing experiments.

As the capacity for recording and transmitting large amounts of data improves
with time, it may not benefit every experimental design to observe using greater
bandwidths. For instance, every observing system is bound by the ideal operating
range of the receiver feed horn. The RFI environment at the observatory might
also prohibit expansion into one or more regions of the available radio spectrum.
In addition, greater dynamic range may also be required in order to sample the
signal from brighter pulsars such as PSR J0437−4715 (see Appendix A). Under
these circumstances, it may prove more beneficial to increase the number of bits
per sample used during analog to digital conversion. The decrease in non-linear
digitization distortions to the average pulse profile would translate into a lower
systematic contribution to the arrival time residuals.

The astrometric parameters presented in Table 3.1 are measured in the celestial
reference frame defined by the JPL DE200 planetary ephemeris, which is oriented
with respect to the Earth’s annual orbit. In contrast, astrometric measurements
made by Very Long Baseline Interferometry (VLBI) are determined in the Interna-
tional Earth Rotation Service (IERS) reference frame based on the Earth’s diurnal
spin. By observation of the most distant radio sources, mostly quasars, the IERS
frame is defined with respect to the quasi-inertial extragalactic reference frame. Al-
though both reference frames provide a high degree of self-consistency, the transfor-
mation between the two frames is known much less accurately. Precise knowledge of
the frame tie would aid in the comparison of astrometric estimates from independent
experiments and in the navigation of interplanetary craft.

Pulsars provide a natural radio source with which to constrain the tie between
Earth-orbit and Earth-rotation oriented reference frames. Both timing and VLBI
observations of PSR B1937+21 have been utilized to provide a preliminary com-
parison with the Folkner et al. (1994) frame tie (Dewey et al. 1996; Bartel et al.
1996). However, the complete three-dimensional rotation between the frames cannot
be determined using the position and proper motion estimates of a single source.
PSR J0437−4715 is well-separated from PSR B1937+21 on the sky, and it is ex-
pected that the unprecedented accuracy of the astrometric parameters presented in
this thesis will contribute toward a full, precision determination of the frame tie
between the extragalactic and planetary reference systems.
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It has also been suggested that, by providing superior long-term frequency sta-
bility, an array of millisecond pulsars might possibly be used to complement the
atomic standard of terrestrial time. Clock stability may be characterized using a
number of analytical techniques. As the model-fitting procedure of pulsar timing
removes any quadratic form from the arrival time data, the stability measure most
applicable to pulsars is based on spectral estimates derived by fitting cubic poly-
nomials to sequences of clock differences (timing residuals, in this case). Matsakis
et al. (1997) define an appropriate dimensionless fractional instability, σz(τ), which
may be used to compare pulsars with each other and atomic timescales.

As a preliminary estimate of the quality of the PSR J0437−4715 timing data,
σz(t) was computed using the post-fit arrival time residuals from the DDK model.
The program, sigmaz, freely available from the Princeton pulsar group1, was used to
calculate the values of σz(t), presented in Figure 6.4. Comparison of Figure 6.4 with
Figure 9 of Kaspi, Taylor & Ryba (1994) indicates that PSR J0437−4715 exhibits
a timing stability approximately five times better than that of PSR B1855+09. If
the trend in Figure 6.4 continues into longer timing baselines without exhibiting
any red noise, the superior timing stability of PSR J0437−4715 may have signifi-
cant cosmological implications relating to the hypothetical background of stochastic
gravitational waves.

Figure 6.4: Fractional instabilities, σz(t), of PSR J0437−4715. As in Kaspi, Taylor &
Ryba (1994), the upper and lower dotted lines correspond to the theoretical GWB
spectrum (Equation 6.3) with normalized energy density Ωgh

2 = 10−7 and 10−8, re-
spectively.

Similar to the cosmic microwave background, which was accidentally discovered
in 1965 by Arno Penzias and Robert Wilson (Penzias & Wilson 1965), a background
of stochastic gravitational radiation might possibly echo throughout the universe as

1See http://pulsar.princeton.edu/ftp/pub/tmp/sigmaz.
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a remnant of the big bang. In theory, this gravitational wave background (GWB)
would perturb the metric between any given pulsar and the Earth, inducing slight
variations in the measured period of the pulsar. The possibility of detecting gravi-
tational waves through the use of pulsar timing was first proposed and developed by
Sazhin (1978), who considered the influence of a close binary system along the line
of sight between the pulsar and Earth; and also by Detweiler (1979), who treated
the Earth and pulsar as free masses with a separation that may be monitored using
the pulsar clock. In addition to deriving the additional timing noise contributed
by a stochastic background of gravitational radiation, Detweiler also considered the
timing signature induced by a more exotic class of supermassive black hole interac-
tions. He also showed that measured values of pulsar timing noise, στ , may be used
to place an upper limit on the energy density of the GWB.

Two experimental treatments, published at the same time, were soon to follow.
Romani & Taylor (1983) apply Detweiler’s GWB result to the timing residuals of
PSR B1237+25, whereas Hellings & Downs (1983) introduce the concept of a pulsar
timing array by forming the cross correlations of timing residuals from pairs of
pulsars. Both papers report similar results, demonstrating that the energy density
of gravitational waves with frequency less than 10−8 Hz is less than ∼ 10−4 times
the critical density required to close the universe.

Mashhoon (1982) pursues an alternative description of the GWB phenomenon
and its effect on pulsar timing that is similar to the twinkling of stars in the Earth’s
atmosphere. In his treatment, electromagnetic waves are scattered by curvature
irregularities in the turbulent spacetime metric of a partially coherent background
of stochastic gravitational radiation. Arguing that Detweiler’s analysis limits the
energy density within only a small interval of the GWB spectrum, Mashhoon claims
that his formulation of the resulting timing noise should be sensitive to that part
of the GWB spectrum dominated by wavelengths, λg > L, where L is the distance
between the Earth and the pulsar. However, this claim is incorrect, as the period
of such waves, Pg = λg/c, is far greater than the duration, T , of any current pulsar
timing experiment, and the polynomial fit for the pulse period and its derivatives
absorbs any signature of gravitational waves with period greater than T/2.

Despite this one shortcoming, Mashhoon’s phenomenology provided the theo-
retical basis used by Bertotti, Carr & Rees (1983) to derive a correct expression
for the timing noise due to a GWB with a spectral energy density of the form,
ρg(ω) = ρ0ω

n. In this paper it is also demonstrated that, in a binary pulsar system,
any discrepancy between the observed and predicted values of the orbital period
derivative may be used to provide an upper limit to the energy of the GWB in the
interval, T−1 < λg < L.

The theoretical intensity and spectral properties of the GWB has since been
characterized using models based on the gravitational interactions and oscillations
of cosmic strings (Hogan & Rees 1984; Vachaspati & Vilenkin 1985). Based on
these models, the GWB contribution to the power spectrum of the timing residuals
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is predicted to be (Blandford, Narayan & Romani 1984)

Pg(f) =
H2

0

8π4
Ωgf

−5, (6.3)

where H0 is the Hubble constant and Ωg is the fractional energy density per loga-
rithmic frequency interval of the GWB in units of the closure density. Note that Ωg

is expected to be roughly independent of frequency and approximately Ωg ' 10−7

(Vachaspati & Vilenkin 1985).
Following these theoretical predictions, Stinebring et al. (1990) utilized a rigorous

method for estimating the spectral content of red noise in the timing residuals of
PSR B1937+21 and PSR B1855+09 to place an upper limit of Ωgh

2 . 4 × 10−7

(95% confidence), where h = H0/(100 km s−1 Mpc−1). The same method was later
employed by Kaspi, Taylor & Ryba (1994) to derive a 95% confidence upper limit of
Ωgh

2 . 6 × 10−8. Thorsett & Dewey (1996) reexamine the results of Kaspi, Taylor
& Ryba (1994), using an analysis based on the Neyman–Pearson lemma, to place
a ten times more stringent limit on Ωgh

2 and suggest that the corresponding limit
on the cosmic string mass per unit length conflicts with a number of string-based
theories. However, their result is debated by McHugh et al. (1996), who utilize
a Bayesian approach to derive a rigorous limit on Ωgh

2 that is ten times weaker
than the Thorsett & Dewey (1996) result. At a recent meeting of the American
Astronomical Society, Lommen & Backer (2001) report Ωgh

2 . 2 × 10−9 based on
the findings from millisecond pulsar timing array data.

As evidenced by the various approaches that have been presented thus far, the
rigorous limitation of the GWB energy density is a problem that requires careful at-
tention to the statistical and theoretical assumptions made. A detailed investigation
of the applicability of the PSR J0437−4715 dataset is yet to be undertaken.
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6.3 Conclusion

This thesis presents the first complete determination of the three-dimensional orien-
tation of a pulsar binary system, a new test of general relativity, the most accurate
astrometric measurements made to date, and a new, phase-coherent method of po-
larimetric calibration. Precision timing analysis necessitated the development of
an improved timing model that may be applied to other nearby, binary pulsar sys-
tems. The neutron star and white dwarf mass determinations will contribute to the
population available for use in statistical analyses (Thorsett & Chakrabarty 1999),
and the precision astrometric parameters may eventually be used in the full deter-
mination of the transformation between the extragalactic and planetary reference
frames.

With a post-fit RMS residual of 130 ns over 40 months and fractional instabilities
much smaller than those of the best published data, our dataset represents the
state of the art in pulsar timing. Its unsurpassed timing stability strongly indicates
that continued observation of PSR J0437−4715 may have a significant impact in
cosmology. The pulsar is an excellent candidate for inclusion in a pulsar timing array
and may eventually contribute to the direct detection of gravitational radiation.
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Appendix A

Dynamic Range Requirements

When considering the dynamic range required in order to minimize distortions
during analog-to-digital conversion, the parameter of interest is the instantaneous
signal-to-noise ratio, S/Ninst. As shown in Figure 5 of Jenet & Anderson (1998)
and Figure 3 of Kouwenhoven & Voûte (2001), the response of a two-bit digitizer
remains linear up to S/N ∼ 1. When S/Ninst exceeds this limit, the resulting distor-
tions to the pulsar signal will become greater than ∼ 1%. For a Nyquist-sampled,
band-limited signal, S/Ninst may be derived from Equation 2.6 by substituting an
integration length equal to the sampling interval, i.e. tobs = 1/(2∆ν). Therefore,
for a dual-polarization receiver,

S/Ninst = K
Sinst

Tsys

. (A.1)

Here, Sinst is the instantaneous flux and the sensitivity, K, of the antenna may be
estimated using Equation 2.7. For the Parkes 64 m dish, A0 = πr2 ∼ 3200 m2 and
ηA ∼ 0.7 (Reynolds 2003) yield K ∼ 0.8 K Jy−1. However, due to ohmic losses in
the system, the value for the Multibeam receiver is closer to 0.67 K Jy−1 (Reynolds
2003).

At 20 cm, the mean pulse profile of PSR J0437−4715 peaks at approximately
5.6 Jy and the average S/N is about 0.16. However, single pulses have been observed
with peak flux densities as high as ∼200 Jy (Jenet et al. 1998), corresponding to
S/Ninst ∼ 5.7. Clearly, it is of interest to estimate the frequency with which the
instantaneous flux of PSR J0437−4715 exceeds the acceptable limits for two-bit
sampling.

In a 12.4 minute observation, Jenet et al. (1998) observe a distribution of pulse
energies described by

log10(N) = a+ bSpeak, (A.2)

where N is the number of pulses, a = 4.51 ± 0.01, b = −0.0262 ± 0.0002 Jy−1, and
Speak is the peak flux density. The fractional number of pulses with flux density
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greater than S may be calculated from the integral,

f(S) =
1

Ntot

∫ ∞

S

N(s) ds = − A

BNtot

exp(BS) (A.3)

where A = 10a, B = ln(10)b, and Ntot ∼ 1.29 × 105 is the total number of pulses
observed.

Substituting K ∼ 0.67 K Jy−1, and Tsys ∼ 23.5K (Reynolds 2003) into Equa-
tion A.1, the instantaneous flux corresponding to S/Ninst ∼ 1 is Smax ∼ 35 Jy. As
the dispersion smearing in our 20 cm observations is approximately equal to the
width of the main pulse peak (∼ 140µs), this value may in turn be substituted into
Equation A.3 to estimate that approximately 50% of the observed pulses will have
an instantaneous flux density exceeding the operating range of a two-bit digitizer.
The deleterious effects of quantization on these pulses requires detailed study in
future work.



Appendix B

Nomenclature

The following glossary defines the various mathematical symbols and acronyms used
throughout the thesis. Boldface characters denote matrix quantities and boldface
italicized characters denote vector quantities.

ẋ First derivative of x with respect to time
ẍ Second derivative of x with respect to time
z∗ Complex conjugate of z
x̌ Discreet, or digitized, form of analog process, x
⊗ Direct product
〈x〉 Expectation value of x, or time-average of x(t)
E† Hermitian transpose of E, or (E∗)T

Bm̂(β) Boost operator
Rn̂(φ) Rotation operator
α Right ascension
β Quadratic Doppler shift
δ Declination
µα Proper motion in right ascension, µα ≡ α̇ cos δ

µδ Proper motion in declination, µδ ≡ δ̇
µ Proper motion vector, µ = (µα, µδ)
µ Composite proper motion, µ = |µ|
ν Frequency (typically radio, also pulsar spin)
φµ Celestial position angle of proper motion vector
ψ Position angle of linearly polarized radiation
π Trigonometric Parallax
ρ Coherency matrix
σ Noise level; standard deviation
στ Arrival time residual RMS
σ 3-vector with components equal to the Pauli spin matrices

τc Characteristic age (≡ P/2Ṗ )
ω Orbital longitude of periastron
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Ω Orbital longitude of ascending node
a Orbital semi-major axis
ACF Auto-correlation function
b Galactic latitude
BSBC Binary system barycentre
c Speed of light (∼ 3.00 × 108 m s−1)
dπ Parallax distance
dβ Bell-Bailes distance
CPSR Caltech Parkes Swinburne (Baseband) Recorder
DM Dispersion measure
DSP Digital signal processing
e Orbital eccentricity
f(M) Keplerian mass function
FFT Fast Fourier Transform (algorithm)
FPTM Fast Pulsar Timing Machine (Caltech autocorrelation spectrometer)
GR General relativity
i Orbital inclination angle
i

√
−1

ISM Interstellar medium
Jy Unit: Jansky (electric spectral flux density: 10−26 W m−2 Hz−1)
l Galactic longitude
lt s Unit: Light seconds (distance; c× 1 s)
M� Unit: Solar mass (mass; ∼ 1.99 × 1030 kg)
mc Mass of pulsar companion
mp Mass of pulsar
MJD Modified Julian Day (JD - 2,400,000.5)
MSP Millisecond pulsar
Nfree Number of degrees of freedom in a model fit
P Pulse (spin) period
Pb Orbital period
pc Unit: parsec (distance; ∼ 3.09 × 1016 m)
PSD Power spectral density
PSR Naming prefix for pulsars
RF Radio frequency
RM Rotation measure
RVM Rotating vector model
S/N Signal to noise ratio
SSBC Solar system barycentre
T0 Orbital epoch of periastron
TOA (Pulse) Time Of Arrival
UHECR Ultra high energy cosmic ray
VLBI Very long baseline interferometry
x Projected semi-major axis, x ≡ a sin i
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