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“All parts should go together without forcing. You must remember that the parts you are
reassembling were disassembled by you. Therefore if you can’t get them to go together
again, there must be a reason. By all means, do not use a hammer.”

IBM maintenance manual, 1925
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Abstract

The technique of pulsar timing reveals a wealth of new information when a preci-
sion of ∼1µs or better is reached, but such precision is difficult to achieve. This
thesis describes a series of very high precision timing observations that improve our
knowledge of the targeted pulsar systems. We begin by describing a newly-developed
baseband recording and coherent dedispersion system (CPSR2), along with a new
object-oriented software development environment for pulsar data processing. Data
obtained with this new instrument during a 3 year observing campaign at the Parkes
64m radio telescope are analysed in a number of novel ways.

The mean profile of PSR J1022+1001 is shown to be stable on timescales of a few
minutes, in contrast with previously published claims. We obtain a level of precision
an order of magnitude better than any previous timing of this pulsar. In addition,
we observe dramatic changes in the mean profile of the relativistic binary pulsar
J1141–6545, which broadens by ∼50% over the time span of our observations. This
is interpreted as evidence for secular evolution of the line of sight to the emission
cone, caused by General relativistic geodetic precession which tilts the spin axis of
the pulsar. High precision CPSR2 observations of the extraordinary double pulsar
binary system are presented and we construct calibrated, mean polarimetric profiles
for PSR J0737–3039A, in two frequency bands. These profiles provide a reference
against which future profile evolution may be detected, given that we expect geodetic
precession to alter the observed mean profile on an even shorter time scale than for
PSR J1141–6545.

The bulk of this thesis involves timing a selection of millisecond pulsars whose
physical characteristics should allow the highest precision to be obtained. We mea-
sure several new proper motions and parallax distances. Shapiro delay is used to
constrain the inclination angles and component masses of several of the binary sys-
tems in our source list. In addition, subtle periodic variations of the orbital parame-
ters of two nearby binary millisecond pulsars are detected and attributed to annual
orbital parallax, providing additional constraints on their three-dimensional orbital
geometries. Future observations of these two sources may lead to more stringent
tests of post-Keplerian gravitational theories. Finally, we use the timing residuals
of one very stable source (PSR J1909–3744) as a reference against which we time
PSR J1713+0747 with a root-mean-square precision of 133 ns, amongst the best
timing residuals ever obtained. This result is an important step in the search for
long-period gravitational waves using pulsar timing arrays.
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Chapter 1

An Introduction to Radio Pulsar
Astronomy

“Science, my lad, is made up of mistakes, but they are mistakes which it is useful to
make, because they lead little by little to the truth.”

Jules Verne – Journey to the Center of the Earth

The name “pulsar” is a contraction of “pulsating star”, describing a unique class
of astronomical objects that were first observed nearly 40 years ago (Hewish et al.
1968). Since their serendipitous discovery, pulsars have had a large scientific im-
pact through studies of their nature and composition (Heiselberg & Pandharipande
2000), as astrophysical probes (Taylor & Cordes 1993) and as a means of test-
ing fundamental physics (Stairs 2004). Qualitatively, pulsars are compact celestial
objects that emit a regular series of broad-band pulses in the radio region of the elec-
tromagnetic spectrum, and sometimes at higher energies. Each pulsar has its own
unique, highly regular pulse rate and characteristic mean pulse shape, or “profile”
(Helfand, Manchester & Taylor 1975). Pulsar emission can in some cases be detected
from distant parts of the Milky Way, including the globular clusters, and even from
our satellite galaxies, the Magellanic Clouds (Crawford et al. 2001). Although
there are many unanswered questions about their exact structure and evolution, the
most remarkable property of the radio pulsars is the stability of their pulse rates.
Radio pulsars act like ticking clocks that keep accurate time in their own part of
the Galaxy. Pulsars broadcast timing signals that can be detected by any species
that has mastered radio communication. By accurately measuring the arrival time
of each pulse, observers can reconstruct a picture of the pulsar’s environment with
astonishing detail, allowing a wide range of astrophysical experiments.

1
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1.1 The Discovery of Radio Pulsars

The development of Radio Detection and Ranging (RADAR) during the closing
stages of World War II had a debatable influence on air supremacy at the time, but
it certainly provided the technical foundation for a new window on the universe.
By the mid-1960s, radio astronomy was a burgeoning field of study. Around this
time, a group of Cambridge astronomers lead by Professor Antony Hewish began
constructing a large “phased array” consisting of multiple dipole antennas joined to
form one sensitive, electronically steerable radio telescope. This array was designed
to repeatedly survey the radio sky, in an effort to use the effects of inter-planetary
scintillation (mostly due to the solar wind) as a probe of the structure of distant
compact sources (quasars). Observations were made at a frequency of approximately
81.5MHz (just below the modern FM radio band) and all output was directed to
a chart recorder that stored the detected signal on miles of paper tape. Until this
point in time, most radio astronomers were content to study the time-averaged
emission from astronomical radio sources. Radio detectors were designed to smooth
the received power over many seconds to help reject terrestrial interference. The
Hewish survey required shorter averaging times in order to accurately characterise
the rapid brightness changes caused by scintillation, thereby opening up a new region
of parameter space.

The first radio pulsar was discovered by Jocelyn Bell, at the time a graduate
student with Hewish, who was assigned to analyse the chart recordings produced by
the Cambridge radio telescope. In addition to the expected signatures of scintillat-
ing quasars, Bell noted an unusual trace that looked a little like Earthly interference
but nevertheless kept sidereal time (which shifts by approximately four minutes per
day relative to Solar time) over the course of several days. Higher time-resolution
observations of this source revealed that the signal consisted of a series of regularly
spaced pulses, with a separation of about 1.3 s. At the time, the origin of the new
signal was a mystery. The research group even considered the possibility that it was
a message from an extra-terrestrial intelligence! However, subsequent detection of
three more rapidly pulsating sources scattered across the celestial sphere convinced
them that these objects were a natural phenomenon. This only deepened the mys-
tery as even the smallest, most energetic objects known to exist were unable to
exhibit such rapid intrinsic intensity variations. Any source of finite size (though
it may appear as a point source to a distant observer) should not intrinsically vary
on a timescale shorter than the light travel time across its extent. For the majority
of the stellar population, this places a lower limit of order a few seconds on the
period of any variation. Smaller “dwarf” stars may vary with periods of order one
second. Refractive and diffractive scintillation of a signal during its journey through
the interstellar and interplanetary media could also cause intensity changes, but
the spacing of the maxima should then be random. The simple regularity of these
new repeating sources marked them as something entirely new. Hewish thought
that the mechanism behind these objects might have something to do with physical
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oscillations in the outer layers of white dwarf stars, hence the term “pulsating star”.

History now reveals that the theoretical groundwork required to understand the
nature of radio pulsars was in place more than 30 years prior to their discovery. The
key concept was introduced by Baade & Zwicky (1934) (only two years after the
discovery of the neutron!) in a paper on the nature of supernovae (the explosive
demise of massive stars). This article predicted that the implosion of a massive
star could leave behind a highly compact object with a degenerate collapsed core
of compressed nuclear matter. Such an object might contain the mass of the Sun
within a diameter of 20 km. Exotic objects like this were thought to be too small
to detect with the technology of the time. Despite their likely high temperatures,
the surface area of a neutron star would be too small to dissipate much thermal
radiation, leaving little trace of its existence.

Theoreticians had long been aware that the magnetic flux and angular momen-
tum of a star would have to be conserved as it evolved. Matter ejected from the
outer layers of the star could only account for some of the required energy, leading
to the idea that supernova-born “neutron stars” might be highly magnetised and
rapidly spinning, as well as very hot. Shortly after the Hewish et al. (1968) obser-
vations, Gold (1968) and Pacini (1968) independently connected the rapid, regular
pulse rates of the radio pulsars with the idea of rotating neutron stars. The resulting
“lighthouse” model assumes that a pulsar is a rotating, highly magnetised neutron
star that emits intense beams of radiation from its magnetic poles. These radia-
tion beams are locked to the spinning crust and sweep across the sky, producing a
pulse of radio power in any distant detector that lies in the line of sight. A number
of other physical models attempted to explain the rapidity and regularity of radio
pulsar signals; the possibilities included “ringing” or vibrational oscillations in the
outer layers of a white dwarf star. These alternative models were refuted within two
years of the discovery of the first pulsar.

As new instruments were tasked with finding ever more radio pulsars, it became
clear that only very compact objects could accommodate the most rapid periods
observed. The discovery of the Vela and Crab pulsars (with periods of 89 and
33ms respectively) sealed the fate of models based on white dwarfs. Before long,
observers demonstrated that the pulse periods of these two sources were systemati-
cally increasing; this fact could only be explained by models based on rotation, not
vibration, as vibrations die down in amplitude over time but maintain a constant
period. In addition, the spatial coincidence of the Crab pulsar with the Crab nebula
(the luminous remains of a supernova recorded by observers in 1054 AD) offered
clues as to the evolutionary history of the pulsar, favouring the rotating neutron
star model.

1.1.1 Pulsar Nomenclature

The naming conventions used to identify individual pulsars are extremely simple.
Unfortunately, the naming scheme has changed three times in the past and a short



4 CHAPTER 1. AN INTRODUCTION TO RADIO PULSAR ASTRONOMY

history is presented here to help avoid confusion. Pulsars have always been named
(somewhat unimaginatively) after their sky coordinates. Originally, the name began
with a 2-letter code representing the observatory responsible for discovering the
pulsar, followed by a 4-digit number representing the degrees and minutes of right
ascension. For example, the first pulsar was named CP1919; “CP” standing for
“Cambridge Pulsar” and “1919” representing the right ascension, which Hewish
et al. (1968) reported to be 19h 19m 38 ± 3s. As the number of known pulsars
increased, the observatory code was dropped in favour of the prefix “PSR” and a
single letter representing the reference epoch of the coordinates. “B” is used to
represent 1950 and “J” is used to represent 2000. The so-called “B” names also
include two digits and a sign, representing the degrees of declination. For example,
the first known pulsar became PSR B1919+21 under the new scheme. The extra
position information was included to avoid confusion between pulsars with the same
degrees and minutes of right ascension. More recently still, the “J” name convention
includes the minutes of declination as well as the degrees. The first pulsar is now
known as PSR J1921+2153. The right ascension has changed by approximately 2
minutes, due to precession of the equinoxes over a period of 50 years.

1.2 The Pulsar Emission Mechanism

Pulsars are thought to be rapidly rotating neutron stars with dipolar magnetic fields;
energetic beams of radiation blast out from the magnetic poles of the star and are
swept around the sky, provided the magnetic axis is offset from the rotation axis of
the star, as shown in Fig. 1.1. Classical electrodynamics tells us that a magnetic
dipole with moment M , rotating about an axis perpendicular to the dipole with
angular velocity ω, radiates an electromagnetic wave with angular frequency ω into
free space, dissipating a total amount of power Prad, given by (Griffiths 1999)

Prad =
1

3
M2ω4c−3 × 10−7 (Watts). (1.1)

The rotational kinetic energy Erot of a spinning object is

Erot =
1

2
Iω2 (Joules). (1.2)

Although the total power lost by the pulsar will be a combination of magnetic
dipole radiation, beamed emission and perhaps some amount of particle outflow,
dipole emission is a very efficient energy loss mechanism and therefore the dominant
braking force. We assume that all the rotational kinetic energy lost is converted
into dipole radiation

−dErot

dt
= Prad, (1.3)
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Figure 1.1: This diagram illustrates the relative alignment of the rotation axis and
magnetic field for a hypothetical pulsar. A neutron star with a dipolar magnetic field
rotates about an axis that is offset from the magnetic dipole axis by an angle O. The
magnetic field is locked to the surface of the star and must co-rotate with it. At a
certain distance from the surface (the light cylinder radius), the magnetic field can
no longer co-rotate without exceeding the speed of light. Field lines originating too
close to the pole cannot close without passing through the light cylinder and therefore
remain open, creating a “polar cap”. Beams of radio emission are thought to originate
within or above this region.
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−Iωω̇ =
1

3
M2ω4c−3 × 10−7. (1.4)

Angular velocity ω is related to the rotation frequency ν and period P by ω = 2πν =
2π/P . Taking the time derivative leads to the expression

dω

dt
= −2π

P 2
Ṗ . (1.5)

According to Eq. 1.4,

4π2 IṖ

P 3
=

16π4

3

M2

P 4c3
× 10−7. (1.6)

We then solve for M , to obtain the expression

M =

√

3 × 107

4π2
IP Ṗc3 (m2 A). (1.7)

We also know that the field strength at a distance l along the axis of a magnetic
dipole of moment M is given by (Griffiths 1999)

Baxis(l) =
µ0M

2πl3
(Teslas). (1.8)

It is therefore possible to solve for the magnetic field,

Baxis(l) =
1 × 10−7

πl3

√

3 × 107IP Ṗ c3 ≅ 9.06 × 10−4
√

IP Ṗ (Teslas). (1.9)

Equation 1.9 provides a useful estimate of a pulsar’s magnetic field strength, in the
case of pure magnetic dipole braking. Considering that an ideal, uniform, spherical
neutron star containing 1.3M⊙within a diameter of 20 km has a moment of inertia
approximately equal to 1×1038 kgm2, we see that radio pulsars are very effective
flywheels. Their spin-down rates are typically of order 10−15 ss−1, which makes their
surface magnetic fields of order 108 T, or 1012 G. Gunn & Ostriker (1969) considered
in detail the theoretical case of emission from an orthogonal rotator, where the
magnetic and spin axes are at 90o to one another. Ostriker & Gunn (1969) applied
this model to the Crab nebula and argued convincingly that dipole radiation from
a spinning, magnetised neutron star was responsible for the observed luminosity.

Of course, the simple orthogonal rotator model may not be complete or correct.
More generally, we can assume that the spin-down rate ω̇ of the pulsar is related to
its current angular velocity by the expression:

ω̇ = −kωn (1.10)

Here, k is a constant and n is the “braking index”, which is equal to 3 in the case
of pure magnetic dipole braking. Assuming that n 6= 1 and that the initial angular



1.2. THE PULSAR EMISSION MECHANISM 7

velocity was much larger than the current angular velocity, we can integrate Eq.
1.10 in time to obtain an expression for the characteristic age τ of a pulsar, in terms
of the observable quantities P and Ṗ ,

τ =
P

(n− 1)Ṗ
. (1.11)

Normally, we assume n = 3, reducing the expression to τ = P/2Ṗ . However, by
differentiating Eq. 1.10 we can derive an expression for the braking index n in terms
of observable quantities,

n = 2 − PP̈

Ṗ 2
. (1.12)

Obtaining the braking index from Eq. 1.12 requires detection of the spin period
second derivative. For most pulsars, P̈ is far too small to measure. Very young
pulsars experience the greatest braking torque and the value of n has been mea-
sured for the Crab pulsar (Lyne, Pritchard & Smith 1988), PSR B1509–58 (Kaspi
et al. 1994; Livingstone et al. 2005), PSR B0540–69 (Manchester & Peterson 1989;
Livingstone, Kaspi & Gavriil 2005), PSR J1119-6127 (Camilo et al. 2000a) and the
Vela pulsar (Lyne et al. 1996). In all cases, the measured braking index was <
3. Gavriil, Kaspi & Roberts (2004) used the Rossi X-ray Timing Explorer (RXTE)
satellite to measure a braking index > 3 for the X-ray pulsar PSR J1811-1925, but
this value is likely to be contaminated by timing noise. Johnston & Galloway (1999)
integrate Eq. 1.10 between two arbitrary times to obtain an expression for n that
does not depend on P̈ (and does not require a phase-connected solution over a long
time span) and measure 20 pulsar braking indices. The large range of values ob-
tained suggests that most measurements are dominated by the effects of glitches or
other timing instabilities. The authors call the concept of smooth spin-down with
constant braking into question. In this thesis, we strive to obtain the best possible
timing precision and must therefore avoid the young pulsars.

We have seen that a pulsar’s magnetic field is responsible for gradually slowing
the spin of the star by dissipating rotational kinetic energy into the surrounding
space. However, the magnetic field is also thought to generate beamed emission
originating near the polar region. It is this emission that drives the unique, reg-
ularly repeating signal that distinguishes pulsars from other astronomical sources.
Unfortunately, it is also the least understood aspect of pulsar emission. The mag-
netic field associated with a neutron star is thought to be a remnant of the parent
star’s field, highly compressed and increased in strength by 10 orders of magnitude
during the birth of the star. This field is locked to the body of the star by inter-
actions with charged particles in the crust and therefore co-rotates with the solid
exterior. As the field extends outwards from the surface of the star, it has to move
more rapidly through space to continue co-rotating. At a certain distance (given by
Eq. 1.13), the speed required for co-rotation exceeds the speed of light, preventing
the magnetic field closing from pole to pole. The region around the magnetic axis
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at each pole that is forced to remain open is called the “polar cap”. Beamed radio
emission is thought to originate within or above this region.

r =
c

ω
(1.13)

The “light cylinder” radius r is the distance at which the outermost part of a closed
field line would have to move at the speed of light, c, in order to co-rotate with the
crust.

Pulsar beams are thought to be driven by synchrotron emission from relativistic
electrons accelerated in their magnetic field. The exact configuration of fields and
charged particles in a pulsar’s magnetosphere is still a matter of debate. Goldreich
& Julian (1969) and Ruderman & Sutherland (1975) presented some of the first
theoretical models. Radio emission may originate near the surface of the star, or in
a region much higher up, close to the light cylinder. This second scenario is known
as the “outer gap” model (Cheng, Ho & Ruderman 1986). Often, the shape of the
mean profile changes significantly with observing frequency, which makes it difficult
to perform precision timing over a range of wavelengths. It is likely that different
radio frequencies are emitted from different altitudes in the magnetosphere, so the
true emission mechanism may be a combination of various existing models. The
pulse profile we observe is effectively a one-dimensional cut through the emission
cone. Observing at multiple frequencies adds a model-dependent second dimension,
but our knowledge of the radial extent and shape of pulsar beams is severely limited.

The pulsar emission mechanism is highly broad-band; some of the most energetic
(i.e. youngest) pulsars are seen to pulse in visible light and beyond. If a pulsar is
accreting matter, hot spots can form on the surface or within a surrounding accretion
disk, producing pulsed or continuous X-ray emission (Blumenthal & Tucker 1974).
Modern research in this field is often aided by numerical simulation. The few pulsars
that emit high-energy photons may provide the key to the emission mechanism
puzzle (Cheng 2004; Baring 2004), but much work is still required. Within the
radio region of the electromagnetic spectrum, the flux density S (power received per
unit collecting area per unit frequency, measured in units of Janskys, where 1 Jy =
10−26 Wm−2 Hz−1) of a pulsar tends to decrease with increasing frequency, following
a characteristic synchrotron power law of the form:

S ∝ να (1.14)

Here, ν is the radio frequency at which we observe and the exponent α is known as
the “spectral index”. Based on a study of 280 pulsars, Lorimer et al. (1995b) con-
clude that the mean spectral index is –1.6, but extreme values range from –3.4 up to
0.2. The majority of pulsars have spectral indices close to –2.0. While pulsars are in-
trinsically more luminous at low frequencies, the temperature of the background sky
also increases with decreasing frequency, as does dispersive smearing. For precision
timing, it is best to minimise dispersion smearing by observing at high frequencies,
but this must be balanced against the loss of flux density and signal-to-noise ratio
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(S/N). The optimal frequency at which to observe radio pulsars can vary depending
on the source, experiment, sky position and so on, but it is usually in the range
0.3 – 3.0GHz.

1.3 Interstellar Propagation

Although the speed of light in a vacuum is a fundamental constant, the speed of
light in other transparent media can be significantly different. In much the same way
as glass or water slow down the passage of optical light, electrons in the interstellar
medium (ISM) can slow down radio waves. The time delay relative to radiation
with infinite frequency is given by

t =
DM

2.41 × 10−16ν2
(s). (1.15)

Here, DM is the “Dispersion Measure”, defined to be the integral of the electron
column density, and ν is the radio frequency in Hz. Low frequency signals expe-
rience more “drag” than high frequency signals, leading to refraction. Broad-band
pulses are therefore spread out in time during their passage through the ISM. This
effect is known as “dispersion”. Figure 1.2 shows the signal from the Vela pul-
sar, PSR J0835–4510. The vertical axis is radio frequency, the horizontal axis is
“pulse phase”, which is equivalent to time, starting at zero and ending one pulse pe-
riod (approximately 89ms) later. The pulse energy is clearly distributed in time, the
lower frequency components of the pulse arrive some time after the higher frequency
components.

Incoherently sampling the mean pulse power over a finite bandwidth will un-
avoidably “smear” the profile. The amount of time by which a pulse is dispersively
smeared depends on the DM, the observing frequency ν and the bandwidth B and
is given by

tsmear =
8.3 ×B × DM

ν3
(µs). (1.16)

Here, ν is specified in GHz, B in MHz and DM in cm−3pc. To characterise the
true shape of a pulse profile it necessary to observe vanishingly narrow bandwidths,
but this has a detrimental effect upon the S/N (see Eq. 3.2). In order to overcome
both these problems, instrument designers have devised ways to observe many small
channels that can be combined to give a large effective bandwidth. These channels
can be summed together with the appropriate delays to ensure proper alignment of
the pulse at each frequency.

1.3.1 Coherent Dedispersion

Because there are hardware limits on the number of discrete spectral channels that
can be constructed in a single instrument, incoherent sampling always leaves a resid-
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Figure 1.2: This diagram illustrates the dispersive effect of the ISM on the mean pulse
of the Vela pulsar, J0835–4510, within a 20 MHz-wide portion of the radio spectrum
that has been divided into 128 narrow channels. Although the delay appears to be
a linear function of frequency, Eq. 1.15 shows that the relation is actually parabolic.
Deviations from linearity only become apparent with wider fractional bandwidths and
shorter pulse periods.
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ual amount of dispersion smearing in the final profile, equal to the amount of smear-
ing that occurs within the bandwidth of a single spectral channel. In theory, it is
possible to remove even this residual smearing, but the operation must be performed
prior to detecting the signal. Hankins & Rickett (1975) consider the ISM to be a
linear filter that converts an input signal f(t) into an output signal g(t), and derive
a suitable transfer function based on the cold plasma dispersion relation,

H(ν + ν0) = exp

[

i2πDν2

ν2
0(ν0 + ν)

]

, ν << ν0. (1.17)

Here, we have shifted by the centre frequency ν0 so that our transfer function is cen-
tred on ν = 0 and the bandwidth of the observation is bounded by ±ν. The complex
impulse response of the ISM, h(t), is simply the Fourier transform of H(ν+ν0). The
transfer function H(ν + ν0) modifies an incoming signal f(t) by multiplication with
the Fourier transform, F (ν). The modified signal is recovered by reverse Fourier
transform, i.e. G(ν) = H(ν)F (ν), where G(ν) is the Fourier transform of the fil-
tered signal, g(t). In radio astronomy, we measure g(t) and wish to reconstruct
the form of the signal before it passed through the ISM. Because we can compute
the inverse transfer function corresponding to Eq. 1.17, it is possible to reverse
the filtering process. We must first compute the discrete Fourier transform of the
observed signal, multiply it by the inverse transfer function in the Fourier domain
and then transform back into the time domain. To do all this without introducing
artifacts into the signal requires Nyquist sampling and careful accounting for the
periodic nature of the Fast Fourier Transform (FFT) algorithm (Cooley & Tukey
1965). The computational load is high, and the data rate increases with observing
bandwidth.

1.3.2 Scattering and Scintillation

Inhomogeneities in the electron content of the interstellar medium act like a phase-
altering screen that can interfere with the radiation emitted by distant radio point
sources, in much the same way that Earth’s atmosphere interferes with the visible
light from distant stars. Given the small intrinsic size of their emission regions,
pulsars are highly susceptible to interstellar scintillation in the strong scattering
regime. More recently, the phenomenon of intra-day variability in flat-spectrum
quasars has provided a new way to study scintillation in both the strong and weak
regimes (Kedziora-Chudczer et al. 1997; Dennett-Thorpe 2000; Bignall et al. 2003).

Walker (1998) summarises our understanding of radio scintillation, with a view
towards extra-galactic sources and Narayan (1992) examines the physics of pulsar
scintillation. Scintillation causes quasi-random changes in the intensity of the ob-
served signal as a function of frequency and time. Astronomers describe the effects
of scintillation using three parameters, the characteristic bandwidth, characteristic
timescale and the modulation index of any observed variation. The characteristic
bandwidth and timescale describe the structure or “dimensions” of the scintillation
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pattern and the modulation index describes the amount by which the amplitude
of the signal is seen to vary. It is defined as the root-mean-square (RMS) of the
observed fractional flux changes.

Within the strong scattering regime, we expect two types of intensity modulation,
known as refractive and diffractive scintillation. Refractive scintillation is caused
by focusing and defocusing of rays due to large-scale structure within the ISM,
which acts like an enormous lens. This type of scintillation is associated with wide
bandwidths (of order the observing frequency used) and time scales ranging from
days to years. Refractive scintillation makes it difficult to determine the intrinsic flux
of radio pulsars. The mechanism of diffractive scintillation is quite different. Small-
scale variations in the structure of the ISM cause diffraction of incident wavefronts,
in much the same way as a slit or diffraction grating acts upon visible light. Rays
diffracted from different parts of the ISM will interfere in the plane of the Solar
system, mapping out an interference pattern on the ecliptic. The characteristic
separation of the minima and maxima will depend on the inhomogeneity scale of
the ISM and the observing frequency. As the Earth moves in its orbit, it cuts
through different parts of the interference pattern, causing the source to “twinkle”.
Similarly, the motion of the pulsar will cause the interference pattern to change. The
timescale of the resulting intensity variation depends on the velocity of Earth and
the pulsar. Walker (1998) derives an expression for the characteristic bandwidth for
diffractive scintillation,

∆ν

ν
=

(

ν

ν0

)17/5

. (1.18)

Here, ν is the observing frequency and ν0 is the transition frequency, which is fixed
for a given line of sight. The associated timescale is given by

td ≈ 2

(

ν

ν0

)6/5

(hours). (1.19)

Changes in intensity are in general only noticeable if the observing bandwidth is
smaller than the scintillation bandwidth, but may still be detectable in individual
spectral channels provided some frequency resolution is retained. The pulse profile
is also susceptible to scatter-broadening, which is a side effect of multi-path prop-
agation (see Fig. 1.3). High precision timing depends on precise knowledge of the
observing frequency in order to accurately predict the delay caused by the ISM.
Diffractive scintillation can cause power to appear off-centre within the observing
band, subtly altering the effective observing frequency and introducing a systematic
error.
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Figure 1.3: This diagram illustrates the intrinsic broadening of a pulse due to multi-
path scattering as the signal travels through an inhomogeneous interstellar medium.
The first ray to arrive travels in a straight line from the pulsar to the radio telescope,
subsequent rays can be scattered back from different angles, traveling a greater total
distance and consequently arriving at later times. This gives the pulse an extended
tail. This effect cannot be corrected for but its magnitude is a strong function of the
dispersion measure and observing frequency.
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1.4 Radio Pulsar Timing

We now know that each individual pulse emitted by a radio pulsar varies greatly
in power, structure, polarisation and even in phase. Despite this, the addition of
several thousand individual pulses always produces a stable mean profile that can
be used as the “fingerprint” of the source (Helfand, Manchester & Taylor 1975).
This makes the technique of pulsar timing possible.

The very first observations revealed that the periods of the pulsars were stable to
better than 1 part in 107 (Hewish et al. 1968). Such accuracy was enough to reveal
Doppler shifts due to the motion of the Earth around the Sun. Astronomers started
to keep track of the arrival times of the pulses from a number of sources, in the hope
that the they would reveal important information. Careful analysis of trends in
these arrival times soon determined several pulsar rotation periods to better than a
tenth of a nanosecond. This in turn allowed the first detection of pulsar spin-down;
before long the first period derivatives of the youngest pulsars could be determined
to better than a few parts in a thousand (Davies, Hunt & Smith 1969; Reichley,
Downs & Morris 1970). Mathematical models describing these perturbations were
constructed and used to predict when the next pulse would arrive.

Small errors in right ascension and declination can be easily detected with pulsar
timing. Similarly, if the pulsar is moving across the sky (the violence of their birth
leaves many with high velocities), the gradual change in position will also be de-
tectable over time. In this way, pulsar timing can aid studies of galactic kinematics.
In fact, pulsars can be used very effectively to probe the structure of the Milky Way.
By measuring the relative pulse delay over several frequency channels, the dispersion
measure of a pulsar can be determined. This provides an estimate of the electron
column density. Alternatively, models of the galactic electron density can be used
to estimate the distance to a pulsar once its dispersion measure is known (Lyne,
Manchester & Taylor 1985; Taylor & Cordes 1993). In addition, if a pulsar emits
any linearly polarised radiation (and most do), careful analysis of the position angle
of the polarised component can yield information about the magnetic field along the
line of sight, through an effect known as Faraday rotation (Smith 1968; Hamilton
& Lyne 1987).

Not all of these parameters can be measured quickly or easily. After a new pulsar
is discovered, 12 months of follow-up timing will usually reveal the spin period,
period first derivative (and hence an estimate of the pulsar’s age and magnetic field
strength), sky position and dispersion measure to high accuracy. Given a few more
years of observations, the proper motion of the pulsar can sometimes be determined.
Very Long Baseline Interferometry (VLBI) can sometimes be used as an alternative
or independent means of obtaining this information (Bartel et al. 1985; Dodson
et al. 2003).
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1.4.1 Binary Pulsars

The discovery of the first pulsar in a binary system, PSR B1913+16 (Hulse & Taylor
1975), opened up a whole new parameter space for pulsar timing experiments. This
pulsar was observed to exhibit large, periodic variations in its 59ms rotation period,
interpreted as Doppler shifts induced by motion in an approximately 8 hr orbit
about another object of similar mass. Pulsar timing can be used to provide an
extremely detailed picture of the orbit of a binary pulsar. Shortly after a new pulsar
is discovered, the orbital period, eccentricity (if significant), longitude and epoch of
periastron and the projection of the semi-major axis along the line of sight can be
determined. In fact, these parameters are crucial to obtaining a phase connected
solution that can predict in advance when the next pulse will arrive.

1.5 Millisecond Pulsars

Fifteen years after the discovery of the first pulsar, Backer et al. (1982) discovered
PSR B1937+21, with a rotation period of only 1.5ms. Such rapid rotation is near
the structural limit for a neutron star and the discovery came as quite a surprise.
The pulsar was only identified because its emission mingled with that of a nearby
HII region, mimicking a mysterious steep-spectrum source with an extended flat
spectrum component. Intensive searches at a number of radio frequencies failed to
identify the true nature of the steep spectrum source (even though it was suspected
to be a pulsar) because the search methods applied were not sensitive to such rapid
periods. Eventually, harmonics of the fundamental spin rate were identified and
shortly afterwards the discovery of the fastest pulsar ever observed was confirmed.

Today it is accepted that the millisecond pulsars (MSPs) are normal pulsars that
have been spun-up by a process of mass accretion from a binary companion. Bhat-
tacharya & van den Heuvel (1991) present a comprehensive review of this theory,
which is described here only in broad terms. Binary MSP progenitor systems are
thought to contain at least one star that exceeds the critical mass required for a
supernova. The more massive star also evolves more rapidly and provided the sys-
tem stays bound after the supernova, there is a chance that a young pulsar will be
left orbiting a main sequence star. The companion evolves more slowly, eventually
expanding to fill its Roche lobe, at which point matter will start to transfer from
the outer layers of the companion onto the pulsar. This process of accretion must
conserve angular momentum, so the pulsar must spin faster as it accretes more
matter. The companion may eventually become a white dwarf, or there may be
a second supernova. If the system remains bound after the second supernova, we
could be left with a double neutron star (DNS) or black hole neutron star binary
system. Accretion also seems to reduce the pulsar’s magnetic field strength by sev-
eral orders of magnitude (Shibazaki et al. 1989), increasing its life expectancy up
to the vicinity of the Hubble time (the age of the universe). We therefore expect
these “millisecond” or “recycled” pulsars to occupy a much different evolutionary
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niche to the “normal” or “slow” pulsars. Plotting the observed period against the
observed period derivative for pulsars in the galactic field illustrates this fact well
(Fig. 1.4). The main population of normal pulsars is concentrated in the middle of
the plot. The MSPs cluster towards the bottom left, clearly isolated from the main
population.

After the completion of many successful surveys during the last few decades
(Large, Vaughan & Wielebinski 1968; Manchester et al. 1978; Clifton et al. 1992;
Johnston et al. 1992; Manchester et al. 1996; Sayer, Nice & Taylor 1997; Lyne
et al. 1998; Edwards et al. 2001), the number of known radio pulsars stands at 1513
(Manchester et al. 2005a). Nearly half of these were discovered during the highly
successful Parkes multibeam survey and its high-latitude extensions (D’Amico et al.
2001; Morris et al. 2002; Kramer et al. 2003; Burgay et al. 2003; Hobbs et al. 2004a;
Faulkner et al. 2004). In total, 134 of these pulsars have periods less than 20ms. The
success of modern surveys is helping to bridge the gap between the two population
groups, finding more objects at various intermediate evolutionary stages.

Many of the known MSPs reside in globular clusters. Due to their compact
extent, globular clusters can be surveyed with relatively few sky pointings. This
allows additional integration time, which increases the chance of detecting weak
sources. Deep, targeted surveys of 47 Tucanae (Manchester et al. 1991; Camilo
et al. 2000b) and Terzan 5 (Ransom et al. 2005) have found close to 50 MSPs.
This can complicate any analysis of the MSP population because the evolutionary
histories of pulsars in globular clusters and those in the galactic field are likely to
be quite different.

1.6 High-Precision Timing

Binary pulsars in particular provide a unique opportunity to test fundamental
physics. The original binary pulsar PSR B1913+16 is mildly recycled and has a
very eccentric, short-period orbit with a neutron star companion. Taylor & Weis-
berg (1982) determined that the orbit of the pulsar is decaying at precisely the rate
predicted due to the emission of gravitational radiation (a consequence of General
relativity). Chapter 2 describes the timing model parameters required to define a
Keplerian orbit and several additional “post-Keplerian” parameters whose detection
can be used to test theories of gravity or determine the component masses of the
system.

The interior of a neutron star is governed by the equation of state for nuclear
matter. Because the extreme conditions inside a neutron star cannot be replicated on
Earth, our knowledge of the behaviour of matter at very high densities is limited and
the exact form this equation takes is uncertain. The range of theoretically possible
equations of state provide a range of acceptable neutron star masses, extending from
a few tenths of a Solar mass up to about ten times this amount. Observations of
neutron stars provide one of the few experimental constraints available in this field.
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Figure 1.4: This diagram shows period derivative plotted against period for the ma-
jority of the radio pulsar population. Pulsars known to reside in globular clusters have
been excluded from the plot because their observed period derivative is likely to be
corrupted by acceleration in the gravitational potential of the cluster. Solitary pulsars
are shown as filled circles, pulsars with a binary companion are shown as crosses. The
millisecond pulsars appear to be a separate population in the bottom left corner and
are preferentially found in binary systems.
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The nature of the accretion process that recycles MSPs is also not well understood.
Astronomers have few constraints on the amount of matter the pulsar must accrete
to reach millisecond periods, making the precise measurement of MSP masses very
important to our understanding of their evolution.

In all but the most extreme systems, relativistic influences are small and a very
high level of timing precision is required to detect post-Keplerian perturbations.
Because of their smaller spin-down torque and greater angular momentum, the mil-
lisecond pulsars can be timed much more precisely than the normal pulsars. When
the mean arrival time uncertainty is below ∼1µs, a range of interesting experiments
can be performed. The better the timing precision, the greater the significance of
any measured parameter. Our ability to measure the various post-Keplerian param-
eters also depends to a large extent on the physical characteristics of the system. For
example, it is difficult to measure the rate of periastron advance if the eccentricity
of the orbit is very small. The DNS binary systems offer both high timing precision
and orbits most likely to exhibit post-Keplerian effects. High-precision timing of
PSR B1913+16 (Taylor & Weisberg 1989), PSR B1534+12 (Stairs et al. 1998)
and PSR B2127+11C (Deich & Kulkarni 1996) provided the first measurements of
the masses of neutron stars and were use to test General relativity in a number of
novel ways. Binary systems containing an MSP and a white dwarf tend to be made
circular by tidal forces, but it is sometimes possible to detect a relativistic effect
known as “Shapiro delay”, that can be used to determine the component masses.
The timing of PSR B1855+09 (Ryba & Taylor 1991; Kaspi, Taylor & Ryba 1994)
revealed this effect. More recently, timing of PSR J1909–3744 has provided one of
the most precise estimates of a recycled pulsar mass ever obtained, thanks to its
favourable orbital geometry and excellent timing precision (Jacoby et al. 2005).

Lyne et al. (2004) recently discovered a double pulsar binary system, consisting
of two active and observable pulsars orbiting each other. Timing of both these
objects allows the orbit and both pulsar masses to be determined very accurately.
The orbital period is only 2.4 hr, making post-Keplerian effects highly significant.
The longitude of periastron is observed to advance at the rate of ∼17o yr−1. The
orbital plane is nearly coincident with our line of sight (though the exact angle
is a matter of some uncertainty) and short-duration eclipses have been observed.
The emission from the 2.77 s secondary pulsar exhibits a complicated sequence of
intensity variations as a function of orbital phase, providing good evidence that the
magnetosphere is influenced by the emission of the primary pulsar (McLaughlin
et al. 2004). The scintillation pattern of both sources can be used to investigate the
properties of the ISM with unprecedented detail (Coles et al. 2005).

The MSPs do not seem to suffer from timing noise or rotational glitches to the
same extent as the younger “normal” pulsars. In fact, the only example to date of
a glitch-like event in a millisecond pulsar was observed very recently (Cognard &
Backer 2004), and was orders of magnitude smaller than the glitches observed in Vela
(Dodson, McCulloch & Lewis 2002), for example. MSPs also seem to be exempt from
phenomenon like nulling and mode changing, their emission is remarkably steady.
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However, Kramer et al. (1999) report that PSR J1022+1001 has a timing precision
approximately 10 times worse than we might expect based on its period. These
authors assert that its poor timing performance is due to shape changes in the mean
profile on a timescale of several minutes. Ramachandran & Kramer (2003) interpret
these changes as evidence for magnetopheric return currents. If these profile changes
are real, they cast doubt on the fundamental stability of the MSPs.

Another source of profile instability is the phenomenon of precession. The rota-
tion axis of a pulsar will precess if it is misaligned with the orbital angular momentum
vector in the case of a binary system (geodetic precession) or if there is some asym-
metry in the shape of the neutron star (free precession). The original binary pulsar
B1913+16 exhibits secular profile changes that Weisberg, Romani & Taylor (1989)
interpret as evidence for geodetic precession. Stairs, Lyne & Shemar (2000) observe
correlated periodic variations in both the arrival times and pulse profile shape of the
isolated pulsar PSR B1828–11, which are interpreted as evidence for free precession.
Although precession has the potential to affect the timing of a pulsar, it also offers
a chance to map out the complete shape of the emission beam, albeit over lengthy
timescales. The geodetic precession period of the 22.7ms pulsar in the double pulsar
binary system is ∼70 years, but no profile shape changes have yet been detected.

In the quest for ever higher precision in order to better measure system parame-
ters and probe fundamental physics more deeply, astronomers must find innovative
ways to avoid systematic errors in pulse timing experiments. To avoid errors asso-
ciated with terrestrial time standards and Solar system ephemerides, it is possible
to simultaneously fit for global parameters across the timing residuals of multiple
pulsars. The concept of the pulsar “timing array” in its most basic form dates back
15 years (Foster & Backer 1990). The limiting factor has always been the small
number of pulsars that can be timed to the level of precision required to make a
timing array useful (Jenet et al. 2005). One of the primary goals of this thesis is to
better understand the fundamental limits to pulsar timing precision in an effort to
increase the sample of sources that can be timed with better than 1 µs of precision.

Pulsar timing has contributed to a wealth of scientific results. For a more detailed
summary, the reader can refer to two excellent books by Lyne & Smith (2004) and
Manchester & Taylor (1977), and an online living review1 that summarises recent
work in the field.

1.7 Thesis Outline

In this thesis we describe a series of millisecond pulsar timing experiments and
three studies of mean profile morphology and polarimetry, with an aim to achieve
the highest possible timing precision. We begin by describing the technique of
pulsar timing in some detail, including the mathematical models used to predict
pulse phase as a function of time and the algorithms used to obtain arrival times.

1http://relativity.livingreviews.org/Articles/lrr-2001-5/index.html
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Next, we describe the design and construction of the instrument used to record
data. Chapter 3 begins with a description of pulsar instrumentation in general,
describing the motivation for a new system, followed by a detailed account of its
construction. Chapter 4 describes a new software package, designed to provide a
generalised mechanism for pulsar data storage and analysis. This chapter addresses
a number of problems associated with the previous generation of analytical code.
Chapter 5 describes a detailed study of the shape of the mean pulse profile of PSR
J1022+1001, showing that previously reported profile variations do not manifest
when the pulsar is observed with CPSR2. Chapter 6 describes observations of the
relativistic binary pulsar PSR J1141–6545. We demonstrate that the mean profile
is broadening systematically and interpret this as evidence for geodetic precession,
which should allow limited mapping of the emission cone in future years. New
polarimetric profiles for PSR J0737–3039A are presented in Chapter 7, providing
a reference against which future profile evolution may be detected, given that we
expect this pulsar to precess on an even shorter timescale than PSR J1141–6545.
The signature of post-Keplerian Shapiro delay is used to constrain the inclination
angle of the J0737–3039 system. Finally, Chapter 8 describes high-precision timing
observations of 15 millisecond pulsars over a period of 3 years. These sources were
selected for their timing stability and several were modeled so well that the RMS
timing residual was ∼200 ns. We measure several new parallax distances and present
evidence of DM variations. Shapiro delay is used to place limits on the geometry
and component masses of several binary systems in the selected list of sources.
As a final test, we successfully time one very stable pulsar against the residuals
of another, an essential first step towards constructing a large-scale pulsar timing
array. In Chapter 9 we summarise our findings and speculate on the nature of future
observing systems.



Chapter 2

An Introduction to Pulsar Timing

“Physics is imagination in a straight jacket.”

John Moffat

A wealth of information is encoded in the signal from a radio pulsar. Because
the spin rate is highly regular, any physical influence that is capable of varying the
normal pulse rate can be detected and studied. The technique of pulsar timing
is one of the most precise and widely applicable experimental methods in modern
astronomy. Acceleration of either the source or the observer along their common line
of sight is responsible for some of the largest timing perturbations, but more subtle
relativistic effects can also be detected in rare cases. To time a pulsar, observers
create a mathematical model that describes all physical perturbations acting on
the spin rate of the source. When a pulse time of arrival (TOA) is measured, the
predicted time is subtracted from the observed time to yield the so-called “timing
residual”. If the collected timing residuals display any deviation from random noise,
there must be systematic errors either in the measurements or the model. Accurate
measurements of pulse arrival times can be used to iteratively refine the timing
model and measure more subtle effects. In this Chapter, we describe the way in
which pulse arrival times are obtained and analysed, and introduce the parameters
from which timing models are constructed.

2.1 Fundamental Concepts

Pulsar data is normally recorded along with an accurate time stamp, corresponding
to the rising edge of the first phase bin at the beginning of the observation. This
time is taken from the observatory clock, which must be related in some systematic
way to a stable, global definition of time. Most pulsar timing is done using folded
profiles that include many individual pulses. The addition of each pulse is done “in-
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phase” (often at the time of the observation, by the instrument) and if the existing
model is good, this addition process is accurate to well within a single rotation
period. This allows the instrumental “trigger” time to be accurately modified so
that it represents an epoch in the middle of the averaged pulse train, at the same
phase. This epoch is treated as the “reference time” of the integration as a whole.
The position of the pulse peak within the observed profile is then determined by
cross-correlation with a standard template profile. This offset is added to the time
stamp to yield the measured TOA.

At this point, we have what is called the “site arrival time” or SAT. The motion of
the Earth in its orbit around the Sun and the perturbing influence of other bodies in
the Solar system introduce Doppler shifts that are often the greatest single source of
systematic deviation from a fixed pulse rate. Fortunately, these Solar system effects
can be removed by converting our SAT to a “barycentric arrival time” or BAT. This
is the time at which the pulse wavefront arrived at the centre of gravity of the Solar
system (the barycentre), which is our best available approximation to a reference
frame that is inertial with respect to the pulsar. Beyond our Solar system, dispersive
propagation delays incurred as the pulses travel through the ISM introduce an offset
that must be incorporated into the timing model. In addition, the apparent proper
motion of the pulsar introduces an error in the estimated position that grows with
time. If the pulsar orbits a binary companion, another set of corrections will be
required to account for the orbital motion of the pulsar. Timing models can therefore
have anywhere between approximately 5 and 15 free parameters.

In practice, pulsar astronomers are interested in the differences between the
arrival times predicted by a given model and those actually observed (the timing
residuals). If, for example, our knowledge of the position of a pulsar is incorrect,
the timing model will predict the wrong Earth orbit travel time delay (see below),
leaving a systematic and periodic “signature” in the timing residuals. Figure 2.1
shows the timing residuals of PSR J1909–3744 over a period of nearly three years.
The model used to obtain the residuals was modified so that the position of the
pulsar is in error by 0.1mas in right ascension, introducing a sinusoidal signature.

The signature of an error in the model is the difference between the actual
and applied correction for a given physical effect, or sometimes the presence of a
completely unexpected effect that is not included in the model at all. The timing
signature of an error in a well-understood parameter can be easily computed from
the functional form of the model component. These signatures are what pulsar
astronomers must identify and study. An unexplained signature may hold the key
to new understanding. Once a set of arrival times and an initial model are available,
the parameters of the timing model are adjusted (usually using a least-squares fitting
procedure) to reduce the RMS residual to a minimum, thereby producing the most
accurate description of the system.

The accuracy with which we can determine a given model parameter is governed
by the amplitude of a particular timing signature, relative to the accuracy of our
arrival time measurements. If the arrival time of a pulse can be determined observa-



2.1. FUNDAMENTAL CONCEPTS 23

Figure 2.1: This figure illustrates the systematic timing residual signature introduced
by a 0.1mas error in right ascension. Arrival times were obtained from PSR J1909–
3744. The RMS of the fit increases by a factor of 10 when this position error is
introduced.
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tionally to within 1µs, it is possible to identify much more subtle signatures than if
the experimental precision were measured in milliseconds. Unfortunately, many of
the most interesting timing signatures are weak and often covariant with one other,
making it essential to have a high density of accurately determined arrival times
when trying to constrain the parameters of a timing model. Pulsars that can be
timed precisely are therefore highly prized, especially if they reside in an interesting
or unusual system. The intrinsic timing precision of a pulsar is governed primarily
by its rotation period, though factors like flux density and pulse shape also con-
tribute significantly. Because our analysis is performed with the aid of computers,
pulse profiles are digitised at the telescope and recorded with a discrete number of
uniformly spaced “bins” or points within a single rotation period. The time rep-
resented by each bin in the recorded profile is often longer than the RMS timing
precision that can be achieved through careful analysis. In general, it is possible
to determine the arrival time of a pulse to within approximately 10% of the width
of an individual phase bin. We demonstrate in this thesis that some exceptional
pulsars can be timed with an RMS residual better than 4% of the width of a single
phase bin. If the pulsar rotates once every second, arrival times can typically be
determined to within about 1ms RMS. However, the millisecond pulsars have spin
periods up to 1000 times smaller than the population of normal of “slow” pulsars
and they can often be timed to µs (or better) precision.

2.2 Marking the Passage of Time

Throughout the course of history, humans have invented many ingenious ways of
marking the passage of time. In the early days, motives may have been as simple
as understanding the Earth’s seasonal cycle so as to sow and harvest crops at the
correct time for optimal yield. Sundials and larger monuments were constructed
thousands of years ago by our ancestors to study and record the passage of the Sun
through the sky, providing information about the length of the day and the timing
of the Solstices and Equinoxes. The structure known as Stonehenge in Salisbury
Plain, near Wiltshire in South-Western England, may have been used in just this
way (Stone 1925). As craftsmanship developed, we began to build tall ships capable
of crossing the oceans and the fledgling science of navigation drove the need for more
precise time keeping, now using stars other than the Sun to study the rotation of
the Earth. In the industrial age, we began to build mechanical clocks with complex
systems of gears and developed the escapement mechanism that could convert (say)
the swing of a pendulum into a quantitative measure of time. In the modern era, we
count the natural oscillations of quartz crystals or even the frequency of radiation
emitted during individual atomic energy level transitions. The ability to accurately
record the passage of time is critical to much of modern physics; for example, we can
measure the distance to the moon by accurately determining the round-trip elapsed
time of laser pulses reflected from it.
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Since the dawn of the industrial age, there have been several definitions of the
standard unit of time. For thousands of years prior to this, time was determined
by the rotation of the Earth on its axis, this being both critical to our survival and
perhaps the most obvious example of a repetitive, easily observable natural cycle.
The transition from day to night is however a relatively long-period cycle whose
length is governed by the somewhat irregular rotation rate of the Earth. In addition,
the ratio of daytime to nighttime can change by several hours over the course of a
year, depending on the latitude of the observer. To measure time more precisely,
we must abstract away from terrestrial rotation. The current SI unit of time is the
second, defined as 9,192,631,770 cycles of the radiation corresponding to a certain
hyperfine transition in the ground state of Cesium 133 (Bureau International des
Poids et Mesures 1998). There are still modern timescales based on astronomical
observations, but these are usually defined to suit a specific purpose and are often
somehow locked to the fundamental scale of “atomic time” for long term stability.

The fundamental modern time standard is International Atomic Time (TAI),
which is a weighted ensemble average of the time reported by multiple cesium atomic
clocks maintained at laboratories throughout the world. The Bureau International
des Poids et Mesures (BIPM)1 compiles data from over 60 laboratories and publishes
the definition of TAI in its monthly Circular T bulletin. Since the introduction
of cesium fountain clocks in the last few years of the 20th century, the radiation
frequency that defines TAI has been known to approximately 1 part in 1015. TAI
depends only on the laws of physics and our ability to measure the frequency of
a photon in a manner free of systematic errors. A single period of the radiation
corresponding to the chosen cesium transition is a very short amount of time; the SI
second was defined to be a certain large number (9,192,631,770) of these cycles, in
order to make it almost the same as the “astronomical” second (1/86400 of a mean
Solar day). TAI itself is “free floating”, so any relative drift in the length of the
mean Solar day since the SI second was defined can be measured independently.

In keeping with historical methods, the passage of time at a particular location on
the surface of the Earth can be monitored by observing the passage of stars or distant
astronomical radio sources across the sky. The modern incarnation of Solar time is
known as Universal Time (UT0). This timescale is based on the rotational speed of
a particular location on the surface of the Earth and is therefore contaminated by
small irregularities in the Earth’s rotation period. Although these errors are usually
less than a tenth of a second on short timescales, the rotation rate of the Earth
exhibits a secular trend of greater magnitude over many years. The International
Earth Rotation and Reference Systems Service (IERS2) is responsible for monitoring
the rotation rate of the Earth and publishes corrections in its monthly Bulletin B,
accounting for any glitches. In this way, it is possible to define the UT1 timescale,
which is corrected for irregularities in the Earth’s spin, but still based upon the
mean rotation rate. Thus TAI and UT1 provide accurate timescales that are based

1http://www.bipm.org/en/scientific/tai/
2http://www.iers.org/iers/
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on two completely different physical phenomenon.

In order to unify these two schemes, the Coordinated Universal Time (UTC)
scale was defined (International Telecommunication Union 2002). UTC takes ad-
vantage of the stability of TAI, and the immediate relevance of UT1 (the fact that it
corresponds precisely to day and night on Earth). UTC follows TAI, but is adjusted
in increments of exactly one second, once per 6 months (if required) at pre-defined
times, so as to keep within 0.9 s of UT1. UTC is used throughout most of the
world as the standard reference time. Variants of UTC are distributed by national
standards laboratories in various countries and are kept as close as possible to the
BIPM definition; measured UTC(local)-UTC(BIPM) offsets are often recorded for
retrospective correction. Most institutions that require accurate time keeping can
synchronise with electronically distributed references (via the Internet, satellite or
radio systems), but in some cases (including pulsar astronomy), an accurate local
clock is required.

Modern commercially-available clocks are based on stable electronic frequency
standards. For example, many wristwatches use oscillations of a quartz crystal
coupled to a feedback circuit as a means of keeping time. For any given clock,
precision is limited by the stability of the mechanism used to generate periodic
oscillations. Frequency stability must be measured on many different time-scales,
it is quite possible for a frequency standard to remain stable within a few minutes,
but drift systematically over larger time periods. It may also be the case that a
mechanism with a very stable average frequency may exhibit random wanderings
on shorter time scales. One must choose a mechanism whose dominant systematic
errors are of least concern to the intended application. Cesium frequency standards
have excellent long-term stability but lack immediate precision. Hydrogen masers
exhibit the opposite behaviour, they are highly stable on timescales up to a day but
must by synchronised with an external reference if long-term stability is required.
Radio pulsar timing (and Very Long Baseline Interferometry) requires short-term
precision in order to maintain phase connection across many pulse periods. In
practice, most radio observatories operate a hydrogen maser that generates a pure
reference frequency. The local oscillators used for down-conversion (see Chapter 3)
are phase-locked to the maser, which is also used to drive the local clock. This in
turn is kept synchronised with UTC by regular reference to time signals distributed
via the Global Positioning System or the local national standards office. The GPS
uses its own version of UTC that does not include any leap seconds introduced since
its launch in 1980, but the offset can easily be accounted for and the correction
factor is included in the GPS data stream.

2.2.1 Instrumental Time Assignment

In the case of our baseband recording and coherent dedispserion system (CPSR2)
at the Parkes radio telescope, data acquisition is triggered by the station 1 Pulse
Per Second (PPS) signal, which is provided by the Mk VI clock that is in turn
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driven by a Hydrogen maser frequency standard. The difference between the Parkes
timescale UTC(PKS) and UTC(GPS) is monitored regularly by the Totally Accu-
rate Clock (TAC), consisting of a GPS receiver interfaced with a standard PC. The
offset log is used to convert site arrival times (SATs) into UTC(GPS) arrival times.
The GPS system itself is not synchronised with the BIPM definition of UTC, but
with the United States Naval Observatory (USNO) version (which is kept within
a few nanoseconds of the National Institute of Standards and Technology variant,
UTC(NIST)). The GPS signal and BIPM Circular T bulletin provide all the infor-
mation required to perform a 2-step conversion from UTC(GPS) to UTC(NIST)
and then to UTC(BIPM)3, from which we can convert back to TAI.

2.2.2 Dynamical Time

In addition to the astronomical and atomic standards described above, two con-
venient “dynamical” timescales are defined and used when dealing with planetary
motion. The Terrestrial Dynamical Time scale (originally TDT, but now known
simply as TT) defines one day as 86400 SI seconds (recall that the SI second is di-
rectly related to the tick rate of the atomic clocks used to define TAI). In addition, it
must be specified that TT refers to the passage of time on an equipotential surface
of Earth’s gravity field that most closely matches global mean sea level. This is
necessary because Einstein’s General theory of relativity predicts that the passage
of time is slowed in the presence of a gravitational field, by an amount that depends
on the strength of the field. Experiments using satellites and other bodies within the
Solar system have verified this prediction to a high level of confidence. Despite the
seeming complexity of the definition, TT simply leads TAI by a constant offset of
32.184 seconds. The major source of uncertainty arises when we move our focus away
from the Earth. Barycentric Dynamical Time (TDB) was defined to be a uniform
timescale in the Solar system barycentre frame, equivalent to TT after removing
several periodic variations. Unfortunately, the intended properties of this timescale
turn out to be physically impossible. In practice, most code designed to perform
the conversion to TDB actually produces a subtly different timescale known as Teph,
which is the argument given to ephemerides in order to obtain the positions of the
major bodies in the Solar system. This is self-consistent (pulsar timing works!) but
Teph neglects to include a secular drift due to the effects of relativistic gravity in
the Solar system. This means that the passage of time under Teph does not quite
correspond to the SI second.

In order to isolate physical effects intrinsic to a pulsar system (and to simplify
the mathematics of timing models), pulse arrival times should be analysed in an
inertial reference frame. The motion of the Solar system barycentre (SSB) is the
best local approximation to such a frame. It should be noted that the barycentre is
not quite inertial with respect to other stars in the Milky Way, relative acceleration
could be caused by differential Galactic rotation (usually a small effect), acceleration

3http://www.atnf.csiro.au/research/pulsar/psr/timing/newclkcorr.html
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towards the plane of the galaxy or acceleration caused by other nearby stars. This
last contribution can dominate if the pulsar is inside a globular cluster. The first
step in any timing analysis is to transform the SATs recorded at an observatory to
the corresponding BATs. The conversion from SAT to BAT is effectively a trans-
formation from the observatory’s local approximation of UTC to UTC(BIPM) and
then to TAI (and TT by addition of a constant offset). The final conversion to TDB
(or Teph) requires detailed knowledge of Solar system dynamics.

2.3 Shifting to the Barycentre Reference Frame

In this section, we follow the conventions used by Taylor & Weisberg (1989) to
describe the conversion of a TT site arrival time t to a barycentric (TDB) arrival
time tb. Equation 2.1 describes the four main correction terms. The reader should
note that many of the terms in Eq. 2.1 are functions of external parameters and
must be computed individually for each pulsar.

tb = t− D

f 2
+ ∆R⊙

+ ∆E⊙
+ ∆S⊙

(2.1)

Here, D is the dispersion constant (related to the dispersion measure (DM) by
the expression D = DM/2.41 × 10−16 sHz2) and f is the centre frequency of the
observation (in the barycentre frame, given in Hz). This term describes the delay
induced by propagation through the ISM. The other three terms are respectively
the Solar system Roemer, Einstein and Shapiro delays. The ⊙ subscript indicates
that the delay results from within the Solar system; as we will see later each of these
three terms has an analogue that arises due to orbital motion (if any) in the pulsar
system.

The fact that the Earth orbits the Sun means that the position of the Earth with
respect to the Solar system barycentre changes systematically (and cyclically) over
the course of a year. This must be incorporated into the TDB transformation as
it introduces a delay (or an advance) due to the modified distance the signal must
travel to reach the telescope. This is known as Roemer delay (∆R⊙

) and is expressed
mathematically as:

∆R⊙
=
~r � ~̂n

c
(2.2)

Here, ~r is the vector extending from the Solar system barycentre to the telescope at
the moment the pulse arrives, ~̂n is the unit vector extending from the SSB in the
direction of the pulsar, and c is the speed of light. The SAT must be modified by
the time light takes to travel the distance from the SSB to the telescope, projected
onto the line of sight to the pulsar. The near-circular nature of the Earth’s orbit
means that the required modification changes approximately sinusoidally, with a
period of one year. The relative phase and magnitude of this sinusoidal function are
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Figure 2.2: This figure illustrates the nature of the annually-varying pulse propagation
delay introduced by the Earth’s orbit about the Sun. The amplitude and phase of the
sinusoidal delay function depend on the ecliptic longitude (angular distance from the
vernal equinox) and ecliptic latitude (angular distance from the ecliptic plane) of the
source. The light travel time across 1 Astronomical Unit (AU, the mean Earth-Sun
distance) is approximately 500 s. This limits the maximum amplitude of the delay,
which would be experienced by a source that lies in the ecliptic plane. Higher latitude
sources have a smaller delay amplitude.

determined by the sky coordinates of the pulsar. Figure 2.2 illustrates the geometry
of the Sun-Earth system and describes an ecliptic coordinate scheme that can be
used to specify the position of a celestial object.

Let the ecliptic longitude be λ and the ecliptic latitude be β. These angles define
the location of a point on the celestial sphere and are (to a good approximation) fixed
in time for a particular object. The projection onto the ecliptic plane of a vector
with length 500 lt-s extending from the barycentre in the direction of the pulsar will
approximate the amplitude of the periodic delay induced by Earth’s position with
respect to the Sun, if we assume that the SSB coincides with the centre of the Sun.
This amplitude is determined by cos(β) and the phase by λ. The cumulative delay
can be calculated using Eq. 2.3.

τd = 500 cos(β) cos(φ+ λ) (2.3)

Here, τd is the geometric Roemer delay in seconds and φ is the angular separation
of the Earth’s position from the vernal equinox, which is a fiducial point that lies on
the line where the ecliptic plane crosses the Earth’s equatorial plane. Our ability to
predict pulse arrival times depends of our knowledge of the position of the pulsar,
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which defines the two angles required to predict the exact amplitude and phase of
the Roemer delay.

Equation 2.3 is a first-order correction to compensate for the motion of the Earth
in its orbit, but there are many additional perturbative effects that should be taken
into account. The orbit of the Earth is not quite circular and the Sun itself is not
at the centre of mass of the Solar system. The mass of the outer planets shifts
the barycentre to a point just outside the surface of the Sun. The Sun itself is
very near (compared to other stars) and its gravitational field introduces additional
relativistic delays (the Einstein and Shapiro delays) not predicted by Newtonian
approximations. The Einstein delay term takes into account any time dilation and
gravitational redshift arising from motion within the Solar system. It is computed
as the integral over time of a summation over all the significantly massive bodies in
the Solar system and thus depends highly on our knowledge of planetary motion.
The Shapiro delay term is General relativistic in origin and arises because light takes
longer to travel through a region of space containing a strong gravitational field. If
our line of sight to the pulsar passes close to the Sun, the magnitude of the Shapiro
delay can be of order 120µs. For more information, see Taylor & Weisberg (1989)
and references therein.

Transformation to the barycentre frame requires accurate knowledge of the po-
sition and motion of the most massive bodies in the Solar system. This information
is obtained from a planetary ephemeris supplied by NASA’s Jet Propulsion Labora-
tory (JPL). Pulsar astronomers have historically used the DE200 ephemeris but this
is slowly being superseded by the more accurate DE405 version. These ephemerides
can be obtained from the JPL Solar System Dynamics Group4.

2.4 Fundamental Timing Model Parameters

TOAs from a solitary radio pulsar can be accurately predicted by a model that
contains relatively few parameters. To compute the precise geometric Roemer delay
term, the position of the pulsar must be well known. It follows that the proper
motion of the pulsar (or at least the component transverse to our line of sight) must
be included in the model. If proper motion is not taken into account, the assumed
pulsar position at the current epoch will be in error by an amount that increases
with temporal separation from the epoch at which the initial position was specified.
If the pulsar is very close to the Solar system (∼1 kpc), wavefronts emitted by the
pulsar can retain enough curvature (on the scale of the Earth’s orbit) to influence
the predicted arrival times when measured over the course of a year. The electron
column density of the ISM introduces an absolute delay; the dispersion measure
(DM) of the pulsar must therefore be included in the timing model.

Pulsar timing models are usually expressed in terms of pulse phase, which is a
measure of the location of the pulse within a single period. If the pulsar spins at a

4http://ssd.jpl.nasa.gov/eph info.html
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perfectly constant rate, there would be a simple scale factor separating time in the
pulsar rest frame and pulse phase. Any perturbation introduced by an irregularity in
the spin rate causes the phase to drift in time when compared to a stationary fiducial
point. The timing model attempts to characterise complexities in the relationship
between pulse phase and time, compensating for any non-random drifts. We expect
the spin rate of a pulsar to slow down over time as rotational kinetic energy is
converted into electromagnetic radiation. If we make no assumptions about the
physics involved, we can write down a simple Taylor series expansion describing
pulse phase as a function of time (Eq. 2.4).

φ(t− t0) = ν(t− t0) +
ν̇(t− t0)

2

2
+
ν̈(t− t0)

3

6
+ · · · (2.4)

Here, ν is the pulsar spin frequency (1/period) in Hz, t is barycentric time and
t0 is a reference arrival time at which the pulse phase is taken to be zero. Pulse
phase can be computed for an arbitrary time t; integer values indicate the arrival
of the next pulse. Pulse phase can be thought of as how far the lighthouse beam
has swung since the last pulse was observed. A phase of 0.5 means the beam is on
the opposite side of its swing from our perspective. Equation 2.4 does not include
any correction for the dispersive delay introduced during passage through the ISM
and is therefore considered to be the infinite radio frequency case; this terminology
can be understood by recalling Eq. 2.1, which shows that dispersive delays decrease
with the square of the observed radio frequency.

Each term in the Taylor series has a different error signature in a given set of
timing residuals. If the spin frequency is incorrect, the residuals will increase linearly
with time as the predicted phase drifts further from the measured phase. An error in
the first derivative of the spin frequency will introduce a quadratic signature and so
on. Using a combination of all the parameters described above, we can construct a
timing model suitable for solitary pulsars. The parameters required are summarised
in Table 2.1. It is important to note that the signature associated with each of these
parameters can vary greatly in amplitude (and therefore significance) depending on
the nature and location of the source.

2.5 Incorporating Binary Motion

When a pulsar resides in a binary system, a number of additional parameters must
be included in its timing model to describe the orbital motion. These additional
perturbations are analogous to the corrections required to compensate for the motion
of the Earth in orbit about the Sun, except that they act to disturb the rest frame
of the source instead of the receiver. Often, Newtonian gravitation is sufficient to
describe the motion of a binary pulsar at the level required to produce white-noise
residuals. Given sufficient observational precision, it is sometimes possible to detect
General relativistic effects in a pulsar binary system, analogous to the Einstein and
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Parameter Description
P Pulsar spin period.

Ṗ Spin period first derivative with respect to time.
DM Dispersion measure along the line of sight.
RA (α) Right ascension. Can substitute ecliptic longitude.
DEC (δ) Declination. Can substitute ecliptic latitude.
PMRA Proper motion in RA (or ecliptic longitude).
PMDEC Proper motion in DEC (or ecliptic latitude).
PX Parallax.

Table 2.1: Parameters that can contribute to the timing model of a solitary pulsar.

Parameter Description
x Projected semi-major axis (a sin(i)).
e Eccentricity.
ω Longitude of periastron.
T0 Epoch of periastron.
Pb Orbital period.

Table 2.2: Timing model parameters introduced by a Keplerian description of two
masses that orbit a common centre of mass.

Shapiro delays within our Solar system. The compactness of neutron stars means
that the gravitational field strength experienced by binary pulsars can be far greater
than that experienced by most other bodies. This is especially true in binaries where
both members are neutron stars.

A simple, Keplerian description of orbital motion in a pulsar binary system
introduces five additional free parameters to any pulsar timing model; these are
summarised in Table 2.2.

The semi-major axis of the elliptical orbit is denoted a, the basic timing signature
of binary motion depends on the projection of this distance onto the line of sight,
a sin(i). Here, i is the inclination angle of the binary system (the angle between
the orbital plane and the plane of the sky). A system with an inclination angle
of 90o is seen edge-on. Eccentricity e is a dimensionless measure of deviation from
circularity. Orbits with e ∼ 0 are very nearly circular; as eccentricity tends towards
unity, the orbit becomes more elongated. The longitude of periastron ω is the angle
that the point of closest approach makes with respect to the line of nodes, which is
the intersection between the plane of the sky (the normal to which points along our
line of sight) and the plane of the orbit. The longitude and epoch, T0, of periastron
define a fiducial point in the orbit.

If the binary orbit is assumed to be Keplerian, it is not possible to unambiguously
extract the individual masses of the pulsar and its companion from pulse timing
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Parameter Description
γ Gravitational redshift and transverse Doppler shift.
r Range of the Shapiro delay.
s Shape of the Shapiro delay.
ω̇ Advance of periastron longitude.

Ṗb Orbital period time derivative.

Table 2.3: Theory independent post-Keplerian timing parameters, used to describe
the departure of a pulsar orbit from the solution predicted by Newtonian gravitation.

experiments alone. It is however possible to re-write Kepler’s third law of orbital
motion (which states that the square of the orbital period is proportional to the
cube of the semi-major axis of the elliptical path) in a form that allows observational
constraints to be placed on the mass of the pulsar and companion and the inclination
angle of the system. Equation 2.5 is known as the “mass function”:

f(mp, mc) =
m3

c sin3 i

(mp +mc)2
=

4π2

G

a3 sin3 i

Pb
2 . (2.5)

Here, mp is the pulsar mass and mc is the companion mass, all other parameters
are as described above. Pulse timing allows us to measure x = a sin(i) and Pb (and
thus the value of the mass function) very accurately. This allows us to determine
the last of the three parameters mp, mc and i if we know any two of the others;
however in most cases we cannot directly measure any of them. Fortunately, there
are a number of ways to determine the missing information.

Note that the parameters presented in Table 2.2 do not fully describe the three-
dimensional orientation of a binary orbit. Timing alone cannot distinguish the
orientation of the line of nodes because there is no Doppler signature introduced
by rotation about the line of sight. The final parameter needed to describe the
three-dimensional orientation of a Keplerian orbit is the longitude of the ascending
node, denoted Ω. It can be measured through timing only if circumstances allow
the detection of a very subtle signature known as annual-orbital parallax (Kopeikin
1995).

When the orbit is compact, with a period less than a few days, the basic Kep-
lerian parameters presented in Table 2.2 may not properly characterise the motion.
Damour & Deruelle (1986) describe an additional five post-Keplerian parameters
that can be included as free parameters in a pulse timing model (Table 2.3). Any
theory of gravity must provide mathematical expressions for these five parameters in
terms of the mass of the pulsar and its companion. Newtonian gravitation predicts
that all of these parameters are zero, but we have known for many years that it is
only accurate in the weak-field limit.

Equations 2.6 to 2.10 describe the functional form of the five post-Keplerian
parameters in the formalism of General relativity (Damour & Taylor 1992; Taylor
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& Weisberg 1989; Damour & Deruelle 1986).

γ = e

(

Pb

2π

)1/3
(GM⊙)2/3

c2
M−4/3m2(m1 + 2m2) (2.6)

r =
GM⊙m2

c3
(2.7)

s = x

(

Pb

2π

)−2/3
c

(GM⊙)1/3

M2/3

m2
(2.8)

ω̇ = 3

(

Pb

2π

)−5/3
(GM⊙)2/3

c2
M2/3(1 − e2)−1 (2.9)

Ṗb =
−192π

5

(

Pb

2π

)−5/3 (

1 +
73

24
e2 +

37

96
e4

)

(1 − e2)−7/2G
5/3

c5
m1m2M

−1/3 (2.10)

Measurements of post-Keplerian parameters can be used to test the predictions of
various theories of gravity. Accurate measurements of three or more post-Keplerian
parameters “over-determines” the system and allows the self-consistency of the the-
ory to be tested. Experiments of this kind have been performed on the double pulsar
system, J0737–3039 (Lyne et al. 2004), PSR B1913+16 (Taylor & Weisberg 1982;
Taylor & Weisberg 1989) and PSR B1534+12 (Stairs et al. 2002). All tests have
verified the predictions of General relativity to a high level of confidence. If only
two of the post-Keplerian parameters are measurable, it is possible to assume that
General relativity is the correct theory of gravity and derive unambiguous values for
the mass of the pulsar and its companion and the inclination angle of the system by
combining two of Eqs. 2.6 to 2.10 with Eq. 2.5. In this way, astronomers can study
the mass of neutron stars formed via different evolutionary paths.

Although each of the parameters that make up a pulsar timing model will have a
distinct signature, some of these signatures can appear very similar to one another.
This reduces the effectiveness of least-squares fitting methods because there is no
longer a unique solution with minimum χ2. The ability to partially absorb the
effect of an error in one parameter by modifying a different parameter is known
as “covariance”. This is most important in studies of relativistic binary pulsars
because it can reduce the effective amplitude of an already subtle timing signature.
It is also possible for a model parameter to absorb an unrelated physical effect. For
example, the motion of a pulsar across the sky will introduce a small apparent period
and binary period derivative. This effect cannot be distinguished from intrinsic spin-
down or General relativistic orbital decay without knowledge of the pulsar’s distance
and space velocity (Shklovskii 1970). Bell & Bailes (1996) inverted the problem and
asserted that the detection of an orbital period derivative in a clearly non-relativistic
system might enable astronomers to constrain the distance to the pulsar.
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Binary motion can also be described using two Laplace-Lagrange parameters,
κ & η, and the time of ascending node passage, Tasc. These three parameters are
related to the more familiar e, ω and T0 by Eqs. 2.11 to 2.13. If the binary system
is very nearly circular, it is difficult to constrain e, ω and T0 because they refer to a
fiducial point that is not well defined (Lange et al. 2001).

e =
√

κ2 + η2 (2.11)

ω = arctan(η/κ) (2.12)

T0 = Tasc +
Pb

2π
arctan(η/κ) (2.13)

2.6 Measuring Arrival Times

Extracting an arrival time from a folded profile requires two things; an accurate
time stamp corresponding to a particular phase in the folded profile and a standard
template profile to provide a fiducial phase against which all other observations
can be compared. Pulsar instruments must perform the difficult task of folding
the incoming signal synchronously with the pulse period. This requires precise
knowledge of the pulse period at the time of observation. The pulse period is divided
into a discrete number of time bins, which are assigned data one after the other as
it is obtained from the telescope. When the last bin is reached, the recorder wraps
back to the first bin, in this way building up a folded profile.

Because the period of a pulsar is susceptible to small, smooth changes that can
occur on time-scales comparable to the length of an observation, accurate folding
requires a good timing model to provide period predictions. However, because a
timing model is designed to provide a complete description of the system, it can
take significant computational power to solve the model for the pulsar period at
a particular time. Unfortunately, real-time recording systems may not be able to
spare this amount of processing time. For greater efficiency, instruments are usually
given a much simplified model, based on a polynomial with 15 or fewer coefficients.
Before observing starts, a polynomial is fitted to the timing model for the epoch
immediately surrounding the intended observing time. This polynomial is only
an approximation, but provided care is taken to select the size and length of the
polynomial appropriately, the period estimate it provides will be accurate to the
level required. The so-called “polyco”, or sequence of polynomial coefficients is often
stored in the resulting data archive, along with the timing model. This provides a
complete record of all operations performed on the data.

The epoch associated with a pulsar archive must correspond to a particular pulse
phase. This correspondence is specific to the instrument and file format used. Most
instruments are triggered on an integer second boundary, which will not normally
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correspond to pulse phase zero. The simplest method is to record this time in the
header and let it correspond to the rising edge of the first bin. The peak of the
mean profile then appears in a random place within the period. In order to ensure
the peak of the profile appears in the same place every observation, it is possible to
use the polynomial to find out what phase the first sample will correspond to and
place it in the correct bin instead of arbitrarily assigning it to the first bin. Both
methods allow for accurate timing, but the later provides phase consistency when
the timing model is good. Regardless of the method used to store the start time,
the TOA assigned to a fully-integrated observation is normally specified near the
midpoint to minimise the detrimental effects of any phase drift.

Once the epoch of an integration is known, all that remains is to compute the
offset of the observed pulse relative to a reference phase. This is done by cross-
correlating the mean observed profile with a standard template profile. The standard
template is a reference profile that ideally matches the detailed morphology of the
mean pulse but contains no noise. The phase corresponding to the peak of the
correlation function is the offset. Provided the same standard template profile is
used to compute every TOA, the calculated time offsets will refer to the same fiducial
phase. The TOA is simply the sum of the phase offset and the epoch of the archive.

2.6.1 Constructing Standard Template Profiles

In practice, it is difficult to build a standard template profile that matches the mean
pulse morphology and is free of noise. The easiest way to match the shape of the
mean profile is to add together all the observations of a given source, creating a
high S/N mean profile from the data itself. Although a template created in this way
will faithfully match the morphology of the mean pulse, it retains all the noise in
the observations. This has important implications for timing experiments, which are
discussed further in Appendix A. It is also possible to synthesise a synthetic, analytic
standard template profile based on a mathematical function that closely matches
the morphology of the mean pulse. Kramer et al. (1999) describe a technique that
involves synthesising a template profile using a superposition of several Gaussian
components with different widths and amplitudes. Kramer et al. (1999) even argue
that it is possible to let some of the parameters (the relative amplitude for example)
that define an analytic template vary when fitting, in order to compensate for profile
evolution or variability.

2.6.2 Computing Relative Profile Shifts

Once a suitable standard template has been created, it is cross-correlated with an
observed profile to determine the phase offset. Performing a simple discrete cross
correlation with a number of lags equal to the number of profile bins gives a rough
estimate of the phase offset, but it is only as precise as the width of a single bin.
Often this is not sufficient for precision timing and it is possible to obtain sub-bin
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precision by interpolating over the discrete bins. There are a number of ways to do
this, Taylor (1992) describes a particularly clever algorithm that makes use of the
Fourier shift theorem. This algorithm and a complementary scheme that operates
in the time domain are described in more detail in Appendix A.

2.7 Model Fitting

Once the arrival times associated with a series of observation have been computed,
they are fitted to a timing model using the standard pulsar timing package, TEMPO5.
The original version of this program was written by R. N. Manchester and W.
L. Peters in 1970 at the National Radio Astronomy Observatory (NRAO) in the
United States of America. It was used to obtain the periods, period derivatives and
positions of several isolated pulsars observed with the 92m transit telescope located
near Green Bank, West Virginia (Manchester & Peters 1972). When the first binary
pulsar was discovered in 1974, J. H. Taylor added a number of binary models to the
code so that orbital parameters could be included in the fitting process. Since then,
several other people have contributed to the development and maintenance of this
program, including D. J. Nice, J. M. Weisberg and N. Wex. TEMPO is now used
at many observatories and institutions throughout the world. More recently, G. B.
Hobbs and R. T. Edwards developed a new pulsar timing package (named TEMPO2)
written in the C programming language (TEMPO is only available in FORTRAN).
The new program is designed to correct for small systematic errors at the level
of approximately 10-100 ns, matching the timing precision available with modern
instruments6. For the bulk of this thesis, TEMPO2 was still in the experimental
stages of development and was therefore not used.

TEMPO accepts a file containing SATs and their corresponding uncertainty, radio
frequency and observatory site code. The recording site must be known in order to
compensate for the light travel time across the diameter of the Earth. TEMPO also
requires several clock correction files and either the DE200 or DE405 Solar system
ephemeris, which are used to transform SATs into BATs. Finally, a pulsar timing
model must be specified, including a list of parameters and their assumed values,
along with flags that specify whether or not each parameter should be allowed to
vary when fitting. The results of the fit are written to a number of files, including a
binary dump of the raw residuals (resid2.tmp) and a neatly formatted text file that
contains the new parameter values (tempo.lis) and their uncertainty. By default,
TEMPO ignores the uncertainty in each SAT, fitting over all points with equal
weight. Prepending “MODE 1” to the file containing the SATs forces TEMPO to
weight each point by its uncertainty. In this mode, the χ2 of the fit can be computed
and used to estimate 1σ uncertainties in each of the fitted parameters. Historically,
it is rare for a pulsar timing model to fit a sequence of SATs perfectly. The reported

5http://www.atnf.csiro.au/research/pulsar/tempo
6http://www.atnf.csiro.au/research/pulsar/psrtime/tempo2/
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uncertainty only represents the true 1σ error if the reduced χ2 of the fit is equal
to unity. This can be forced for any data set by applying a uniform scaling to the
TOA uncertainties and increasing the scaling factor until the reduced χ2 decreases
to unity. Often, the uncertainty in each SAT must be multiplied by a factor of ∼2.

TEMPO has been in regular use for three decades and it corrects for many per-
turbations down to the level of a few tens of nanoseconds. Some of the largest
uncertainties are due to a simplistic model of the electron content of the Solar wind
and a failure to correctly account for the polar motion of the Earth. The use of
TDB as the reference timescale is also contrary to IAU recommendations. One of
the primary motivations for writing TEMPO2 was to correct these shortcomings and
provide the user with the opportunity to carefully monitor the effect of each correc-
tion term that is applied to the TOAs. The new program will provide many other
useful features including free-format input files and a number of built-in graphical
user interfaces. We encourage future students of pulsar timing to experiment with
the new features provided by TEMPO2.



Chapter 3

A New Baseband Recorder and
Supercomputer

“Three years later, he left the Astronomy Department without a degree, and with nothing
to show for his labors except six hundred dollars in his bank account and a staggeringly
comprehensive knowledge of UNIX.”

Neal Stephenson – Cryptonomicon

The study of millisecond pulsars is technically demanding; sophisticated instru-
ments and techniques are required to achieve the necessary time and frequency
resolution. Radio pulsars are often very weak, driving a need for large bandwidths,
dual polarisations and long integration times. In order to best meet these require-
ments, pulsar observing systems have kept pace with rapid developments in tech-
nology over the last few decades. However, the consumer computing revolution has
led to the wide availability of inexpensive, general purpose processors that can be
cost-effectively applied to the computationally intensive task of real-time astronom-
ical data processing. This chapter describes the design and implementation of the
world’s first wide-band on-line baseband recorder and coherent dedispersion system,
the Caltech Parkes Swinburne Recorder Mk II (CPSR2).

3.1 Radio Telescope Sensitivity

Although beamed pulsar emission is thought to be a strong, coherent process, the
radiation generated by pulsars must travel hundreds or thousands of parsecs to
reach an observer on Earth. The presence of electrons in the ISM causes broad-
band pulses to scatter and disperse. To detect these pulses we must use a sensitive
radio telescope and (for all but the brightest) correct for dispersion smearing.

39
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The sensitivity of a radio telescope depends on a number of parameters, some
of which are intrinsic to the design of the antenna (like the diameter of the re-
flecting surface) and others that are governed by the hardware and electronics used
to receive and process the signal. Every radio system is contaminated by some
amount of intrinsic noise, either due to the random motion of charged particles
in the electronics, background astronomical sources, natural terrestrial interference
(like thunderstorms) or interference from artificial broadcasts.

One of the most basic descriptive parameters of any observation is the signal-
to-noise ratio, S/N. This is the relative amplitude of the observed signal (whatever
form it may take) when compared to the background noise power in the system.
It is a measure of how distinctive a particular signal appears to be. High S/N
is desirable because it helps to increase the significance of a detection and allows
more precise measurements of the properties of the signal. Equation 3.1 is known
as the “radiometer equation”, which is used to determine the S/N expected for a
steady continuum source using a particular hardware configuration. It describes the
functional dependence of S/N on various fundamental parameters.

S/N ∝ G
√
BtN

Tsys + Tsky
(3.1)

Here, G is the telescope gain, which is determined by the effective aperture (collect-
ing area) of the antenna. B is the bandwidth of the observation. The amount of
time spent observing the source (integration time) is denoted by t and the number of
orthogonal polarisations received (either 1 or 2) is denoted by N . The total system
noise is normally referred to as an equivalent blackbody temperature, the temper-
ature a source in the field of view would have to be in order to produce the same
amount of power as the background noise level. There are two components, Tsys is
the noise intrinsic to the telescope hardware itself and Tsky is the noise entering the
telescope from background sources in the sky that are not the object of study.

Equation 3.1 assumes that the source flux is steady in time. When observing a
pulsed source, the radiometer equation must be modified slightly to take into account
the pulse “duty cycle”, the fraction of a pulse period in which the radio emission
from the source is “switched on”. Some pulsars have wide characteristic profiles,
their signal is present for a large fraction of a rotation period. Other pulsars, like
the recently discovered PSR J1909–3744 (Jacoby et al. 2003), have very narrow
pulses that only turn on for a small fraction of the period. Whether or not this
corresponds to variations in intrinsic beam width, or simply different cross-sections
through similar emission cones remains an open question. Either way, we must apply
a multiplicative correction to obtain the modified radiometer equation (Dewey et al.
1985) shown below.

S/N ∝ G
√
BtN

Tsys + Tsky

.

√

(P − w)

w
(3.2)
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Here, P is the pulse period and w is the effective pulse width (both in seconds).
Note that for w < P/2, the pulsed nature of the source is an advantage.

Because most pulsars have very small flux densities (∼1mJy ≡ 10−29 Wm−2 Hz−1),
it is often necessary to use long integrations to obtain high S/N. Pulsar signal av-
eraging is complicated by the fact that the fundamental time resolution of any
instrument must be high in order to minimise the effective pulse width. Averaging
must therefore be performed after detection and care must be taken to add in phase
with the spin period of the pulsar. Stacking n observed pulses increases the S/N
by

√
n, as the signal in the off-pulse region does not add in phase. This averaging

procedure is known as “folding”.

3.2 Introduction to Pulsar Instrumentation

Advances in instrumentation are driven both by the need for higher sensitivity and
a desire to eliminate systematic errors. These two demands are often mutually
exclusive. Pulsar observers must be especially conscious of instrumental deficiencies
that smear or distort the folded pulse profile. All pulses will be unavoidably smeared
due to multi-path propagation through the ISM, but care must be taken to ensure
that this resolution limit is reached.

Additional smearing can occur due to insufficient time resolution and disper-
sion in the largest incoherent section of bandwidth recorded (the width of a single
spectrometer channel). Unfortunately, incoherent detection is limited by an inverse
relationship between time and frequency resolution. This is not fundamental and is
due to the fact that incoherent detection discards information about the phase of the
signal. Coherent dedispersion (see below) can be used to circumvent the frequency
/ time resolution trade-off by eliminating dispersion smearing without the need to
maintain frequency resolution (at the cost of greatly increased data rates).

The time between each digital sample is related to the number of “phase bins”
into which a given pulse can be divided. A single pulse period is referred to as one
unit of pulse phase, and the number of discrete points that are used to describe
the pulse shape within a single period is referred to as the number of phase “bins”.
A detector that can rapidly sample the signal is capable of dividing a single pulse
phase unit into a greater number of bins. This does, of course, reduce the flux in any
given bin and can decrease the S/N of the profile if taken too far. Optimal binning
is just sufficient to resolve the finest structure in the profile.

If the observed bandwidth is sampled incoherently, dispersive smearing is still
present within each spectral channel. The actual amount of distortion this causes
depends on the DM, width, intrinsic profile shape, pulse period and observing fre-
quency. If the smearing time is smaller than a single phase bin, the effect is negligible.
However, if the period is short and the pulse profile contains sharp features, disper-
sion smearing can significantly distort the observed profile. Figure 3.1 shows two
mean profiles of the millisecond pulsar PSR J1600–3053, observed with two different
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Figure 3.1: This figure shows two integrated profiles of the millisecond pulsar PSR
J1600–3053. The upper profile was observed with a coherent dedispersion system
(CPSR2) using 1024 pulse phase bins. The profile in the lower panel was observed
with an incoherent detector (the ATNF wideband correlator) using 256 pulse phase
bins. The profile shapes are quite different.

instruments. The lower-resolution instrument does not faithfully re-create the true
pulse shape, instead convolving it with the instrumental response.

Timing a pulse means precisely determining its location within a single period.
This is done using cross-correlation methods, which are more effective if the pulse
profile has detailed structure. Thus it is important to use high-resolution instru-
ments for precision timing experiments as it allowing more subtle physical effects to
be studied.

3.3 Reception and Down-Conversion

Before pulsar signals can be recorded or analysed, they must be received and am-
plified by a radio telescope. This section describes the reception, amplification and
frequency conversion stages required to couple an instrument to electromagnetic
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Figure 3.2: This diagram shows the main elements in the Parkes signal path. Ra-
dio waves reflected by the 64m diameter parabolic reflector are gathered by a feed
horn and coupled to an orthogonal-mode transducer (OMT) that separates the sig-
nal into two orthogonal polarisation components. From here, the signal passes into
cryogenically cooled low-noise amplifiers (known as pre-amplifiers) that compensate
for transmission losses in the coaxial cable used to channel the signal away from the
antenna structure and into the down-conversion system. In some cases, a first stage
of down-conversion is performed close to the receiver package. The signal is further
amplified and then passed through a number of mixers and filters that reduce the
centre frequency of the observed passband to a lower intermediate frequency (IF).
Band-limiting filters can be used to select a region of interest from the passband of
the receiver. Variable amplifiers are adjusted to provide suitable input power to any
of several different instruments.

waves traveling in free space. The information relates to the Parkes radio telescope,
but should be generally applicable because the basic components of any radio as-
tronomy signal chain are similar even though antennas themselves differ from site
to site.

Figure 3.2 shows a schematic diagram of the Parkes signal path. The “front-end”
of any observing system is a radio receiver package that couples the incident elec-
tromagnetic radiation to a transmission line. Most radio telescopes use parabolic
reflectors to concentrate the radio emissions from a small region of sky to a point
at which the receiver’s feed horn is mounted. The increase in signal strength that
this provides (when compared to an antenna equally sensitive to radiation from
all directions) is known as the telescope “gain”. Unlike optical telescopes that use
multi-pixel cameras, a single-dish radio telescope usually has a single receiver. At
the wavelengths most commonly used for radio pulsar astronomy, the resolution of
the telescope is normally limited by diffraction around the reflecting surface, not by
atmospheric turbulence.

In radio astronomy, the functional dependence of gain (or diffracted intensity)
on the distance and orientation of the source with respect to the central axis of
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the reflector is known as the “beam shape”. Because a parabolic reflector only
focuses radiation incident along its central axis, we expect gain to drop sharply with
distance from the central axis. In other words, a radio telescope is most sensitive to
sources in its direct line of sight. The beam shape of a parabolic reflector conforms
to the diffraction pattern associated with a circular aperture, provided the feed is
not tapered. The intensity of the diffracted radiation is given by the square of the
amplitude of the wave and corresponds to the Airy ring pattern (Eq. 3.3).

I(θ) = I0

[

J1(2πr sin(θ)/λ)

πr sin(θ)/λ

]2

(3.3)

Here, I is the intensity in the focal plane, θ is the angular distance from the central
axis, I0 is the intensity at θ = 0, r is the diameter of the reflecting surface (also
known as the aperture), J1 is the first-order Bessel function and λ is the wavelength
of the incident radiation. In this simple case, the two-dimensional beam pattern
on the sky will be circularly symmetric, allowing it to be characterised with a one-
dimensional radial profile, as shown in Fig. 3.3.

The size of a radio telescope beam can also be thought of as the angular width at
which the gain drops by a factor of 2 (also known as the full width at half maximum,
or FWHM). For the purposes of radio astronomy, it is more useful to determine the
beam width using the “Rayleigh criterion”, which states that the first minimum of
the diffraction pattern associated with one source should correspond with the peak
of the pattern associated with a second source for both to be resolvable as individual
objects. In the simple case of diffraction around a circular aperture, the Rayleigh
criterion can be derived from Eq. 3.3 (by solving for the minima in θ), and is given
below:

ΘR =
1.22λ

d
(3.4)

Here, ΘR is the angular size in radians, λ is the wavelength of interest and d is the
diameter of the circular reflector.

The receiver itself usually consists of an orthogonal-mode transducer (two small
orthogonally-aligned antennas called “probes”, which can be sensitive to either linear
or circular polarisations), positioned at the end of a waveguide (the feed horn) whose
opening is placed at the focus of the reflector. The receiver package often includes
low-noise amplifiers and a cryogenic refrigeration system to help reduce the system
temperature. The receivers used during the course of this thesis were all constructed
with linear probes, consisting of small dipole antennas sensitive to transverse waves
that induce electron motion along the dipole.

Before any scientific information can be extracted from the pre-amplified ra-
dio signal, it must go through a number of additional amplification and conversion
stages. In radio communications terminology, this process is known as superhetero-
dyne mixing and it offers a number of advantages. The first is that it is often difficult
to amplify a signal by the full amount required in one stage. If too much gain is
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Figure 3.3: This figure shows the Airy sensitivity pattern, calculated for a hypothetical
64 m reflector with an un-tapered feed at a wavelength of 21 cm. The first minimum
in the diffraction pattern occurs at approximately 14′ from the axis, defining the
width of the primary beam. The lower-order maxima appear more significant in this
logarithmic plot, the first so-called “side lobe” is actually down by a factor of 60 in
intensity when compared to the primary beam.
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required, the electrical components may saturate and signal quality will be lost.
Converting the signal to a different frequency makes it easier to apply several stages
of amplification. In the case of modern space communications and high frequency
radio astronomy, the frequencies used are often so high that amplification requires
specially designed, highly advanced semi-conductor devices (like the Monolithic Mi-
crowave Integrated Circuits developed at the ATNF) at the pre-amplification stage;
it would not be feasible to construct an entire signal chain from such components.

By combining an observed radio signal with the correct pure tone, it is possible
to convert very different radio frequencies into the same IF. Instrument designers
(or communications engineers) can then assume that any subsequent processing or
demodulation will occur at the standard IF, greatly simplifying the task of design-
ing components further down the signal chain. Information about the true sky
frequency can be appended to the processed data files. Down-conversion is also
necessary to reduce signal loss. The efficiency of most transmission lines decreases
with increasing frequency. By down-converting a high frequency signal, the same
information content can be transmitted through a given length of cable with less
power attenuation.

Down-conversion of a signal is done by “mixing” it with a pure tone at the appro-
priate frequency. An ideal “mixer” is a device that multiplies two input frequencies
and produces a combined signal containing the sum and difference frequencies of the
inputs. This can be described using simple trigonometry, the multiplication of two
sinusoidal functions with frequencies A and B produces an output signal containing
the sum and difference frequencies as in Eq. 3.5.

sin(At) sin(Bt) =
[cos((A−B)t) − cos((A+B)t)]

2
(3.5)

If the centre frequency of the input signal is known, it can be converted to any
desired IF by mixing with an appropriate pure tone according to Eq. 3.5 and passing
the output through a high- or low-pass filter to reject the unwanted component (see
Fig. 3.4).

The situation is complicated by the fact that observations are usually conducted
over a broad, continuous region of the radio spectrum. During down-conversion,
the entire band is shifted in frequency, but the width of the original band must be
maintained. If the mixer’s reference tone is placed below the observing band, the top
of the band will be converted to a higher frequency than the bottom (assuming the
difference is selected), preserving order in the band. However, if the reference tone is
placed above the band, the differences will be negative and the band will be reflected
about the origin, the upper portion now appearing to have the smallest frequency.
We refer to these two possibilities as upper- and lower-sideband respectively. It is
important to keep track of all such conversion stages so that the final orientation of
the band is known.

In radio astronomy, the term “baseband” refers to the situation where the lowest
edge of the band is at zero frequency and the highest edge is at the frequency
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Figure 3.4: This figure shows the basic layout of a radio frequency down-converter,
using a mixer to multiply the input signal at frequency A with a specially chosen
reference tone B to produce a superposed signal that contains the sum and difference
frequencies, A+B and A-B. In this case, a low-pass filter is used to select the difference
frequency at the output stage.

corresponding to the bandwidth. The Nyquist sampling rate (for real-sampling of
the voltage) is then twice the highest frequency component, or twice the bandwidth
itself. Thus by converting a signal to baseband, it can be Nyquist sampled most
efficiently. This means that the speed of digital electronics limits only the bandwidth
over which we can observe. It turns out that provided the signal is band-limited
(contains a well-defined portion of the radio spectrum with sharp boundaries), it is
possible to Nyquist sample at a rate equal to twice the bandwidth even if down-
conversion all the way to baseband is not possible. For this reason, the filters used
to define observing bands need to be high quality so as to prevent aliasing any out-
of-band information into the astronomy signal. It is also important that the relative
phase of all reference tones is kept the same, or destructive interference may occur
in the signal path. This is normally done by locking all hardware signal generators
to a common reference.

It is also possible to perform “complex” sampling, which involves splitting the
real-valued signal into two components via “quadrature” mixing. In this process,
two copies of the signal are mixed independently, with reference signals that have
the same frequency but maintain a constant phase offset of 90o. The two outputs are
sampled simultaneously, each at half the Nyquist rate. A single time sample is stored
as the complex number x + iy, where x and y represent the two components. For a
given bandwidth, the data rate is therefore the same as Nyquist real-sampling, and
the information content of both recordings is equivalent. Although two samplers are
required, each can operate at half the Nyquist rate, which may be technically more
feasible. Complex sampling is however more susceptible to variations in the mean
power level, because the information has been distributed over two signal paths that
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can vary independently. CPSR2 avoids these problems by real-sampling the signal.

3.4 Analogue to Digital Conversion

The Nyquist sampling theorem states that a continuous time series (such as the
voltage produced by a receiver) can be digitised and later reproduced perfectly if all
spectral content is preserved. This can be understood with the help of the convolu-
tion theorem, which states that multiplication in the time domain is equivalent to
convolution in the frequency domain. Figure 3.5 illustrates how this theorem can
be used to find the sampling rate required to preserve all the information in a given
signal.

Sampling a continuous time-domain signal (Fig. 3.5a) can be thought of as
multiplying it with a “comb” function that is equal to unity at every sample and
zero everywhere else (Fig. 3.5c). We can then compute the Fourier transform of
the digitised time series using the convolution theorem. Fourier transforming the
comb sampling function produces another comb function whose “tooth” spacing
is equal to the reciprocal of the sampling rate (Fig. 3.5d). Convolution of the
Fourier transform of the original continuous time series with the reciprocal comb
function simply replicates the pure spectrum, centering it on each tooth of the comb
(Fig. 3.5f). If the comb is sufficiently broad, no two copies of the spectrum overlap
and every spectral component in the original signal is preserved. We can therefore
recover the original time series. However, if the repeated spectra do overlap in the
Fourier domain of the sampled signal (as they do in Fig. 3.5), some of the frequency
components are distorted and we cannot recover all the information. This is known
as “aliasing”, and it can be avoided by sampling rapidly enough to preserve the
full frequency spectrum of the original signal. The sampling rate required is always
twice the highest frequency component present in the band.

The above discussion assumes that the voltage at any point in time can be
accurately and precisely sampled. However, digitisation involves not only a loss
of continuity in time, but also a loss of precision in our knowledge of the signal
amplitude. This is because we must store each voltage with a finite number of bits
inside a computer. Sampling is usually performed by a circuit containing triggers
that are activated if the input voltage is greater than the associated threshold. The
output of a single trigger is either “on” (1) or “off” (0) and can be stored as a single
bit of information. Representing an arbitrary rational number with a single bit is
very imprecise, but more resolution can be retained by stacking trigger levels with
ascending thresholds and storing more bits for each time sample. The loss of S/N
associated with a lack of digitiser levels is surprisingly small. This is partly due to
the fact that each individual sample is dominated by noise and we are interested
in the statistical behaviour of the signal after a large number of samples have been
combined. Even with 1-bit precision, about 80% of the S/N can be recovered using
an incoherent filterbank.
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Figure 3.5: This figure graphically represents a mathematical approach to digital
sampling. The time series we wish to digitise is shown in panel a and its Fourier
transform is shown in panel b. The sampling process is equivalent to multiplication
with a comb function (shown in panel c), whose Fourier transform is also a comb
function with reciprocal spacing (panel d). The digitised signal is shown in panel e

and its Fourier transform in panel f. The left hand side panels a & c are multiplied
to “sample” the signal. This is equivalent to convolution of b & d in the frequency
domain. The criteria for complete information preservation is then to sample at twice
the highest frequency component present in the signal.
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One of the problems encountered when sampling with a finite number of lev-
els is the question of where to place the voltage thresholds. Even 8-bit precision
will not be adequate if the levels are placed inappropriately, leading to the digital
equivalent of saturation. In most circumstances, a digital sampler is designed to
have a certain input range and variable attenuators are used to ensure the mean
level of the incoming signal is within the required range. An informative diagnostic
technique involves regularly checking the statistics of the digitiser, i.e. the number
of samples recorded above or below each threshold. If the thresholds are set well
and the incoming power is dominated by random noise, the number of samples at
each level should conform to a Gaussian profile with more “hits” near the zero level
and fewer at the extremes. The presence of interfering transmissions or a drift in
the mean level will change the statistical profile.

The number of bits also defines the “dynamic range” of the system, which is a
measure of the maximum variation in signal strength that can be accurately rep-
resented. The dynamic range of a 1-bit system is very low as the sampler is eas-
ily saturated. High dynamic range is important when there is strong interference
competing with the astronomy signal. In order to subtract contaminated spectral
components, the interference must be accurately characterised.

To correct for dispersion smearing, we must have detailed knowledge of power
as a function of frequency. Instead of a single detector, we require a spectrometer.
The next section describes a number of techniques commonly used to extract the
spectrum of an observed signal.

3.5 Spectrometry

The first generation of instruments designed for pulsar astronomy were based on
large arrays of analogue filters (filterbanks). The IF signal was cloned many times
using a multiplexer and the streams were fed into a set of analogue filters with uni-
form width, each sensitive to a slightly different region of the incoming band. The
output of each filter was detected in hardware and independently digitised, then
written to storage media for processing. Although the idea was simple, manufactur-
ing high-quality filters is difficult and expensive. Resolution was therefore limited
by the roll-off of the filters and their response time.

It is also possible to compute a spectrum using the Wiener-Khintchine theorem,
which states that “The auto-correlation function is the Fourier transform of the
power spectrum”. Thus, by inserting lags and correlating an observed time series
with itself, it is possible to recover the Fourier transform of the power spectrum,
which by reverse transform can be converted into a channelised representation of the
receiver passband. Custom digital circuits can be built to perform rapid correlation,
allowing the application of this method to large bandwidths. Constructing the power
spectrum in this manner has the advantage that few filters interact with the observed
signal, making the system less susceptible to hardware inconsistencies.
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The Fourier transform can also be used to synthesise a filterbank from Nyquist
sampled data. If N spectral channels are desired, the real-sampled time series is
split into sequential segments containing 2N points. An FFT is performed on each
segment and the resulting complex spectral components are effectively a row of
time samples in the required N channels. The result of each subsequent FFT is
stacked onto the last row. In this way, time resolution is traded for frequency
resolution. In practice, this simple method is susceptible to spectral leakage amongst
neighbouring channels, but this can be alleviated by performing a longer forwards
FFT and multiple backward FFTs to construct the spectral channels.

In theory, it is possible to reduce the effects of dispersive smearing to negligibility.
Hankins & Rickett (1975) described a method of coherently dedispersing across a
finite band by de-convolving the signal with the inverse of a response function that
described the ISM. However, this method required knowledge of the electric field
and had to be performed prior to detection. One way this could be achieved was
to digitally sample the analogue signal at the Nyquist rate and store the samples
for off-line processing. When coherent dedispersion was first attempted, computer
power and storage media capacity limited the bandwidth to approximately 250 kHz.
Hankins, Stinebring & Rawley (1987) increased this bandwidth to 2 MHz by using
the Reticon R5601 integrated circuit, which was designed specifically to perform
the Chirp-Z transform. Fortunately, the power of consumer computing hardware in-
creased so rapidly that by the turn of the millenium, Nyquist sampling and software-
based coherent dedispersion could be performed across tens of MHz, opening the
way for widespread adoption of the technique.

To allow for greater flexibility and efficiency, coherent dedispersion can be com-
bined with the operations required to form a digital filterbank. This decreases the
length of the FFTs required (lessening the computational load slightly) and results
in a set of narrow channels that are internally free of dispersion smearing. The
trade-off between time and frequency resolution still applies, but provided the DM
of the pulsar is known accurately, dispersion smearing is eradicated regardless of the
frequency resolution. The final balance can therefore be optimised to keep the time
resolution just below the width of a single phase bin.

3.6 The Caltech, Parkes, Swinburne Recorders

In August 1998, a team of astronomers and engineers from Swinburne University
of Technology and the California Institute of Technology installed a new baseband
recording system at the Parkes radio telescope in New South Wales, Australia. This
system (known as CPSR1) was designed to Nyquist-sample 2×20MHz-wide bands,
allowing coherent dedispersion and polarimetry of pulses from the bright, southern
hemisphere millisecond pulsar PSR J0437–4715. Band-limited IFs were provided by
the telescope down-conversion system and fed into a custom-built digitiser designed
by John Yamasaki. This was connected to a Direct Memory Access (DMA) card
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housed in a Sun workstation that was equipped with 4 hard disks and 4 DLT tape
drives on an internal SCSI bus. The digitiser complex-sampled the signal from
each polarisation with 2-bit precision. At the Nyquist rate, this generated 20MB
of data every second, which was recorded to the hard disks of the Sun machine.
Unfortunately, the capacity of the hard disks was severely limited, allowing less than
an hour of continuous recording. To allow extended recording, the data had to be
removed from the hard disks as quickly as it arrived. Each DLT could write at a rate
of 5MB per second, using all four in parallel allowed data to be written to tape at the
required rate of 20MBs−1. The tapes were shipped back to the Swinburne Centre for
Astrophysics and Supercomputing, then inserted into a robotic silo for processing.
A cluster of high-speed servers ran a program called PSRDISP (van Straten 2003)
to process the baseband samples. This program reconstructed the analytic signal,
performed coherent dedispersion (and optionally formed a coherent filterbank) then
square-law detection, after which the signal was synchronously folded into a binned
profile using the predicted pulse period.

CPSR1 was at the forefront of coherent dedispersion technology and allowed the
detection of annual-orbital parallax and Shapiro delay in PSR J0437–4715 (van
Straten et al. 2001). Even so, it suffered from a number of significant limitations.
The practice of recording directly to tape and forming pulse profiles well after the
observations offered no real-time feedback on data quality. If the telescope was in-
correctly configured, hours of data could be recorded before the mistake was noticed
and rectified. In addition, the observing bandwidth of 20MHz was an order of mag-
nitude smaller than that typical of incoherent detectors available at Parkes at the
same time; the enhanced precision associated with coherent dedispersion came at
a significant cost in S/N. J0437–4715 was well suited to a precise but narrow-band
system and CPSR1 was never intended to be a general purpose instrument.

Much of the expense associated with constructing a new instrument goes into de-
velopment; engineers are required to design the hardware circuits, prototypes must
be built and tested, refinements made and so on. Only in the last few years has it
been feasible to construct a powerful processing engine out of consumer components.
The number of transistors per unit area within an integrated circuit continues to
double every 18 months (Moore’s Law), allowing CPU power to steadily increase.
Modern personal computers also have the ability to handle large volumes of input
and output. They can also be programmed to perform any algorithmic task. Us-
ing PCs as processing engines has the advantage that most hardware development
costs are paid by the intended consumer market, lessening the overall expense. In-
deed, many modern supercomputers are constructed using relatively inexpensive
PCs, linked by high-speed local area networks. Various hardware manufacturers fa-
cilitate the use of PCs for scientific research by providing expansion cards that can
directly interface with data acquisition systems. The only remaining development
cost comes in designing the software required to process the data. Although software
development can be difficult and time consuming, well-designed code can be run on
upgraded hardware with minimal modification and the cost of development must
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only be paid once.

CPSR1 proved that software-based coherent dedispersion was viable, but it did
not offer much scientific flexibility. PSRDISP was designed to read a pulsar ephemeris
and perform the appropriate level of dedispersion and synchronous folding, making it
capable of processing data from any pulsar. However, few pulsars had a short period,
narrow profile and flux density large enough to benefit from coherent dedispersion
with 20MHz of bandwidth. It soon became clear that installing a local processing
engine at the telescope would provide real-time feedback and do away with the cost
and risk of tape transportation. It would also provide the computational power
needed to extend the observable bandwidth. Benchmark tests provided an idea
of how many processors were required to reduce baseband data in real time for
a given bandwidth. The high-end PC systems available in 2001-2 were capable of
handling significantly greater data rates than the Sun machine used to drive CPSR1,
despite only four additional years of progress. 30 dual-processor servers could process
128MB of data every second, allowing a bandwidth of 128MHz with 2-bit real-
sampling. The new instrument would run PSRDISP, and therefore inherit all the
development and extensive testing already invested in the core coherent dedispersion
code. A new sampler was designed to convert 4 IFs into two streams of 64MB s−1,
near the upper limit of both computer disk and network transfer rates. The new
CPSR2 system would provide an unprecedented amount of coherently dedispersed
bandwidth to radio observers, offering a total sensitivity increase of 2.5 compared to
CPSR1, plus all the benefits of fully on-line data reduction and real-time feedback.

3.7 CPSR2 Construction and Commissioning

CPSR2 combines a custom-built Fast Flexible Digitiser (FFD) board with a cluster
of Intel-based rack-mountable servers. The FFD itself was the only custom digital
circuit used in the construction of CPSR2, all other components were purchased
commercially and configured as required. The computer cluster was obtained from
Dell, in the form of 28 individual PowerEdge 2650 servers, each with dual 2.2GHz
Intel Xeon processors, 2×72GB Ultra SCSI hard disk drives and 1GB of Random
Access Memory (RAM). Each of these servers was installed with SuSE Linux version
7.2 and equipped with the GNU Compiler Collection (GCC) and a suite of pulsar
data reduction tools, including PSRDISP. In addition, two “primary nodes” were
used to read data from the FFD via DMA cards, then distribute it to the cluster
machines (or “secondary nodes”). These two machines were equipped with 3GB of
RAM and twice the hard disk space of the others. We used EDT–60 DMA cards,
which were connected directly to the FFD by means of custom-built ribbon cables.
External computer control of the FFD was facilitated by a serial connection between
it and a primary node. In addition to the primary and secondary nodes, a gateway
machine was installed in the Parkes radio telescope control room. This machine
was connected by means of fibre-based Gb Ethernet to a Cisco switch that provided
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an additional 100Mb Ethernet layer to all the machines. This layer was used by
the control and monitoring system that gathers information from all the nodes and
presents it to the operator. It was considered necessary to isolate this traffic from
the primary data transmission network, to maximise the bulk transfer rate.

The instrument was assembled and commissioned during an intensive, 3 week
session at the Parkes radio telescope in August 2002. Astronomers and students from
Caltech and Swinburne travelled to the telescope in order to assemble and test the
system. First, the cluster nodes were removed from their packaging and stacked in an
open-frame rack. Power and two sets of network cables were distributed throughout
the rack and a VME-style crate was installed to house the FFD. The Linux operating
system and all required data reduction software were installed on a single secondary
node and then cloned at the device level onto each of the others, followed by manual
assignment of unique Internet protocol addresses and hostnames. DMA cards were
installed in the primary nodes, along with the necessary driver software. Each Dell
2650 has 5 rapid-access hard disk drive slots, facilitating easy disk duplication. A
set of spare disks was cloned from a secondary node and set aside, to allow rapid
recovery should any of the other internal disks fail (this has happened twice since
commissioning). After the FFD had been connected to the primary nodes and the
IFs, the data acquisition software was tested. These tests revealed a number of
problems with the code designed to drive the FFD and DMA cards and handle data
buffering and transfer. For example, the internal logic designed to re-route slow
network connections suffered from a form of positive feedback that could overwhelm
the network switch. These problems were slowly corrected, with the help of new
cluster monitoring tools that were developed to assist the debugging process. It
took several months for a stable observing system to emerge.

Most aspects of the system have remained in their initial configuration, with the
important exception of the high-speed network layer. It was initially thought that
Gb Ethernet would not have sufficient capacity to support sustained data trans-
fer at a rate of 64MBs−1, and each machine was installed with a Giganet card.
These were linked by high-capacity CAT 7 network cable to a central switch, using
a star topology. Giganet was designed for supercomputing applications and could
transmit data at a sustained rate well in excess of the required 64MBs−1. Unfortu-
nately, the system seemed to have a number of stability flaws that may have been
accentuated by hardware problems in the internal switching circuits. We found that
at times, machines would vanish from the Giganet switch and at other times they
would refuse to load card drivers at boot time or acknowledge the presence of the
switch. The low-level network protocol was heavily optimised for a small number
of high bandwidth connections; we found that trying to maintain a number of open
connections to different devices could slow down the maximum rate of any point-
to-point transfer significantly. In the end, the whole Giganet system was removed
and replaced with two 24-port Gb Ethernet switches, each handling one half of the
secondary nodes (but connected by a 2Gb cross-over link). The FFD packed all
recorded samples into two streams of 2×64MHz 2-bit samples, usually representing
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Figure 3.6: This diagram shows the basic layout and interconnection plan of the
CPSR2 baseband recorder and its processing cluster.

orthogonal polarisations of a single, 64MHz-wide band. Each of these streams was
sent to a different switch by the associated primary node, maximising the effective-
ness of our network configuration by avoiding the cross-over link. Gb Ethernet was
also compatible with the TCP/IP stack within the Linux kernel, which proved to be
far more reliable than the Giganet protocol. The theoretical maximum throughput
is 1×109 bits s−1, which is equivalent to 125MBs−1. Sustained rates in excess of the
required 64MBs−1 were easily obtained, contrary to our initial expectation.

A schematic representation of the current system configuration is presented in
Fig. 3.6. Samples recorded by the FFD were transferred from a ring buffer associated
with each EDT card into a large block of shared memory (normally 1GB) in one
of the two primary nodes, depending on which of the two sides of the FFD they
originated. These shared memory blocks were also configured as ring buffers, which
were written to sequentially in small blocks (32MB in most cases) of data. Ring
buffers are a simple example of a first-in-first-out (FIFO) construct. A fixed number
of blocks are set aside for storage, and different processes can either write to or read
from these blocks. A record is kept of the state of each block and any write requests
are directed to the next empty block in the sequence, wrapping back to zero after
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the final block. Any read request is directed to the oldest full block, which is marked
empty once the read operation is complete. As long as the reader can keep pace with
the incoming data, the buffer will never reach a state where every block contains
new data.

Data acquisition code read from the EDT buffers and wrote to the CPSR2 pri-
mary buffers; a second communications process read from the primary buffers and
transfered data units across the network layer to a waiting secondary node, which
was equipped with a smaller ring buffer and another process that wrote the data
to disk. The presence of ring buffers at both ends of the network made the system
robust to short glitches in flow rate. In fact, network transfer had to cease for a full
16.8 s to fill one of the primary ring buffers.

Once the raw data had been written to disk, it was processed by PSRDISP
according to an ephemeris obtained from either the standard pulsar catalogue or
a standard directory, pointed to by an environment variable. Each observation
(the time between “start” and “stop” signals being sent to the FFD) was treated
as a single entry in a job queue system, managed from a central interface. The
required parameters (phase bins, spectral resolution and so on) could be set by the
user on a job-by-job basis. There were default settings tailored for most of the
commonly observed pulsars and a standard default for any source that had not
been observed previously with the instrument. Once available, the folded pulsar
archives were copied by the same data management software to a central storage
location for subsequent backup and analysis, and also for inclusion in the running
total constructed by the online data quality monitoring system.

The next chapter describes the configuration and operation of CPSR2. Readers
interested in a detailed description of individual software components should also
refer to Appendix B.

3.8 Operating CPSR2

The output power level of the Parkes radio telescope down-conversion chain was
configured manually using a graphical user interface, logui, or automatically using
the Telescope Control System (TCS). The final 64–128MHz filters were connected
by coaxial cable to the FFD inputs. Although not quite baseband, the signal was
band-limited (so it contained effectively 64MHz of spectral information) and an
integer multiple of the desired range. The entire band was aliased back into the
range 0–64MHz when sampled at what was effectively half the required Nyquist
rate. The information content was preserved, but higher frequencies were mapped
to lower frequencies, causing a final inversion of the band. The FFD was divided
into two halves, each side accepting two of the four IFs. In most cases these were
configured to be orthogonal polarisations of a single 64MHz-wide band. Each half
of the FFD had an independently adjustable attenuator with a 30 dB range which
was controlled by commands sent down the serial line. The 4×64MHz inputs could
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be configured to centre on a wide range of sky frequencies. We successfully observed
with the central beam of the Parkes multibeam receiver and the H-OH receiver,
both at 20 cm, the dual-band coaxial pulsar receiver at 10 cm and 50 cm (with the
option of recording parts of both bands simultaneously), and even the 8GHz Mars
receiver.

In the normal mode of operation, the FFD real-sampled the input voltage using
four levels (2-bits) of quantisation, clocked by an external 128MHz oscillator. The
FFD was also capable of 4-bit sampling, however since this doubled the data rate,
two of the 4×64MHz channels had to be discarded and it was no longer possible to
send both orthogonal polarisations to the same half of the FFD. Since each half of
the FFD has its own independent attenuation settings, running in this mode could
introduce a systematic offset in the relative strength of the polarisations, making
calibration difficult. It was also theoretically possible to halve the bandwidth in
order to compensate for the increased number of bits, but this required halving the
rate of the external clock signal. Unfortunately, the external clock was also used
to control the serial port, meaning that any deviation from the intended 128MHz
caused the FFD control system to freeze. For these reasons, did not observe in 4-
bit mode with CPSR2, although the additional bits may have been beneficial when
faced with strong radio frequency interference.

The routine designed to convert a recorded bit stream into a series of floating
point values (and perform any corrections for quantisation error) was called the
“unpacker”. The CPSR2 unpacker was also responsible for separating out the or-
thogonal polarisations. Assuming that the digitised signal had been recorded using
a fixed set of input voltage thresholds, the unpacker needed to work backwards,
deciding what floating point “voltage” to assign to a given sample. This conversion
need not (and in fact should not) be constant (the same 2-bit number need not
always represent the same voltage). Jenet & Anderson (1998) described a scheme in
which the output levels were varied in order to keep the power level of the digitised
signal as close as possible to the power level in the un-digitised signal. The optimal
output levels were defined by estimating the power in the un-digitised signal, based
on the statistical properties of 512 samples taken from the digitised signal and the
assumption that the system noise was Gaussian. The greater the number of bits
used to store each sample, the simpler the unpacker could be. 8-bit samples could
be adequately unpacked using simple base-2 to base-10 conversion.

Of course, the input thresholds could themselves be optimised to yield the high-
est S/N (and least contaminated) digitised signal. The optimal relative threshold
separation was constant, but the actual voltage levels were defined in terms of the
power in the un-digitised signal. This could be changed using the variable attenua-
tors built into the FFD, via commands sent through the serial control line. Based
on statistical analysis of the digitised signal, the correct level of attenuation could
be computed at any given time. Assuming the incoming power did not change sig-
nificantly over the course of a single observation, the FFD’s attenuators could be set
once and then left fixed. Alternatively, if there was strong interference or a lengthy
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observation was required, the attenuators could be varied more regularly in small
increments, at the cost of introducing steps in the recorded power level. The pro-
cess of folding averaged over these steps, but some applications (for example, giant
pulse searching) depended upon the mean level being constant and were therefore
unsuited to dynamic level setting.

Despite the fact that the spectral content of the signal was preserved by Nyquist
sampling, 2-bit digitisation could introduce systematic errors into the measured
signal. These errors were fundamental to the quantisation process and could not be
avoided. They could be minimised by sampling with ever-higher numbers of bits,
but this increases the data rate to an unacceptable level. Jenet & Anderson (1998)
described the form of several quantisation errors and detailed ways in which they
could be compensated for without increasing the data rate. PSRDISP included code
designed to correct for a first-order effect that caused power loss in the vicinity of
the pulse, but was in general unable to perform a second-order correction for power
scattered across the band, because the operation was not compatible with coherent
dedispersion.

Because pulsar timing requires precise knowledge of the time a particular pulse
arrived at the telescope, it was necessary to store an accurate time stamp with each
block of recorded data. To ensure the FFD started recording at exactly the right
moment, the detector was “armed” by a serial command sent from a process running
on the second primary node (whose clock was kept accurate to within a few tens of
milliseconds via Network Time Protocol signals) and triggered by the telescope 1PPS
signal, which was driven by a Hydrogen maser frequency standard whose relationship
to UTC was carefully monitored. The data acquisition software responsible for
reading from the EDT–60 buffer into the primary ring buffer appended 4096 bytes
of header information to each file that was sent across the network. This header
contained a time stamp and information about the centre frequency of the band,
sky coordinates of the source, digitisation mode and so on. It was written in ASCII
format for ease of interpretation, as shown in the example below.

CPSR2_HEADER_VERSION 0.2 # Version of this ASCII header

CPSR2_DAS_VERSION 0.1 # Version of the Data Acquisition Software

CPSR2_FFD_VERSION 5 # Version of the FFD FPGA Software

TELESCOPE PKS # telescope name

PRIMARY cpsr1 # primary node host name

# time of the rising edge of the first time sample

UTC_START 2005-01-24-14:56:01 # yyyy-mm-dd-hh:mm:ss.fs

MJD_START 53394.6222337962963 # MJD equivalent to the start UTC

OFFSET 77277954048 # bytes offset from the start MJD/UTC

SOURCE J0540-6919 # name of the astronomical source

RA 00:00:00.0 # Right Ascension of the source

DEC 00:00:00.0 # Declination of the source
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FREQ 3000 # centre frequency on sky in MHz

BW 64 # bandwidth of in MHz (-ve lower sb)

TSAMP 0.00781250 # sampling interval in microseconds

NBIT 2 # number of bits per sample

NDIM 1 # dimension of samples (2=complex, 1=real)

NPOL 2 # number of polarizations observed

EDGE 30

LEVEL 600

MODE SURVEY

CALFREQ 11.123000

NMBYTES 73698

BUFFERSIZE 31457280

HALT 0

Information stored in the header was taken from a control process running on
the cluster gateway machine. This background process was also responsible for
coordinating starts and stops. Most parameters could be entered by hand using a
graphical user interface, but in the normal mode of operation they were sent over
the network by TCS without any user intervention.

When the FFD was triggered to start by the 1 PPS, it began filling EDT buffers.
The data acquisition software on each primary node waited on a flag set by the EDT
driver to indicate when new data was available. When the samples started to arrive,
they were copied into the primary ring buffer as quickly as possible. A small fraction
of the samples were extracted and used to monitor the digitiser statistics and adjust
the FFD attenuators if necessary. An additional process thread waited on a similar
flag built into the primary CPSR2 ring buffer, immediately sending any new blocks
out over Ethernet to the next available secondary node.

The FFD included a check-code in its data stream by periodically over-writing
the data with a string of 8 characters and a byte count from the start of the recording.
This allowed the integrity and continuity of the data to be monitored. The presence
and order of these codes were checked at several stages during the recording process.
Any file that ended up on the hard disk of a secondary node was guaranteed to be
a contiguous block and could therefore be processed independently.

Although it was theoretically possible to write continuously to a single pair of
secondary nodes until their disks filled, the communications code normally sent
short bursts of data to each secondary node in a continuous cycle, to ensure an even
distribution of files and optimise processing efficiency. The first advantage of this
approach was its robustness. If one secondary node happened to run slowly or was
incapable of accepting a connection, the data flow would normally stall. However,
provided the primary ring buffer was greater in size than the amount of data sent
during one transmission burst, the system did not halt unless several machines in
a row were incapable of receiving data at the required rate. The second advantage
was that short transmissions resulted in a uniform distribution of data across the
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secondary nodes, which allowed each machine to begin processing soon after the
start of an observation. Short files could be rapidly processed in order to provide
immediate feedback to the observer. The short archives resulting from this practice
were combined into longer integrations once the observation was complete.

3.9 Data Processing

The CPSR2 cluster was capable of dedispersing up to a DM of about 40 pc cm−3 in
real-time, at a wavelength of 20 cm. The primary nodes sent data to each secondary
node in their target list sequentially, wrapping back to the beginning of the list after
the last machine. If a secondary node had finished processing its previous file by the
time it was given the next data file, processing kept pace with the observation and
the average amount of free disk space remained the same. Above this DM, the cluster
fell behind and each node had to continue processing the previous file for some time
after the next was received. Because dedispersion is very CPU intensive, running
PSRDISP on both CPUs could hinder the ability of a secondary node to accept new
data from the network. For this reason, the secondary nodes were programmed to
temporarily suspended all processing during data transfer. This additional loss of
16.8 processing seconds created a surprisingly sharp efficiency cutoff at the real-time
transition. When the processing rate was slower than the recording rate, the cluster
disks would start to fill. Each secondary node had 125GB of scratch space within a
2-disk RAID array which stored unprocessed data, making the total cluster storage
capacity approximately 3.5TB. At a rate of 2×1GB files every 16.8 s, this equated
to more than 8 hours of dual band data (or 16 hours of single band data), even if no
processing was attempted. Given that the average 24 hr observing session involved
many different sources with a range of DMs, it was rare for the disks to fill unless
data was being stored deliberately for future analysis.

As the folded, dedispersed archives were deposited in the central storage area,
they were appended to an integrated profile. This profile was displayed in a graphical
window, along with a summary of key observing parameters (source name, sky
frequency and so on), a plot of pulse phase as a function of frequency (showing the
dispersed pulse) and a history of the S/N as a function of time. This information was
used to determine if the observing system was correctly configured. If, for example,
the band were to be inverted, the integrated pulse may still show up in the frequency
vs phase plot, but not in the dedispersed mean profile. Many pulsars with DMs less
than ∼10 pc cm−3 scintillate due to diffractive effects, causing their apparent flux
to vary. Real-time monitoring was used to assess the strength of a source as it was
being observed. This allowed dynamic scheduling and facilitated the most efficient
use of limited telescope time.



Chapter 4

An Open Approach to Radio
Pulsar Data Storage & Analysis

“There are two major products that came out of Berkeley: LSD and UNIX. We don’t
believe this to be a coincidence.”

Jeremy S. Anderson

In this chapter, a new set of software applications and libraries for use in the
archival and analysis of pulsar astronomical data is introduced. Known collectively
as the PSRCHIVE scheme, the code was developed in parallel with a new data stor-
age format called PSRFITS, which is based on the Flexible Image Transport System
(FITS). Both of these projects utilise a modular, object-oriented design philosophy.
PSRCHIVE is an open source development environment that incorporates an exten-
sive range of C++ object classes and pre-built command line and graphical utilities.
These deal transparently and simultaneously with multiple data storage formats,
thereby enhancing data portability and facilitating the adoption of the PSRFITS file
format. Here, data are stored in a series of modular header-data units that provide
flexibility and scope for future expansion. As it is based on FITS, various standard li-
braries and applications may be used for data input/output and visualisation. Both
PSRCHIVE and PSRFITS are made publicly available to the academic community in
the hope that this will promote their widespread use and acceptance.

4.1 Introduction

4.1.1 Collaborative Scientific Software Development

Modern, highly specialised experimental systems often require extensive original
software development. This is true for all tasks from direct hardware control through
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to data reduction. While individual research groups often approach such software
development from an isolated perspective, the proliferation of digital hardware and
wide-area networking makes global cooperative software development far more at-
tractive, provided suitable common ground exists. Both cooperative software devel-
opment and the adoption of standard packages provide a number of distinct advan-
tages to the research community. For instance, as less effort is wasted unnecessarily
duplicating the work of others, cooperative development can lead to more efficient
allocation of resources. In addition, supporting the requirements of a larger user
community promotes the development of basic, general purpose routines that may
be used in a wider variety of situations. These influences result in more modular
and extensible software.

However, it should be noted that a greater level of care and cooperation is re-
quired in collaborative software development, especially the open source approach
advocated in this chapter. For example, in contrast to most commercial soft-
ware, “black box” modularity is undesirable in scientific analysis, especially when
the application of certain algorithms requires experienced judgment. Open, well-
documented code provides researchers with an accurate understanding of third-party
analytical tools. Therefore, contributing developers must be willing to put their code
in the public domain, making it freely available for non-commercial use by any other
academic organisation. Although this facilitates the exchange of ideas, it also raises
the issue of potential loss of intellectual property, which might discourage some
authors.

It is also the case that collaborative development tends to become de-centralised,
especially when multiple developers have the ability to commit fundamental changes
to the code. Effective communication between the core developers becomes essen-
tial to the smooth running of the project, necessitating greater attention to version
control, the maintenance of stable releases, and the development of extensive and
concise documentation. Also, when a wider user community is affected by modifica-
tions to the software, exhaustive methods must be employed to ensure the validity
of changes and the integrity of the system as a whole. Although each of these issues
tend to increase the workload of the collaborative developer, a much larger body of
users will benefit from the effort.

4.1.2 Software Development in the Pulsar Community

The global pulsar community is ideally suited to adopt a collaborative approach to
software development. It consists of a relatively small number of locally centralised
groups that deal with different telescopes and instruments, leading to several parallel
but incompatible software development paths. As each path tends to be built around
a highly specific data storage format, cross examination of data and algorithms is
problematic. In addition, because such software is generally designed for a limited
purpose, it is often difficult to extend its functionality without introducing obfus-
cated code. This is especially true when the program develops in an experimental
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fashion, as is often the case with scientific applications. In order to avoid future
inflexibility, sufficient time and care must be invested during the planning stage,
calling on input from both experienced software developers and pulsar astronomers.

4.1.3 Radio Pulsar Data

Radio pulsars are broad-band point sources of highly polarised emission that exhibit
rapid pulsations with a characteristic period anywhere between one millisecond and
ten seconds. They are thought to be rotating neutron stars with a strong dipolar
magnetic field whose axis is not aligned with the rotation axis of the star (Gold
1968). Intense beams of emission originate at the magnetic poles, which sweep across
the sky with each rotation of the star and produce the pulsed radio signal observed
at Earth.

The characteristic signature of any radio pulsar is its integrated polarimetric
pulse profile, given by the observed Stokes parameters averaged (folded) as a function
of pulse longitude over several thousand individual pulses (Helfand, Manchester &
Taylor 1975). Under the influence of electrons in the interstellar medium (Taylor
& Cordes 1993), this pulsed signal is broadened by dispersive frequency smearing,
which must be corrected in order to infer the shape of the characteristic profile at
the source. This is normally done by dividing the observed bandwidth into narrow
frequency channels, which are appropriately delayed relative to each other before
summing the detected flux densities in each channel. However, as the dispersion
measure may vary with time or may not be known with sufficient accuracy at the
time of the observation, it is often necessary to store the individual pulse profiles
observed in each frequency channel.

Additionally, it is possible to create a mean pulse profile only if a suitably accu-
rate model of the pulsar’s spin frequency and phase is available. The apparent pulse
period is affected by a number of phenomena, including the spin-down, timing noise,
and/or glitches intrinsic to the pulsar, variations in the interstellar dispersion, and
Doppler effects introduced by the relative motions of the Earth and pulsar. Inaccura-
cies in the model that describes these effects introduce phase errors that accumulate
with time and cause the integrated profile to become smeared. Therefore, it is often
beneficial to store multiple, shorter integrations of the mean pulse profile instead
of a single, long integration. Furthermore, when a pulsar is bright enough, a great
deal of additional information about the characteristics of the pulsar emission can
be obtained by recording and analysing each individual pulse. Therefore, a useful
pulsar data format must be able to represent pulse profiles observed over multiple
epochs of arbitrary length.

In summary, pulsar observations generally consist of a four-dimensional array of
data indexed by polarization component, pulse phase, frequency, and epoch. Soft-
ware support for sensible groupings in other dimensions, such as orbital phase, is
also highly desirable. In addition, data from a number of telescopes can be combined
to increase sensitivity and contribute to the eventual detection of new phenomena,
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such as the cosmic background of stochastic gravitational radiation (Hellings &
Downs 1983; Stinebring et al. 1990). Therefore, the data storage format should
have a flexible structure that provides efficient access to key parameters, removed
from any considerations of individual instruments or signal processing schemes.

4.1.4 Processing Radio Pulsar Data

Pulsars are observed for a variety of reasons, from studying the nature of their struc-
ture and emission mechanism (Dodson, McCulloch & Lewis 2002) to utilising them
as highly stable clocks and astrophysical probes (Taylor & Weisberg 1982). Conse-
quently, the same pulsar observation can be used in a number of different contexts,
one focusing on the variation of polarization with frequency, another measuring gen-
eral relativistic effects on pulse times of arrival, etc. Nevertheless, our experience
has shown that there exist many common tasks associated with pulsar data analysis
that can be standardised within a modern open source development environment.

As a demonstration of the types of operations performed on pulsar data, consider
the specific example of pulse time of arrival calculation. In order to increase the S/N
of each observation, data are often integrated (scrunched) by several factors in one
or more of the available dimensions. Each resultant profile is then cross-correlated
with a high S/N standard profile known as a template, yielding an estimate of the
longitudinal offset between the two. This offset is added to the reference epoch as-
sociated with a fiducial point in the observed pulse profile, yielding an arrival time
in the reference frame of the observatory, which is later converted into a barycentric
arrival time using a Solar system ephemeris. This data reduction operation involves
a number of typical tasks, including loading the arrays of numbers that represent
the folded profiles and computing sums, products, rotations, weighted averages, and
correlations of these arrays; sometimes in the Fourier domain. Most of these various
operations must be performed in a manner consistent with the observational param-
eters, taking into account dispersive delays, observation time stamps and relative
weightings of different frequency channels, for example. At each step, the software
must also ensure that all parameters are updated accordingly.

4.1.5 Scope and Design of PSRCHIVE and PSRFITS

It should be noted that the pulsar data under consideration represents a point
near the end of the typical pulsar data reduction chain. The software presented
in this chapter is not intended for the direct handling of radio data such as that
recorded by baseband systems, or for the purposes of performing computationally
expensive offline searching, although some support for the storage of such data is
provided in PSRFITS. The code is also not designed to perform any phase-coherent
dispersion removal or formation of filter-bank data; these techniques are treated as
separate computational tasks. Code for such data reduction is also available from
the repository at the Swinburne Centre for Astrophysics and Supercomputing under
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the umbrella name of BASEBAND DSP1, a general library for use in digital signal
processing.

The PSRCHIVE and PSRFITS schemes were designed from the beginning to form
an object-oriented framework into which existing algorithms and data structures
could be transplanted. By introducing layers of abstraction between the various
levels of responsibility, the design remains both flexible and extensible. For exam-
ple, different telescopes and instruments require the storage of different types of
information, including configuration parameters, observatory and instrumental sta-
tus information, and other site-specific data. Because there is no way of knowing
exactly what future systems might include, both PSRCHIVE and PSRFITS imple-
ment a generalised scheme for incorporating arbitrarily complex data extensions, as
described in Sections 4.2.3 and 4.3.2.

In addition, a basic framework of crucial parameters common to all pulsar obser-
vations and a wide variety of fundamental data reduction algorithms, such as those
described in Section 4.1.4, have been implemented. Each of these basic data struc-
tures and reduction operations may be used in the composition of more complex
scientific processing algorithms. By virtue of continued development amongst the
authors, the PSRCHIVE library includes an extensive array of high-level algorithms
for use in the calibration, visualisation, and analysis of pulsar data; these can be
used immediately on any of the supported file formats.

PSRCHIVE and PSRFITS were developed in parallel and are presented in the
hope that they will promote increased data portability. The PSRFITS file format
also serves as an example of how to incorporate other, pre-existing file formats into
the new scheme. After two years of development, the code is now ready for formal
release to the wider pulsar community. In the following sections, we describe the
implementation of the new schemes and outline the specific advantages that they
offer.

4.2 Implementation Overview

4.2.1 Object-Oriented Programming

The modularity and extensibility required of our new scheme suggested an object-
oriented approach. Since much of the existing Swinburne analysis code had already
been written in both the C and C++ programming languages, it seemed a natural
step to progress in C++. The concepts of object classes and inheritance provided
and enforced by the syntax of this language offer a sound foundation on which
to develop. In particular, object-oriented design has aided in the realization of
simultaneous support of multiple file formats. We are aware that a majority of pulsar
research groups prefer to write a more procedural style of code, using FORTRAN
or C. However, we feel that the benefits of an object-oriented approach to data

1http://astronomy.swin.edu.au/pulsar/software/libraries/dsp
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processing significantly outweigh the potential learning curve involved in becoming
proficient with C++.

4.2.2 Basic Class Structure

The required functionality of PSRCHIVE is built around a core framework of C++
object classes. The fundamental unit of all pulsar observations is the individual
pulse Profile, a one-dimensional array of floating point numbers, indexed by pulse
phase. The Integration is a two-dimensional vector of Profile instances, indexed
by frequency and polarisation, as measured over a particular epoch. In turn, the
Archive is a one-dimensional vector of Integration instances, indexed in one of a
number of possible ways (normally time). Each of these classes implement a wide
range of basic data manipulation and processing operations.

In the language of C++, we define the namespace Pulsar, which contains the
three base classes : Pulsar::Archive, Pulsar::Integration, and Pulsar::Profile.
In addition, there are other object classes in the Pulsar namespace that deal with
specific tasks related to pulsar data analysis. For example, the Pulsar::Calibration
class employs various mathematical models of the instrumental response to calibrate
polarimetric observations (van Straten 2004).

4.2.3 Use of Data Abstraction

The three base classes implement a wide variety of basic algorithms, known as
methods, that are commonly used in pulsar data analysis. However, they do not
require knowledge of any specific details related to system architecture, enabling
their use as templates upon which to base lower-level development. These templates
define the minimum set of parameters, known as attributes, required to implement
the data analysis methods, including observational parameters such as the name of
the source, centre frequency, bandwidth, etc. At the level of the Pulsar::Archive
and Pulsar::Integration base classes, nothing is known about how data are stored
on permanent media or in computer memory.

The necessary task of translating between the two realms is performed by derived

classes that inherit the base classes. In order to inherit a base class, it is necessary
for the derived class to provide access to the required attributes and to implement the
methods used to read and write the data stored on disk. Therefore, for each specific
file format represented in the PSRCHIVE scheme, there corresponds a derived class
that inherits Pulsar::Archive. The syntax for the data access and file input/output
methods is defined by the base class and enforced by the C++ compiler, allowing
all derived classes to be treated as equal. Therefore, high-level code can be written
in the language of the base class definition without the need for considering the
implementation details of the derived classes. This abstraction, which is crucial to
the flexibility of the PSRCHIVE scheme, is demonstrated by the Unified Modeling
Language (UML) class diagram shown in Fig. 4.1.
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...

get_epoch:MJD
get_duration:double
get_folding_period:double
fscrunch

Archive::Extension

Pulsar::Profile

weight:float
data:vector<float>

...

rotate(phase:double)
snr:double
...

Integration::Extension

source_name:string
dispersion_measure:double
centre_frequency:double
bandwidth:double
...

load_header(filename:string)
load_data(integration:integer)
...

FITSArchive
epoch:MJD
duration:double
folding_period:double
...

BasicIntegration

right_ascension:double
declination:double
LST:double
...

FITSSubintExtension

FITSHdrExtension
version:string
creation_date:string
...

unload(filename:string)
get_source_name:string

get_centre_frequency:double
get_bandwidth::double
append(Archive)
clone:Archive
tscrunch
dedisperse
...

get_dispersion_measure:double

Pulsar::IntegrationPulsar::Archive

load(filename:string):Archive

Figure 4.1: Class diagram of a portion of the PSRCHIVE library. The abstract base
classes are shown above the dotted line. Below this line, the FITSArchive class imple-
ments Pulsar::Archive attribute storage and access methods, as well as methods for
loading and unloading data to and from a PSRFITS file. The combined use of compo-
sition and inheritance enables complex structures and behaviours to be constructed
using modular components.
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4.3 PSRFITS

4.3.1 A Standard Format for Pulsar Data Storage

One of the motivating factors behind the development of the PSRCHIVE scheme
was the alleviation of problems associated with highly specific and non-portable
data storage formats. This effort has highlighted several compelling reasons for the
pulsar community to move towards a more modular and standardised storage format.
For instance, the existence of a standard file format would significantly decrease the
amount of effort required to integrate and test new instrumentation. Historically,
file formats have accreted features as they became desirable or necessary. Given the
wealth of past experience available, it seems a logical step to define a new format
that encompasses a wide range of features from the beginning and is written in a
modular way so as to enable rapid, backwards-compatible upgrades. Indeed, one
particular standard storage format has already won wide acclaim within the astro-
nomical community; the Flexible Image Transport System (FITS) (Hanisch et al.
2001) has been in widespread use for approximately three decades and has evolved
into a highly adaptable data storage scheme2. The format has been placed under
the administration of the IAU FITS Working Group3 and a wide array of software is
available for FITS file manipulation. The NASA High Energy Astrophysics Science
Archive Research Centre4 provides useful libraries and applications for manipula-
tion and interrogation of FITS-based files. For example, the program fv has made
the process of testing and debugging the relevant PSRCHIVE software much more
straight-forward.

In accordance with FITS standards, a PSRFITS file consists of a primary header-
data unit (HDU) followed by a series of extension HDUs. The primary HDU contains
basic information such as telescope identification and location, observation start
time, etc. Extension HDUs, formatted as binary tables, contain specific information
related to the observation such as the pulsar ephemeris, calibration data, and the
pulsar data. Although PSRFITS is primarily designed to store folded or single-pulse
profile data, it can also accommodate continuous time series data.

A useful feature of the standard FITS input/output routines is that new HDUs
and header parameters may be added transparently – if they are unknown to the
reading program, they are ignored. Furthermore, unused HDUs need not be written,
even though they are present in the definition. This feature allows, for example, a
user group to add information particular to a certain instrument without compro-
mising use of the definition by other groups.

A novel feature of the PSRFITS definition is the inclusion of HDUs containing
‘history’ information. For example, the first line of the Processing History HDU
contains information about the data acquisition program and the initial structure of

2http://archive.stsci.edu/fits/fits standard
3http://www.cv.nrao.edu/fits/traffic/iaufwg/iaufwg.html
4http://heasarc.gsfc.nasa.gov/docs/heasarc/fits.html
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the file. Subsequent lines record details of modifications to the structure or data (for
example, partial or complete dedispersion or interference excision). A permanent
record of the steps that have been applied during data reduction has proven to be
of great value when later assessing the quality and validity of observational data.

4.3.2 The PSRFITS Definition

The current version of the PSRFITS definition file is available on the ATNF web
pages5. Table 4.1 describes the basic header-data units included in the definition.

In addition to the Main and Processing History HDUs, a number of optional
HDUs have been defined for general use with a variety of instrumentation. These
enable the storage of important status and diagnostic information about the ob-
servation, and demonstrate the modularity and extensibility of the PSRFITS file
format. The physical parameters stored in the Ephemeris History HDU are based
on the pulsar timing program, TEMPO6. From the ephemeris parameters are derived
the polynomial coefficients (polyco) used to predict the apparent pulsar period and
phase at the epoch of the observation; these coefficients are stored in the Polyco
History HDU. As improved physical parameters become available, the data may be
reprocessed, leading to new rows in the Ephemeris and Polyco history tables. The
calibration and feed cross-coupling HDUs are designed to work with the routines in
the Pulsar::Calibration class. Owing to the intrinsic modularity of FITS, these
additional HDUs are all optional; in fact, it is not even strictly necessary to include
any Integration data in a PSRFITS file. For example, the polarimetric calibration
modeling program creates a file containing only the feed cross-coupling, injected cal-
ibration polarisation, and flux calibration HDUs. This modularity is similar to that
made available through the use of VOTable7 XML standards and it is likely that
PSRFITS could in future be incorporated into the International Virtual Observatory
system with a minimum of effort.

4.4 Working with the PSRCHIVE Scheme

4.4.1 The Standard Application Set

The PSRCHIVE scheme includes an extensive set of pre-written application programs
that can be used to manipulate pulsar data in various ways. These include both
command line tools and graphical user interfaces built using Trolltech’s Qt8, a C++
toolkit for multi-platform GUI and application development. Table 4.2 presents a
list of applications included in the package at the time of publication, with a brief
description of each.

5http://www.atnf.csiro.au/research/pulsar/psrfits
6http://www.atnf.csiro.au/research/pulsar/tempo
7http://www.ivoa.net
8http://www.trolltech.com/products/qt/index.html
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HDU Title Description

Main header Observer, telescope and receiver information,
source name and observation date and time

Processing history Date, program and details of data acquisition
and each subsequent processing step

Digitiser statistics Digitiser mode and count statistics

Digitiser counts Digitiser mode and count rate distribution

Original bandpass Observed bandpass in each polarisation
averaged over the observation

Coherent dedispersion Parameters for coherent dedispersion of
baseband data

Ephemeris history Pulsar parameters used to create or modify
profile data

Polyco history Elements of the polyco file used to predict
the apparent pulsar period

Flux calibration System temperature and injected noise
calibration data as a function of frequency
across the bandpass

Injected calibration polarisation Apparent polarisation of the injected
noise calibration signal as a function
of frequency

Feed cross-coupling Parameters of feed cross-coupling as a
function of frequency

Integration data Pulse profiles or fast-sampled data as a function
of time, frequency and polarisation

Table 4.1: PSRFITS – A summary of the current definition
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Application Description

pav Archive data visualisation. Based on the PGPLOT graphics
subroutine library with a simple command line interface

vap Archive header examination, allowing multiple user
selectable header parameters to be printed as ASCII to
the terminal

pam Archive manipulation, compression and processing

pat Pulse profile arrival time calculation, based on cross
correlation with a standard template profile

pas Standard profile phase alignment, for timing with multiple
standard template profiles

paz Radio frequency interference mitigation tool including
manual and automated channel zapping and sub-integration
removal

pac Archive polarimetric and flux calibration tool based on a
user-selectable set of advanced algorithms

pcm Polarimetric calibration modeling, creates instrumental
response transformations for use with pac

psrgui Interactive point-and-click data visualisation with a Qt
graphical interface

psradd Combination of multiple archives for formation of high
S/N profiles

rhythm A graphical interface for pulse arrival time fitting

Table 4.2: Standard applications included with PSRCHIVE
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Readers may note that the modular philosophy at the heart of PSRCHIVE ex-
tends all the way through to the user level applications. Each program tends to be
small and focused on a specific task, be it data compression, timing, RFI mitigation,
etc. This greatly simplifies development and maintenance compared to having one
monolithic program with multiple purposes.

4.4.2 PSRCHIVE as a Development Environment

PSRCHIVE was designed to provide users with more than just a set of pre-made
applications. The classes, libraries and examples provided are intended to simplify
the task of building new processing tools. To a large extent, developers who build
on the PSRCHIVE scheme do not have to directly manipulate the arrays of pulse
profile amplitudes. Instead, member functions of the various classes can be called to
perform basic operations like baseline removal and phase rotation. This has the dual
benefit of labour saving both in the initial development phase and in the debugging
phase, as both the authors and other users have already verified and tested the
provided routines. In case direct access to the profile amplitudes is required, we
also provide interface functions that return C style arrays. In the experience of the
authors, the extra layer of abstraction provided by the PSRCHIVE scheme can cut
down the time between program concept and full implementation to a matter of
hours. New applications can be built with only a few lines of code. For example,
to remove the system noise floor, compress all frequency channels and output the
processed archive:

# include "Pulsar/Archive.h"

int main() {

Pulsar::Archive* arch = 0;

arch = Pulsar::Archive::load("filename");

arch->remove_baseline();

arch->fscrunch();

arch->unload();

}

This simple program defines a pointer to a Pulsar::Archive and calls the generic
Pulsar::Archive::load routine, which takes a filename argument, applies a number
of tests to the file on disk and decides whether or not it understands the particular
data format. If so, it summons the appropriate derived class to read the data from
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disk. Once the data have been loaded, the Pulsar::Archive::remove baseline
function is called.

void Pulsar::Archive::remove_baseline (float phase, float width)

{

try {

if (phase == -1.0)

phase = find_min_phase (width);

for (unsigned isub=0; isub < get_nsubint(); isub++)

get_Integration(isub) -> remove_baseline (phase, width);

}

catch (Error& error) {

throw error += "Pulsar::Archive::remove_baseline";

}

}

The Pulsar::Archive::remove baseline function takes two arguments: the
phase and width of the off-pulse baseline. Both arguments are assigned default
values in the Archive.h header file; if phase is left unspecified, then the off-
pulse baseline phase will be found using the Pulsar::Archive::find min phase
method; if width is unspecified, then a default value will be used. The Pul-
sar::Archive::remove baseline method makes multiple calls to the lower level
Pulsar::Integration::remove baseline routine, which performs the actual modi-
fication of amplitudes as follows:

void Pulsar::Integration::remove_baseline (float phase, float width)

{

if (Pulsar::Integration::verbose)

cerr << "Pulsar::Integration::remove_baseline entered" << endl;

try {

if (phase == -1.0)

phase = find_min_phase (width);

vector<float> phases;

dispersive_phases (this, phases);

for (unsigned ichan=0; ichan<get_nchan(); ichan++) {
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float chanphase = phase + phases[ichan];

for (unsigned ipol=0; ipol<get_npol(); ipol++)

*(profiles[ipol][ichan]) -=

profiles[ipol][ichan] -> mean (chanphase, width);

}

}

catch (Error& error) {

throw error += "Integration::remove_baseline";

}

}

This nested structure reduces the length of high-level routines, allowing actual
computations to be done at the level of abstraction that best suits the task. Like-
wise, the Pulsar::Integration::remove baseline routine calls various member
functions of both the Pulsar::Integration and Pulsar::Profile classes, computing
the pulse phase at which the minimum baseline level occurs in the total intensity of
the entire band. Adjustments for dispersive delays in each channel are performed
and the mean level at this phase is individually removed from each Pulsar::Profile
stored in the Pulsar::Integration. Developers should also note the extensive use
of try/catch blocks and a specifically designed Error class that carries descriptive
information about any exceptions thrown back to the calling procedure.

4.5 Resources and Availability

4.5.1 Obtaining and Compiling the Code

PSRCHIVE is freely available to the worldwide academic community. It is currently
held in a repository at Swinburne University of Technology in Melbourne, Australia
and may be accessed via the Concurrent Versions System9 (CVS). As it is distributed
in source code form, some experience with programming and compilation is neces-
sary; however, installation can be performed in a fairly simple step-by-step manner
thanks to the GNU auto-configuration10 system. The code is compatible with all
versions of the GNU Compiler Collection11 (GCC) between 2.95 and 3.2.2 (at the
time of publication) and is routinely tested on the Linux operating system. Every
effort will be made to ensure compatibility with future GCC releases. The software
has also been successfully compiled on Solaris and Mac OS X.

9http://www.cvshome.org
10http://www.gnu.org/software/autoconf/
11http://gcc.gnu.org
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The PSRCHIVE scheme makes use of several external libraries, including the Star-
link Project12 SLALIB package. It also requires at least one external FFT library
and includes wrappers that provide compatibility with either FFTW13 (available un-
der the GPL) or Intel MKL14 (commercially available from Intel). The PGPLOT15

graphics subroutine library is also an integral part of the scheme.

Full documentation including instructions for download and installation of the
package are available online at the following URL: http://psrchive.sourceforge.net.
At present, read-only access to the CVS repository is granted upon receipt by the
developers of a Secure Shell v2.0 public key that is used to allow remote access to the
Swinburne gateway server. Write permission to the repository requires a computing
account with the Swinburne Centre for Astrophysics and Supercomputing. Please
direct all enquiries regarding access to psrchive@astro.swin.edu.au. In addition,
users can download a pre-packaged source code distribution file that includes all the
necessary files for a basic installation.

4.5.2 Online Documentation

All PSRCHIVE reference documentation is maintained online as part of a project
hosted by SourceForge.net16. In addition to the online descriptions, each command
line application has a -h option that displays a quick summary of how to use the
program. The library of C++ classes is extensively documented using the Doxygen17

system; the source code contains tagged comments from which the online manual is
automatically generated. This manual is intended as a reference to programmers as
it primarily describes the member functions available in each class and the syntax
of their arguments.

4.5.3 Support Services

Although we provide no official support for the software, we are willing to assist with
PSRCHIVE related problems as time permits. General queries regarding installation
or operation can be addressed to psrchive@astro.swin.edu.au. The PSRCHIVE
SourceForge project web site also provides a mechanism for reporting serious bugs
and requesting new features.

12http://www.starlink.rl.ac.uk
13http://www.fftw.org
14http://www.intel.com/software/products/mkl/
15http://www.astro.caltech.edu/∼tjp/pgplot/
16http://www.sourceforge.net
17http://www.doxygen.org



76 CHAPTER 4. RADIO PULSAR DATA STORAGE & ANALYSIS

4.6 Conclusion

The task of organising astronomical data into a logical format lends itself surprisingly
well to the object-oriented programming paradigm. The combination of PSRCHIVE
and PSRFITS provides a powerful, ready-to-use pulsar data archival and reduction
system that can be rapidly adapted to new instruments. We hope that the ready
availability of an open source data reduction framework will facilitate large scale
collaborative projects, such as an extended pulsar timing array (Foster & Backer
1990). Therefore, we encourage both scientists and engineers involved with pulsar
data acquisition and reduction to consider taking advantage of these packages.



Chapter 5

PSR J1022+1001: Profile Stability
and Precision Timing

“...man will occasionally stumble over the truth, but usually manages to pick himself up,
walk over or around it, and carry on.”

Winston S. Churchill

In this chapter, we present an investigation of the morphology and arrival times
of integrated radio pulses from the binary millisecond pulsar PSR J1022+1001.
This pulsar is renowned for its poor timing properties, which have been postulated
to originate from variability in its average pulse profile. Although a sub-class of
long-period pulsars are known to exhibit mode changes that give rise to very large
deviations in their integrated profiles, this was the first millisecond pulsar thought
to have an unstable mean profile. As part of a precision timing program at the
Parkes radio telescope we observed this pulsar between January 2003 and March
2004 using a coherent dedispersion system (CPSR2). A study of morphological
variability during our brightest observations suggests that the pulse profile varies by
at most a few percent, similar to the uncertainty in our calibration. Unlike previous
authors, we find that this pulsar times extremely well. In 5min integrations of
64MHz bands we obtain a weighted RMS residual of just 2.27µs. The reduced χ2

of our best fit is 1.43, which suggests that this pulsar can be timed to high accuracy
with standard cross-correlation techniques. Combining relativistic constraints with
the pulsar mass function and consideration of the Chandrasekhar mass limit on the
white dwarf companion, we can constrain the inclination angle of the system to lie
within the range 37o < i < 56o. For reasonable pulsar masses, this suggests that the
white dwarf is at least 0.9 M⊙. We also find evidence for secular evolution of the
projected semi-major axis.

77
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5.1 Introduction

Pulsar timing is a highly versatile experimental technique that is used to provide
estimates of everything from the age and magnetic field strengths of pulsars, allowing
population studies (Lyne, Manchester & Taylor 1985; Lorimer et al. 1993), to
micro-arc-second positions and tests of relativistic gravity (van Straten et al. 2001).
Central to the technique is the maxim that pulsars have average pulse profiles that
are inherently stable (Helfand, Manchester & Taylor 1975), which can be cross-
correlated with a template to provide accurate times of arrival (Manchester &
Taylor 1977). Once corrections are made to account for the Earth’s position with
respect to the solar system barycentre, a model can be fit to the data, transforming
pulsars from astrophysical curiosities into powerful probes of binary evolution and
gravitational theories. One spectacular example is the recently-discovered double
pulsar system (Lyne et al. 2004).

The discovery of the millisecond pulsars PSR B1937+21 and PSR B1855+09
(Backer et al. 1982; Segelstein et al. 1986) and their subsequent timing (Kaspi,
Taylor & Ryba 1994) revealed that millisecond pulsars were very rotationally stable,
rivaling the best atomic clocks. Their lower magnetic fields appeared to give rise
to a fractional stability that far exceeded that of the normal pulsar population
(Arzoumanian et al. 1994). This stability, combined with their small rotation
periods, gives the millisecond pulsars sub-microsecond timing potential provided
sufficient S/N can be achieved. This provides interesting limits on a wide range of
astrophysical phenomena (Stairs 2004).

An array of accurately timed MSPs can even be used to constrain cosmological
models and search for long-period (nHz) gravitational waves (Foster & Backer
1990). Such an array requires frequent observations of a selection of pulsars that are
known to have sub-µs timing precision, preferably in two or more radio frequency
bands. Implementation of such an array would provide an opportunity to directly
detect gravitational radiation in a regime that complements the sensitivity range
of ground-based detectors, to test the accuracy of solar system ephemerides and to
construct an entirely extra-terrestrial timescale. The question of whether a suitable
sample of millisecond pulsars positioned throughout the entire celestial sphere can
be selected from the most recent pulsar catalogue (Manchester et al. 2005a) is
under active assessment, through a collaboration between the Australia Telescope
National Facility and Swinburne University of Technology.

The feasibility of a timing array depends in part upon the intrinsic rotational
stability of the MSPs and their lack of pulse profile variation. Cognard & Backer
(2004) have recently discovered a “glitch” in the millisecond pulsar PSR B1821–24,
similar to those discovered in younger pulsars (Shemar & Lyne 1996). Perhaps
more disturbingly, Kramer et al. (1999) report that the binary millisecond pulsar
PSR J1022+1001 exhibits pulse shape variations that ruin its timing. The au-
thors argued that this pulsar exhibits significant changes in its pulse morphology
on ∼5min timescales and narrow bandwidths. They interpreted these variations
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as the source of the pulsar’s unusually poor timing properties. By modeling the
profile with Gaussian components, Kramer et al. (1999) improved the timing and
argued that the trailing component of the pulse was more stable than the leading
component.

The precision with which astronomers can predict pulse arrival times has been
steadily improving over the past few decades with the advent of new technology and
methodology. The charged interstellar medium disperses radio pulses and broadens
the pulse profile across finite receiver bandwidths. Astronomers crave both the wide
bandwidths that permit high S/N integrated profiles, and the resolution of sharp
features that permit strong cross-correlation with a standard template in order to
minimise timing errors. Pulsar astronomy has always benefited from adopting new
technologies that give increased time resolution and help defeat the deleterious effect
of the interstellar medium on the propagation of radio pulses.

Incoherent devices such as analogue filter-banks are prone to systematic errors
due to interstellar scintillation and imperfect frequency responses. Digital spec-
trometers can overcome some of these inadequacies but Hankins & Rickett (1975)
described a computational technique (coherent dedispersion) that removes pulse
dispersion “perfectly” almost three decades ago. Unfortunately, at the time, com-
putational hardware was not capable of processing all but the most modest of band-
widths. The exponential growth of computational power has permitted the devel-
opment of new pulsar instruments that are capable of coherently dedispersing large
bandwidths in near real time. Such an instrument is CPSR2, a baseband recorder
that permits near-real time coherent dedispersion of 2×64MHz bands using a cluster
of high-end workstations. These new instruments represent the best opportunity to
study small variations of integrated pulse profiles because they deliver an immunity
against systematic errors induced by narrow-band scintillation and dispersion mea-
sure smearing. They also provide full polarimetry and multi-bit digitisation, radio
frequency interference rejection and the opportunity to apply accurate statistical
corrections that help eliminate systematic errors induced by discretisation (Jenet
& Anderson 1998).

Motivated by the arrival of CPSR2, we have commenced a timing campaign of
the best millisecond pulsars in an effort to make progress towards the aims of the
timing array. PSR J1022+1001 was included because of its high flux density, and
the paucity of better candidates at the hour angle it is visible from the Parkes radio
telescope. PSR J1022+1001 is a recycled or millisecond pulsar with a pulse period
of approximately 16ms. It orbits once every 7.8 days in a binary system with a
companion whose minimum mass can be derived from the pulsar mass function, Eq.
5.1, if we assume that the orbit is face-on and the pulsar has a mass of 1.35M⊙.

f(mp, mWD) =
m3

WD sin3 i

(mp +mWD)2
=

4π2

G

a3 sin3 i

P 2
b

. (5.1)

Here mp and mWD refer to the mass of the pulsar and white dwarf respectively,
i is the inclination angle of the orbit, Pb is the orbital period and G is Newton’s
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gravitational constant. For PSR J1022+1001, this corresponds to a mass of at least
0.7M⊙.

Measurements of the dispersion measure along the line of site to the pulsar,
combined with the Taylor & Cordes (1993) galactic electron density model, place
PSR J1022+1001 at a distance of roughly 600 pc from the sun, making it a relatively
nearby source. Accurate timing of this pulsar could therefore lead to a greater
knowledge of its orientation, companion masses, distance (via parallax) and proper
motion. Unfortunately, this pulsar is very near the ecliptic plane and hence pulsar
timing is only good at accurately constraining its position in one dimension. It is
therefore a good target for very long baseline interferometry, as this could accurately
determine the position and proper motion in ecliptic latitude.

In this chapter we present an analysis of the first 15 months of CPSR2 obser-
vations of PSR J1022+1001, demonstrating that this pulsar can be timed to high
accuracy using standard techniques. In section 5.2 we describe the observing system
and methodology, followed by a description of our data reduction scheme, including
polarimetric calibration. Section 5.3 describes the results of a search within our data
set for variations of the type reported by Kramer et al. (1999). Pulse arrival times
calculated from this data set are analysed in section 5.4, followed by a summary of
the newly derived pulsar spin and binary system parameters, including those that
may become significant in the future. In section 5.5 we discuss the implications of
our work for this pulsar and precision timing programs in general.

5.2 Observations

5.2.1 Instrumentation

The second Caltech Parkes Swinburne Recorder (CPSR2) is a baseband recording
and online coherent dedispersion system that accepts 4×64 MHz IFs. Using the
in-built supercomputer, data can be processed either in real time if the pulsar has
a DM less than approximately 40 pc cm−3 at a wavelength of 20 cm, or recorded to
disk and processed offline. This allows a large amount of flexibility in observing
methodology. CPSR2 was commissioned in August 2002 and has been recording
data on a regular basis since about November 2002. Observing sessions were pri-
marily conducted using a standard configuration consisting of two independent 64
MHz bands, each with two orthogonal linear polarisations. The down-conversion
chain was configured to make both bands contiguous, at centre frequencies of 1341
and 1405MHz. In addition, a small number of observations were made at the widely
separated frequencies of 3000 and 685MHz. After down-conversion and filtering to
create band-limited signals, each IF was fed into the CPSR2 Fast Flexible Digitiser
board which performed real, 2-bit Nyquist sampling. The digitisation process gen-
erates a total of 128MB of data every second. These samples were fed via DMA
cards to two high-speed computers that divided the data into discrete blocks which
were distributed via Gb Ethernet to a cluster of client machines for reduction us-
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ing a software program called PSRDISP (van Straten 2003). PSRDISP performed
software-based coherent dedispersion (Hankins & Rickett 1975), assuming prior
knowledge of the DM along the line of sight to the pulsar and the validity of the
tenuous plasma dispersion law.

5.2.2 Summary of Observations

Observations were conducted at the Parkes radio telescope over a period of around
400 days between January 2003 and February 2004. The central beam of the Parkes
multibeam receiver (Staveley-Smith et al. 1996) was originally used at the front end,
providing a system temperature of approximately 21K at 20 cm. The multibeam
receiver was removed for maintenance in October 2003 and all 20 cm data since this
date were recorded using the refurbished, wide-band H-OH receiver whose observable
band encompasses that of the multibeam receiver. The H-OH system is slightly
less sensitive than the multibeam, with a system temperature of 25K at 20 cm
wavelengths. In addition, a new coaxial dual-band 10/50 cm receiver system was
installed in place of the multibeam. During the 2004 observing sessions, data were
taken with this system in order to expand our frequency coverage for the purposes
of dispersion measure monitoring. Preliminary system temperature measurements
of the coaxial system yield values of 30K and 40K for the 10 cm and 50 cm feeds
respectively.

Scheduled observing sessions were typically a few days in duration, occurring
once or twice a month. Individual tracks of PSR J1022+1001 varied from approxi-
mately 15min to a few hours in duration. The data were somewhat biased towards
episodes of favourable scintillation as this allowed the most efficient use of limited
telescope time. In addition to the on-source tracks, most observations were imme-
diately preceded or followed by a short (2min) observation, taken 1o South of the
pulsar position, during which the receiver noise source was driven with a square wave
at a frequency of ∼11Hz. These calibration tracks were used to characterise the po-
larimetric response of the signal chain so that corrections to the observed Stokes
parameters could be made during data reduction. Observations of the radio galaxy
3C218 (Hydra A) were also taken at approximately monthly intervals (though often
only at 20 cm) and used to calibrate the absolute flux scale of the observing system.

5.2.3 Data Reduction

Data from each dual-polarisation band were reduced to a coherent filterbank with
128 spectral channels, each 0.5MHz wide, corresponding to an effective sampling
time of 2µs. 1024 phase bins were stored across the pulse profile, yielding a time
resolution for PSR J1022+1001 of about 15µs per bin. Each individual data block
recorded by CPSR2 represented 16.8 s of data (1GB of 2-bit samples). These blocks
were later combined to form integrated profiles. For this purpose, we used the
application set provided with the PSRCHIVE (Hotan, van Straten & Manchester
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2004) scheme. Due to the IERS1 practice of retrospectively publishing corrections
to the rotation rate of the Earth, the data presented in this chapter are those for
which corrections to the Solar system barycentre could be accurately made at the
time of preparation. Observations of PSR J1022+1001 are ongoing.

5.2.4 Processing & Calibration

The set of 16.8 s PSR J1022+1001 integrations were summed to a total integration
time of 5min. These data were calibrated to account for the polarimetric response
of the observing system, then all frequency channels and Stokes parameters were
combined to form a single total intensity profile corresponding to each 5min inte-
gration. All of the receiver systems used during observations of PSR J1022+1001
were equipped with orthogonal linear feed probes, so the recorded polarisation prod-
ucts were corrected for relative gain and phase. Off-source calibrator observations
were used to compute the relative gain and phase terms for each receiver system at
the epoch of the observation, using a simple case of the scheme described by van
Straten (2004). We did not attempt to correct for more subtle errors arising from
cross-contamination between the two probes, primarily because sufficiently accurate
models of all three receiver systems were not yet available. In the case of the central
beam of the multibeam receiver, existing models indicate that imperfections in the
orthogonality of the two feed probes may be as large as several degrees (van Straten
2004). These imperfections break the fundamental assumption of orthogonality that
is made when applying a simple complex gain correction and induce errors in the
calculated total intensity of order 1–2% (Ord et al. 2004). Errors of this magnitude
are only present in the profile at phases where the fractional polarisation is close to
unity.

5.3 Pulse Profile Stability

PSR J1022+1001 has an interesting profile morphology. At 20 cm the profile consists
of two sharp peaks (the principal components), separated by about 0.05 phase units
but joined by a bridge of emission (Fig. 5.1). This characteristic double-peaked
shape was critical to the analysis performed by Kramer et al. (1999), who made
an effort to characterise variations in the relative amplitude of the two components
by normalising against one or the other and computing ratios of their height. The
trailing pulse component was observed to possess almost 100% linear polarisation
(Ord et al. 2004; Stairs, Thorsett & Camilo 1999; Xilouris et al. 1998), while
the leading component corresponded to a local minimum in the linear polarisation
fraction which is near zero (Fig. 5.1). The profile also changes rapidly as a function
of frequency, only the leading component is visible at a wavelength of 10 cm (Fig.
5.2) and the amplitude ratio at 50 cm (Fig. 5.3) is nearly half that measured at

1http://www.iers.org
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Figure 5.1: PSR J1022+1001 average profile at a wavelength of 20 cm, formed from
data taken with the central beam of the Parkes multibeam receiver. The profile in
the lower panel has been calibrated for relative instrumental gain and phase. It has
a centre frequency of 1341MHz and covers a bandwidth of 64 MHz. The solid curve
represents total intensity (Stokes I), the dashed curve represents linearly polarised
emission and the dotted curve represents circularly polarised emission. Note the high
degree of linear polarisation in the trailing component. The relative (not absolute)
position angle of the linearly polarised radiation is shown in the top panel. This profile
has been calibrated against the flux of Hydra A (3C218).

20 cm (Fig. 5.1). This spectral index variation within the profile and the highly
asymmetric nature of the polarised flux in the principal components, combined with
the fact that PSR J1022+1001 is prone to strong episodes of scintillation, means that
arrival time analysis over broad frequency bands is easily subject to the introduction
of systematic errors. It also complicates any search for variability by exacerbating
the effect of instrumental imperfections, especially those associated with polarimetry.

5.3.1 Profile Normalisation

In order to directly compare multiple integrated profiles from the same pulsar,
brightness changes due to interstellar scintillation must be taken into account. This
involves scaling or normalising each profile by finding a characteristic value associ-
ated with the source flux during the observation and adjusting the measured ampli-
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Figure 5.2: PSR J1022+1001 average profile at a wavelength of 10 cm, formed from
data taken with the new coaxial 10/50 cm receiver system at Parkes. Again, the
profile has been calibrated for relative gain and phase. It has a centre frequency of
3000MHz and a bandwidth of 64 MHz. Note the small degree of polarisation and the
complete absence of the trailing pulse component. Flux calibrator observations were
not made at the time these data were recorded, thus the amplitude scale is arbitrary.
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Figure 5.3: PSR J1022+1001 average profile at a wavelength of 50 cm, formed from
data taken with the new coaxial 10/50 cm receiver system at Parkes. Again, the
profile has been calibrated for relative gain and phase. It has a centre frequency of
685MHz and a bandwidth of 64MHz. Note that the trailing component is almost
100% linearly polarised and significantly stronger than the leading component. Flux
calibrator observations were not made at the time these data were recorded, thus the
amplitude scale is arbitrary.
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tudes to ensure this value remains fixed across all observations. It should be noted
that applying a simple relative scaling to all observed profiles masks any intrinsic
variability in the total flux of the pulsar; but that is not the subject of this chap-
ter. Using the PSRCHIVE (Hotan, van Straten & Manchester 2004) development
environment, software was constructed to perform tests similar to those described
by Kramer et al. (1999). In the process of analysis and testing, we developed a nor-
malisation scheme based on the concept of difference profiles (Helfand, Manchester
& Taylor 1975).

Kramer et al. (1999) described a simple method of normalisation in which the
characteristic quantity associated with each integration is taken to be the amplitude
of one of the two component peaks. All the amplitudes in the profile are scaled by
the constant factor required to give the chosen phase location the value of unity. In
the case of PSR J1022+1001, there is a choice as to which peak will be used as the
reference. An alternative characteristic quantity is the total flux under the profile,
or within a particular phase range. This quantity is simply the sum of all the profile
amplitudes within the region of interest. Normalising by flux has the advantage
that it uses no morphological information (other than the duty cycle of the pulsed
emission in our case) and may therefore be better suited to detecting subtle profile
variations.

In this chapter we computed fluxes after subtracting a baseline level from each
profile. A running mean with a phase width of 0.7 units was used to estimate the
baseline flux, which was then subtracted from each bin. In order to further reduce
our sensitivity to radio frequency interference and other factors that can distort
the uniformity of an observed baseline, we normalised only by the flux in the on-
pulse region of the profile. This region was defined by an edge detection algorithm
that measured when the total flux crossed a threshold level. This edge detection
was performed on the standard template profiles at each wavelength and the phase
windows so defined were held fixed for the remainder of the analysis. Unfortunately,
normalising profiles by flux tends to artificially amplify noisy observations because a
noise-dominated profile has a mean (and therefore a total flux after baseline removal)
approaching zero. In the data reduction stage it is therefore advantageous to perform
a cut on the basis of S/N. This also helps reduce contamination by corrupted profiles.
A S/N threshold of 100 was deemed the best compromise between retaining a large
fraction of the observed profiles and rejecting noise. This cut was applied to the set
of 5min CPSR2 integrations before any analysis was commenced.

Kramer et al. (1999)’s technique of normalising to the trailing feature has a
number of limitations:

• It cannot place any limits on the variability of the feature that is used to
normalise the profiles.

• Polarimetric calibration errors are maximised if the chosen component is highly
polarised.
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• Finite signal to noise profiles will vary due to noise even if there is no intrinsic
variability in the pulsar emission, this is true of all components in the pulse.

We prefer our (more robust) flux-based normalisation scheme which normalises by
the total flux in the on-pulse region. Flux normalisation allows us to properly
identify which (if any) component is varying as it makes no prior assumptions. It
also reduces the effect of poor calibration by averaging over the entire profile. There
will still be a background of variability due to noise, but it will be spread uniformly.

5.3.2 The Difference Profiles

In order to detect subtle changes in pulse shape, it is possible to subtract the am-
plitudes of a high S/N standard template profile from an appropriately scaled and
aligned copy of a given integration. This procedure should yield Gaussian noise if
the observed profile precisely matches the standard; any morphological deviations
will protrude above the resulting baseline. Before differences can be computed how-
ever, the observed profiles must be normalised to a standard template. We chose
to normalise all profiles according to the amount of flux in the on-pulse region, as
described above. In addition, cross-correlation methods were used to determine rela-
tive shifts, after which the observed profiles were rotated to align with the standard
template. Because profile variability studies are sensitive to errors in polarimet-
ric calibration, the difference profile analysis was performed on both the calibrated
and uncalibrated profiles. Only the 20 cm and 50 cm wavelengths had a sufficient
number of high S/N profiles to make a difference profile study feasible.

Figs. 5.4 – 5.7 show difference profiles computed from the CPSR2 observations at
a wavelength of 20 cm, while Figs. 5.8 & 5.9 show the 50 cm results. The number of
calibrated profiles is less than or equal to the corresponding number of uncalibrated
profiles, as not all observations have corresponding calibration tracks.

As all figures show, the difference profiles are almost consistent with noise, with
no alarming peaks near the leading or trailing components. This can be seen from
both the difference profiles and their standard deviations. The only evidence for
variability comes from Fig. 5.5 where ∼2% variability above the noise floor can be
seen near the trailing component. However, these variations are not present in Fig.
5.4, which represents the same data set in the absence of polarimetric calibration.
It would seem that the calibration procedure itself is capable of inducing profile
instability, which is perhaps not surprising considering the simplicity of the model
used to correct for receiver imperfections. In addition, CPSR2 has dynamic level
setting that ensures the mean counts are equal in both polarisations. Provided the
effective system temperature in the two polarisations is similar, calibration is almost
unnecessary to form an accurate total intensity profile. It therefore seems a bizarre
coincidence that these variations could be removed by simply neglecting to calibrate
the data, and that they correspond to the maximum polarisation fraction in the
profile. The simplest interpretation is that across 64MHz bandwidths, this pulsar’s
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Figure 5.4: The bottom panel shows superposed morphological difference profiles of
97, 5 min total intensity (uncalibrated) integrations at a sky frequency of 1405MHz.
The middle panel shows the mean profile. The top panel shows the standard deviation
of each phase bin (stars) in the difference profiles displayed in the bottom panel and
a series (filled circles) representing the mean value of the standard deviation in 64
windows, connected by lines, to aid perception of trends in the data.
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Figure 5.5: As in Fig. 5.4, superposed morphological difference profiles of 50 total
intensity (calibrated) integrations at a sky frequency of 1405MHz. The dashed line
under the solid curve in the middle panel represents the total polarised emission in
the mean profile.
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Figure 5.6: As in Fig. 5.4, superposed morphological difference profiles of 102 total
intensity (uncalibrated) integrations at a sky frequency of 1341MHz
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Figure 5.7: As in Fig. 5.5, superposed morphological difference profiles of 37 total
intensity (calibrated) integrations at a sky frequency of 1341MHz
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Figure 5.8: As in Fig. 5.4, superposed morphological difference profiles of 31 total
intensity (uncalibrated) integrations at a sky frequency of 685MHz
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Figure 5.9: As in Fig. 5.5, superposed morphological difference profiles of 31 total
intensity (calibrated) integrations at a sky frequency of 685MHz
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Frequency (MHz) Ratio Std Dev
1405.0 0.97 0.07
1341.0 0.91 0.07
685.0 0.58 0.02

Table 5.1: Ratio of leading to trailing component for the calibrated data set.

Frequency (MHz) Ratio Std Dev
1405.0 0.97 0.06
1341.0 0.90 0.06
685.0 0.58 0.02

Table 5.2: Ratio of leading to trailing component for the uncalibrated data set.

mean profile is stable and that we are simply seeing the limitations of our calibration
procedure.

5.3.3 Peak Ratio Evolution

Kramer et al. (1999) infer the presence of smooth variations in the relative ampli-
tudes of the principal components on timescales of a few minutes to an hour or
more by calculating peak amplitude ratios and demonstrating that they evolve at a
level significantly above the uncertainty in the measurement. They also note that
instances of such smooth variation may not be common and that the timescales
involved can change from one data set to another.

As a secondary check, we computed similar amplitude ratios to that of Kramer
et al. (1999) for our high S/N profiles. A S/N threshold of 30 was deemed sufficient
for this analysis because it is less susceptible to baseline corruption than the differ-
ence profile test. The RMS of the off-pulse region in each profile was used as an
indication of the error in peak amplitude. The ratio of leading to trailing component
amplitude was computed for all profiles and plotted against observation time (see
Fig. 5.10 for an example). In addition, mean ratios and their associated standard
deviation were computed over the 15 month time span of our data set. These values
are presented in Tables 5.1 & 5.2.

The evolution of the profile’s components with frequency is quantified in Tables
5.1 & 5.2. It is interesting to note that calibration of the data increases the scatter
in the measured ratios at higher frequencies, this further supports the notion that
the variability observed in Fig. 5.5 and by Kramer et al. (1999) is likely due to
errors in the simple model used for polarimetric calibration. This does not seem to
be the case at lower radio frequencies, as the calibration procedure has no detectable
influence on the computed component ratios at 685MHz. The 50 cm system may
simply be better suited to the receiver model used for calibration, however the
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Figure 5.10: Ratios of leading to trailing peak amplitudes during a single 2.5 hr obser-
vation taken on September 22, 2003, at a frequency of 1341MHz. The uncertainties
were computed based on the assumption that the amplitude of each peak could vary
by the RMS of the noise in the baseline of the profile.

intrinsic scatter at this frequency is also much smaller so the effect of calibration
may be imperceptible. To investigate the evolution of these component ratios in
time, the data set was examined by eye in the hope of finding clear indications of
non-random evolution between 5min integrations. Fig. 5.10 shows the observation
that exhibited the most variation. Calibration has little effect on these points. The
variation about the mean is small and perhaps insignificant.

5.3.4 Summary

The CPSR2 data set suggests that across a bandwidth of 64MHz, PSR J1022+1001
does not vary significantly. Any instabilities, if present, must also be transitory in
nature and therefore extremely difficult to characterise. It is possible that variabil-
ity with a random or quasi-periodic structure, or small (< 64MHz) characteristic
bandwidth might still be present, but if so it would appear to have little effect on the
profile when all frequency channels are combined. Profile instabilities should also
be reflected in the timing of the pulsar, which we investigate in the next section.
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5.4 Arrival Time Analysis

Kramer et al. (1999) reported that arrival times recorded at the Arecibo, Jodrell
Bank and Effelsberg radio telescopes yielded a best fit RMS residual of 15-20µs when
applied to a model of PSR J1022+1001 and the binary system in which it resides.
To achieve this RMS residual, a complicated standard template profile consisting
of five Gaussian components with floating amplitudes was used, to compensate for
supposed intrinsic profile variability. In contrast, the CPSR2 data set yields arrival
times (from each 5min integration, across multiple radio frequencies) that fit our
timing model with an RMS residual of 2.27µs. These TOAs were obtained using a
frequency-domain cross-correlation process. Simple, static standard template pro-
files were constructed from the sum total of multiple integrations and the baseline
noise was flattened to zero, to decrease spurious self-correlation of the timing profiles
with the noise in the standard, which can lead to an RMS that is artificially low
(see Appendix A). Separate standards were used for each frequency band and were
aligned to a common fiducial point. Our 5min (uncalibrated) integrations were fit
to a model of PSR J1022+1001 using the standard pulsar timing package TEMPO2.
Fig. 5.11 shows the corresponding timing residuals. It is interesting to note that
although the front-end receiver system was changed mid-way through the data set,
there does not seem to be any large systematic offset between the two receivers and
no jumps were used to fit across the boundary. Changes in cable length or amplifier
response between the two systems must have some impact on the assignment of
arrival times, however it would appear that the offset is too small to measure in this
data set.

A binary model of the type described by Blandford & Teukolsky (1976) was used
to model the spin-down characteristics of PSR J1022+1001 and the perturbations
introduced by its companion. A list of fitted parameters and their corresponding
values (with error estimates) is presented below (Table 5.3). The errors in each TOA
were uniformly scaled by a factor of 1.195 before fitting, to ensure the reduced χ2 was
equal to unity. This was necessary to produce better error estimates for the fitted
parameters. Sky position is shown in both Ecliptic and Equatorial (J2000) coordi-
nates. PSR J1022+1001 lies in the ecliptic plane, making it difficult to determine
the ecliptic latitude (β) accurately through timing measurements. This accounts
for the relatively high error in our measurement of β in Table 5.3. In addition, the
CPSR2 data has a time baseline of only 15 months, whereas the data presented by
Kramer et al. (1999) extends over more than 4 years. As a consequence, we do not
fit for a proper motion in our model, choosing instead to hold this parameter fixed at
the value of –17 ± 2mas yr−1 quoted by Kramer et al. (1999). With proper motion
thus constrained, we obtain a significant estimate for the parallax of the system.
Given the short temporal baseline of our data set, this parallax estimate should be
considered preliminary and it is included because it appears significant.

2http://www.atnf.csiro.au/research/pulsar/tempo/
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Figure 5.11: Timing residuals from all 5min integrations with S/N in excess of 30 and
timing error less than 7 µs. The RMS residual is 2.27 µs and the reduced χ2 of the
weighted fit is 1.43. The vertical scale is an order of magnitude better than arrival
times presented by Kramer et al. (1999) who saw residuals as large as 400 µs.
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Parameter Value
Ecliptic Lon. (λ) (deg) 153.86589029 (4)
Ecliptic Lat. (β) (deg) -0.06391 (6)
Proper Motion in λ (mas yr−1) -17 (2) ∗

Parallax (mas) 3.3 (8)
Period (ms) 16.4529296931296 (5)
Period Derivative (10−20) 4.33 (1)
Period Epoch (MJD) 52900
Dispersion Measure (cm−3pc) 10.25180 (7)
Projected Semi-Major Axis (lt-s) 16.7654148 (2)
Eccentricity 0.00009725 (3)
Time of Periastron Passage (MJD) 52900.4619 (3)
Orbital Period (days) 7.805130160 (2)
Angle of Periastron (deg) 97.73 (1)
Right Ascension (α) 10:22:58.015 (5)
Declination (δ) +10:01:53.2 (2)
Number of TOAS 555
Total χ2 545.74
RMS Timing Residual (µs) 2.27
MJD of first TOA 52649
MJD of last TOA 53109
Total Time Span (days) 460

Table 5.3: PSR J1022+1001 Blandford & Teukolsky (1976) timing model parameters
derived from 15 months of CPSR2 observations. The error in the last significant digit
is given in parentheses after the value. (∗ This value was given by Kramer et al. (1999))
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Figure 5.11 shows that PSR J1022+1001 has benefited from more regular ob-
servations in recent months. There are only a few small groups of points in the
earliest part of the data set. This is another reason for not including proper motion
in the model, as the small number of points observed during the beginning of 2003
would unreasonably dominate the fit. Parallax measurements are sensitive to day of
year coverage more than total observing time, so it is still possible that the value of
3.3±0.8mas is meaningful. It is interesting to note that our parallax measurement
implies a distance of only 300 +100

−60 pc, as opposed to the value of 600 pc derived from
the Taylor & Cordes (1993) electron density model. Many pulsars within 1 kpc of
the Sun are inconsistent with the Taylor & Cordes (1993) model at this level. If
the system is indeed only 300 pc from the sun, other secular changes may soon be
detectable in the orbital parameters.

The accuracy with which we have been able to time this pulsar affords the
chance to derive new limits on several physical parameters. Of particular interest
is the possible presence of orbitally modulated Shapiro delay as the distance each
pulse must travel into the companion star’s gravity well changes throughout the
7.8 day orbit. While fitting for the Shapiro delay parameters mWD and i is not
directly possible due to the small amplitude of their timing signature, a statistical
analysis of the effect these parameters have on the χ2 of the fit can still reveal
important information. The parameters derived from our Blandford & Teukolsky
(1976) model were imported into a model (Damour & Deruelle 1985; Damour &
Deruelle 1986) that includes the two Shapiro delay parameters r and s, in a theory-
independent formulation. The range r and shape s of the Shapiro delay signature are
equivalent to the companion mass and sin(i) if we assume that General relativity is
the correct theory of gravity. In this chapter we plot cos(i) instead of sin(i) because
we expect it to represent a uniform probability distribution over the space of all
possible inclination angles. The new model was used to create a χ2 map (Fig. 5.12).
This map allowed us to place upper and lower bounds on the inclination angle,
although it did not tightly constrain the companion mass. Based on 2σ Shapiro
delay contours, cos(i) > 0.56. Assuming that the companion is a white dwarf (a
valid assumption given the small eccentricity of the system), the Chandrasekhar
mass limit for the companion also constrains cos(i) < 0.8, leading to an acceptable
range of inclination angles between 37o and 56o. If we assume a pulsar mass of
1.35 M⊙, the Newtonian mass function adds an additional constraint and we can
estimate that the mass of the companion is > 0.9M⊙. We therefore predict that the
initial binary was near the limit required to produce two neutron stars, and that the
white dwarf is composed of heavier elements (maybe even O-Ne-Mg) than many of
the millisecond pulsar companions (which are most often He white dwarfs).

The model parameters presented in Kramer et al. (1999) include a value for the
projected semi-major axis of the orbit, x = a sin(i) = 16.765409(2) s. Given that the
reference epoch of our data set is some 7 years ahead of the corresponding Kramer
et al. (1999) epoch, it is possible to compare our value of x in the hope of detecting
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Figure 5.12: Shapiro delay contour map, produced by constructing a χ2 surface over
the range and shape parameters. The thick lines are 1σ contours, followed by 2,3
and 4σ contours on the left hand side. These contours do not represent true two-
dimensional confidence regions but have been drawn so that their projection on the
vertical and horizontal axes corresponds to the true one-dimensional confidence in-
terval for either of the two parameters. The dashed line represents the constraint due
to the mass function of the system, assuming a 1.35M⊙ neutron star.
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Figure 5.13: Model residual plotted as a function of error in arrival time.

a significant change as the proper motion of the system alters our line of sight to
the plane of the orbit. We find ẋ = 0.8±0.3µs yr−1. Sandhu et al. (1997) show that

ẋ = x cot(i)[−µα sin(Ω) + µδ cos(Ω)], (5.2)

where µα and µδ represent the components of proper motion in RA and Dec and
Ω is the longitude of the ascending node. Only the component of ~µ in ecliptic
longitude was measured by Kramer et al. (1999), but given our constraints on the
inclination angle i, the only two unknowns in the equation are now µδ and Ω. If
VLBI measurements could provide a value for µδ (and perhaps confirm our detection
of parallax), we would be able to place limits on the angle Ω, further constraining
the three-dimensional orientation of the orbit on the sky.

The reduced χ2 of 1.43 indicates that the arrival times are relatively free from
unmodelled systematic effects. Increasing the error estimates by 20% gives a χ2 of
unity, which is low by precision pulsar timing standards. Another way to view this
low level of systematics is to plot the residual against the arrival time measurement
uncertainty for each TOA (Fig. 5.13). With perhaps one exception, there are almost
no points many standard deviations from zero.
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Kramer et al. (1999) argued that the leading component of PSR J1022+1001
varies across a characteristic bandwidth of approximately 8MHz. In order to test
this, a separate timing analysis was performed on the 20 cm wavelength data before
complete summation of the frequency channels, reducing the bandwidth in each in-
tegrated profile to 8MHz. If the pulsar is varying on these bandwidths and 5min
timescales, this should lead to an enormous increase in the RMS residual that grossly
exceeds the expected factor of

√
8. We find that the RMS residual of these 8 MHz

bandwidth arrival times is 6.65µs, which is very close to
√

8×2.27 = 6.42µs, imply-
ing that the increased scatter is consistent with the loss of S/N associated with the
reduction in bandwidth. This analysis is strong evidence that there are no profile
variations with a characteristic bandwidth of approximately 8MHz and timescales
of a few minutes.

5.5 Conclusions

PSR J1022+1001 has an interesting pulse profile morphology in terms of character-
istic shape, polarimetric structure and evolution with radio frequency. These factors
conspire to make it a difficult source to calibrate and analyse. Extensive studies of
the morphological differences between 5min integrations observed with CPSR2 at
the Parkes 64 m radio telescope are consistent with a stable pulse profile. This bodes
well for the future of precision timing of both this source and millisecond pulsars
in general. Although the RMS residual presented is probably not small enough to
make an immediate contribution to any pulsar timing array, lengthier integrations
and continued monitoring may yet push the timing of this pulsar below the 1µs
mark.

We have used our improved timing to place some interesting limits on the ge-
ometry of this source which demonstrate that the inclination angle lies within the
range 37o < i < 56o. If our parallax is confirmed, this system will make a good
target for VLBI observations which could both improve the distance to the pulsar
and determine the as yet unknown component of proper motion in the direction
of ecliptic latitude. This would provide additional limits on the three-dimensional
orientation of the orbit via consideration of the change in projected semi-major axis.
In the future, limits on ẋ will improve and on a 10-year baseline, other relativistic
observables may become measurable. We anticipate that with another 20 months
of timing, we should be able to obtain a more meaningful parallax and independent
proper motion for this source in right ascension. Our error in ω is only 0.01o, which
suggests that the expected rate of advance of periastron for this source ω̇ ∼0.01o yr−1

may be measurable on a 10-year timescale.



Chapter 6

Geodetic Precession in PSR
J1141–6545

“Truth is stranger than fiction; fiction has to make sense.”

Leo Rosten

We present observations that show dramatic evolution of the mean pulse profile
of the relativistic binary pulsar PSR J1141–6545 over a period of 5 years. This
is consistent with precession of the pulsar spin axis due to relativistic spin-orbit
coupling. Observations made between 1999 and 2004 with a number of instruments
at the Parkes radio telescope demonstrate a steady, secular evolution of the mean
total intensity profile, which increases in width by more than 50% during the 5 year
period. Analysis of the changing position angle of the linearly polarised component
of the mean profile suggests that our line of sight is shifting closer to the core of the
emission cone. We find that the slope of the position angle swing across the centre
of the pulse steepens with time and use a simplified version of the rotating vector
model to constrain the magnitude and direction of the change in our line of sight
angle relative to the pulsar magnetic axis. The fact that we appear to be moving
deeper into the emission cone is consistent with the non-detection of this pulsar in
previous surveys.

6.1 Introduction

Soon after the discovery of the binary pulsar PSR B1913+16 (Hulse & Taylor 1974)
it was pointed out that if the pulsar’s spin axis and orbital angular momentum vector
were misaligned, they should precess around their common sum on a timescale of
around 300 years due to General relativistic spin-orbit coupling (Damour & Ruffini
1974; Hari Dass & Radhakrishnan 1975; Barker & O’Connell 1975b; Esposito &
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Harrison 1975). This phenomenon is often referred to as “geodetic precession”.
Because radio pulsars are thought to possess lighthouse-like beams of emission that
only beam to a small fraction of the sky, such precession should lead to observable
pulse shape changes once a significant fraction of the precession period has passed.

Secular changes in the mean pulse profile of PSR B1913+16 were first reported
by Weisberg, Romani & Taylor (1989). The changes became more pronounced in
later years, allowing limited modeling of the emission cone (Kramer 1998; Weisberg
& Taylor 2002). The variations seen in PSR B1913+16 suggest a small misalignment
angle between the spin and orbital angular momentum vectors, consistent with a
natal kick being imparted to the most recently formed neutron star (Bailes 1988).
Large misalignment angles raise the possibility that we might be able to, for the first
time, map out the entire emission cone of a pulsar until it disappears completely
from view (Kramer 1998).

For many years, PSR B1913+16 was the only binary pulsar with the right com-
bination of relativistic parameters and an evolutionary history that would make
detection of geodetic precession possible. However, shortly after geodetic preces-
sion was first hinted at, new relativistic pulsars were uncovered in pulsar surveys
that would become suitable for measurements in the future. Anderson et al. (1990)
discovered a near clone of the original binary pulsar in the globular cluster M15C,
which although weak, might one day exhibit the phenomenon. The much closer
PSR B1534+12 (Wolszczan 1990) is a relativistic pulsar in a 10 hour binary orbit
that has recently been shown to exhibit pulse shape changes. These changes have
been combined with polarimetric models to make the first reliable estimate of the
rate at which the spin axis of the pulsar is tilting away from us (Stairs, Thorsett &
Arzoumanian 2004). Thus, measurements of geodetic precession are allowing new
tests of General relativity and constraining evolutionary models (Wex, Kalogera &
Kramer 2000; Konacki, Wolszczan & Stairs 2003). These new tests complement the
earlier pioneering work of authors such as Taylor & Weisberg (1982), that examined
other aspects of the theory.

In principle, it should be possible to use the relativistic pulsars to map both shape
and intensity changes across a pulsar emission cone. However, this is complicated
by the fact that many of the pulsars have random variations in their total intensity
because of refractive and diffractive interstellar scintillation. Pulsars with small
DM often have their fluxes change by factors of several on time scales that vary
between minutes and days (Stinebring et al. 2000). However, large dispersion
measure pulsars (DM > 100 pc cm−3) have relatively stable fluxes when observed at
high frequencies (ν > 1.4GHz) if long integration times are used and the observing
system samples a large (> 100MHz) bandwidth. The discovery of a relativistic
pulsar at a large DM with a rapid geodetic precession timescale might then offer the
first hope of determining how rapidly pulsar emission varies in both intensity and
shape across the emission cone. This discovery would have important ramifications
for pulsar statistics, where one of the great uncertainties is the pulsar “beaming
fraction”, often guessed at by observing the duty cycles of radio pulsars. Various
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arguments have been made in favour of both meridional compression (Biggs 1990)
and the elongation of pulsar beams (Narayan & Vivekanand 1983), making the
actual measurement very important.

In the future it seems as though we will have a much larger number of relativistic
systems with which to both test General relativity and map pulsar emission cones.
Recent surveys have been finding relativistic pulsars at a welcome rate (Faulkner
et al. 2004) and the total pulsar population now exceeds 1500 objects (Manchester
et al. 2005a). In particular, the Parkes multibeam surveys have discovered a large
number of pulsars in relativistic orbits. The spectacular “double pulsar” is a 2.4
hour binary with two active pulsars, and a geodetic precession period of just 80
years (Lyne et al. 2004). Faulkner et al. (2005) report the recent discovery of the
7.7 hour binary pulsar PSR J1756–2251 with an eccentricity of 0.18 that almost
certainly consists of two neutron stars.

The first relativistic binary pulsar discovered by the multibeam surveys was how-
ever the 4.8 hour binary pulsar PSR J1141–6545 (Kaspi et al. 2000a). This pulsar
orbits what is most likely a white dwarf companion, but the system is unique in that
it still possesses a significant orbital eccentricity (e = 0.17). An eccentricity of this
magnitude suggests that the system was put in its final configuration in an explosive
event that may have given the pulsar a significant kick. Recent timing of the system
is consistent with a 1.3M⊙ pulsar orbiting a 1.0M⊙ white dwarf companion (Bailes
et al. 2003). It is likely that the system originated as a binary containing two main
sequence stars, both below the critical mass required for a supernova. The initially
more massive star begins to transfer matter onto its companion as it evolves, causing
it to exceed the critical mass. If the system remains bound after the resulting super-
nova, a young neutron star is left orbiting a white dwarf companion. In the case of
symmetric supernovae, the eccentricity of the orbit is induced by the sudden mass
loss, and allows us to determine the pre-supernova mass uniquely (Radhakrishnan
& Shukre 1985). This ejected mass can be related to the expected runaway velocity
of the system, which in the case of PSR J1141–6545, is less than 50 km s−1.

Significant progress has been made in understanding the geometry and location
of PSR J1141–6545 through a range of timing and spectroscopic studies. Ord, Bailes
& van Straten (2002a) demonstrated via HI absorption analysis that the pulsar is
at least 3.7 kpc distant. In addition, PSR J1141–6545 was the first pulsar to exhibit
dramatic changes in its scintillation timescale as a function of orbital phase, which
enabled an independent estimate of both its orientation and velocity. Ord, Bailes
& van Straten (2002b) used the orbital modulation of the scintillation timescale to
calibrate the usually unknown scale factor that relates the scintillation timescale,
scattering screen distance and intrinsic motion to pulsar velocity. Their subse-
quently determined space motion was greater than that expected from a symmetric
supernova (Ord, Bailes & van Straten 2002b).

Several years ago we commenced an observing campaign of PSR J1141–6545 to
study its HI, scintillation and timing properties over long baselines. It was clear that
such observations could also be used to search for relativistic effects such as orbital
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decay and precession. The DM of the pulsar is 116 pc cm−3, and its scintillation
properties are well understood. Ord, Bailes & van Straten (2002b) showed that the
scintillation bandwidth is much smaller than the 256MHz observing band used by
the analogue filterbank at the Parkes radio telescope, resulting in fairly stable fluxes
when integrated over the 4.8 hour orbit.

In this chapter we demonstrate that PSR J1141–6545 is undergoing rapid secular
evolution of both its total intensity and polarimetric profiles in a manner consistent
with geodetic precession. In section 6.2 we describe the many instrumental systems
used to observe this pulsar since its discovery in 1999, along with the associated
data reduction methods. Section 6.3 describes the parameters of the binary system
in greater detail and includes a calculation of the expected precession rate. It also
introduces two polarimetric profiles that are considerably different from each other,
providing the first evidence of profile evolution. Section 6.4 describes in detail the
observed secular changes in the total intensity profile. Polarimetric evolution is
considered in section 6.5, which shows that there has been a convergence of the
linear and circular components of the pulsar profile in the last twelve months and
that the slope of the position angle swing is steepening, presumably as we approach
the emission pole of the pulsar. Finally, in section 6.6 we discuss the implications
of our observations for pulsar surveys and pulsar emission models.

6.2 Observations

Observations were made at the Parkes radio telescope between July 1999 and May
2004, at centre frequencies ranging from 1318.25MHz to 1413.50MHz. Two different
receiver packages were used to record data during this period; the central beam of
the Parkes multibeam receiver and the wide band H-OH receiver. The multibeam
receiver (Staveley-Smith et al. 1996) has a system temperature of approximately
21K at 20 cm, which was about 5K cooler than the H-OH receiver before it was
upgraded near the end of 2003. Flux calibration of both systems using the radio
galaxy 3C218 (Hydra A) suggests that the post-upgrade difference is only 1–2K.
Our data were recorded with three different instruments, each designed for high
time-resolution observations across the widest possible bandwidths. Due to the
rapid development of digital electronics within the past decade, each new observing
system differed significantly from its predecessor.

The Caltech Fast Pulsar Timing Machine (FPTM), described by Navarro (1994),
was a hardware-based auto-correlation spectrometer that performed incoherent dedis-
persion of dual orthogonal polarisations across two bands, each 128MHz wide. Al-
though the sampling rate was high enough to observe millisecond pulsars (MSPs)
with only a few microseconds of smearing (at low DM), this instrument suffered from
a number of artifacts induced by radio frequency interference and some deteriora-
tion in the correlator boards themselves. In some pulsars this led to oscillations in
the passband that contaminated the pulsar profile. Nevertheless, many observations
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with this instrument were not affected by these problems and it successfully timed
many MSPs to high accuracy (Toscano et al. 1999b). The FPTM 2-bit sampled the
raw data and formed auto-correlation functions that were binned at the apparent
spin period of the pulsar. We were able to apply routine 2-bit corrections to enable
accurate polarimetry. Being an incoherent detector with a finite number of lags, the
FPTM could divide the passband into 4×128×1MHz channels, leaving a residual
dispersion smear (tsmear) given by Eq. 1.16. For the configuration used to observe
PSR J1141–6545, this corresponds to 350µs of smearing in the detected pulse pro-
file. Given that the FPTM uses 1024 phase bins across a single pulse period and
that PSR J1141–6545 rotates once every 394ms, each phase bin represents 384µs of
time. The detrimental effects of dispersion smearing are therefore confined to within
a single phase bin.

However, if the pulsar spin period is two orders of magnitude shorter (as is
typical of the millisecond pulsar population), dispersion smearing can significantly
reduce the resolution of an incoherent detector. Motivated by a desire to overcome
this problem for MSPs, CPSR1 was commissioned in August, 1998. This system
implemented a technique called coherent dedispersion (Hankins & Rickett 1975),
which requires Nyquist sampling of the observed band, followed by deconvolution
with a response function characteristic of the interstellar medium (ISM). While this
approach effectively eliminates dispersion smearing in the detected profiles, it is
highly computationally intensive both in terms of the initial data rate and sub-
sequent reduction. CPSR1 streamed digital samples to a striped set of four DLT
drives (analogous to the method implemented for the S2 VLBI recorder) whose
tapes were shipped to the Swinburne Centre for Astrophysics and Supercomput-
ing for processing. Even with four striped tape drives, CPSR1 was limited to a
bandwidth of 20MHz. Rapid advances in consumer digital electronics soon made
it feasible to upgrade the capabilities of the system and in August, 2002, CPSR2
was installed at Parkes. CPSR2 performs coherent dedispersion in near real-time,
using a cluster of 30 server-class computers located at the telescope. It is capable
of recording 2×64MHz dual-polarisation bands simultaneously, providing a total
bandwidth comparable to that of the previous generation of incoherent detectors,
like the FPTM. The coherent dedispersion method employed by both CPSR ma-
chines allowed essentially arbitrary spectral resolution and reduced the dispersion
smearing in each channel to a minute fraction of PSR J1141–6545’s period, giving
an effective sampling time of a few microseconds.

Individual observations of PSR J1141–6545 ranged in duration from a few min-
utes to several hours. In recent years, our strategy has been to maximise orbital
phase coverage by observing in concentrated sessions during which the pulsar is
tracked continuously for two whole orbits (∼9.6 hours). To calibrate the data we
point the telescope one degree south of the pulsar and drive the in-built receiver
noise source with a square wave at a frequency of ∼11Hz at least once per orbit, to
characterise the polarimetric response of the system. In addition, at least once per
month we observe the flux calibration source 3C218 (Hydra A).
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Our highest density of observations were taken with CPSR2 during 2003 and
2004 (MJD 52845 - 53134), during which time we have a full record of polarimetry,
flux and profile morphology. The CPSR1 recorder was designed primarily to observe
the bright southern millisecond pulsar PSR J0437–4715 (van Straten et al. 2001),
however in January, 2001 it took data on PSR J1141–6545 for a total of 30 hours
beginning on MJD 51922. The resulting calibrated mean profile provides important,
early epoch information. We have selected three profiles at the widely spaced epochs
of MJD 51381, 51781 and 52087, representing high quality FPTM data to further
supplement our temporal coverage. It is fortuitous that our earliest FPTM pointing
(MJD 51381) dates all the way back to 1999, extending our time baseline by almost
two full years. For this reason, we include a 1999 profile despite the fact that the
observation was only 12min in duration. Fortunately, PSR J1141–6545 is a bright
pulsar with an average flux density of approximately 4 mJy, so the S/N ratio of this
12min observations is 125, quite sufficient for our analysis.

All data were processed using the tools included with the PSRCHIVE (Hotan,
van Straten & Manchester 2004) software package, with the addition of several extra
routines specific to pulse variability analysis.

6.3 PSR J1141–6545

PSR J1141–6545 was discovered in the first Parkes multibeam survey (Kaspi et al.
2000b). It resides in an unusual relativistic binary system, orbiting what is most
likely a heavy white dwarf companion once every 4.8 hours. The pulsar does not
appear to be recycled and is assumed to be the most recently evolved member of
the system. Positioned close to the galactic plane, it is one of the few pulsars whose
distance can be estimated by analysis of neutral hydrogen absorption features in
its frequency spectrum. Ord, Bailes & van Straten (2002a) obtain a lower limit of
3.7 kpc using this method. In addition, the signal from this pulsar exhibits diffrac-
tive scintillation over small bandwidths (∼1MHz) and timescales of a few minutes
(Ord, Bailes & van Straten 2002b), which can be used to place timing-independent
constraints on the binary parameters. Ord, Bailes & van Straten (2002b) report
a significant detection of orbital modulation in the observed scintillation velocity
(due to the motion of the pulsar in its orbit) and infer both a relative velocity of
∼115 km s−1 and an orbital inclination angle i = 76±2.5◦. This velocity is large
compared to the value of < 50 km s−1 expected to result from a symmetric super-
nova. Uncertainties in our knowledge of the true distance to the pulsar, and hence
the relative velocity of the Earth’s standard of rest, combined with uncertainties
introduced by the Earth’s orbital motion and bulk flows or anisotropies in the ISM,
mean that we cannot convincingly state that the pulsar has an anomalous velocity
due to an asymmetric supernova. However, if the profile evolution reported here is
due to spin and orbital angular momentum misalignment and geodetic precession,
we would expect the pulsar to have received a kick at birth, which would increase
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its runaway velocity over that of a symmetric explosion.
The rotation period of PSR J1141–6545 is 394ms, so the precision obtainable

through pulse timing experiments is somewhat limited when compared to results
(van Straten et al. 2001) obtained by timing millisecond pulsars, whose spin periods
are of order 100 times shorter. Despite this, several post-Keplerian parameters are
measurable. Bailes et al. (2003) describe a timing solution that includes significant
detections of periastron advance (ω̇ ∼5.3◦ yr−1), combined transverse Doppler and
gravitational redshift (γ) and a marginal detection of orbital period derivative (Ṗb).
Despite the lack of any Shapiro delay measurement, we can still derive a good
estimate of the component masses. The post-Keplerian parameters ω̇ and γ are
related to the pulsar mass (mp) and companion mass (mc) by Eq. 6.1 and Eq. 6.2
respectively. In addition, pulse timing accurately determines the quantity, derived
from Newtonian gravitation, known as the mass function (Eq. 6.3). These equations
allow determination of the inclination angle and component masses.
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Here, G is Newton’s gravitational constant, Pb is the pulsar orbital period and
a sin(i) is the projected semi-major axis. According to Bailes et al. (2003), mp =
1.30±0.02M⊙ and mc = 0.986±0.02M⊙. The timing-derived inclination angle limit
(i > 75o) compares well with the value obtained from scintillation experiments (Ord,
Bailes & van Straten 2002b).

Assuming that General relativity is the correct theory of gravity, Barker &
O’Connell (1975a) present an expression (Eq. 6.4) for the expected, time-averaged
precession rate of the pulsar spin axis
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1

2
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)2/3(
Pb

2π

)−5/3
mc(4mp + 3mc)

(1 − e2)(mp +mc)4/3
. (6.4)

Here, c is the speed of light and e is the eccentricity of the system. For PSR J1141–
6545, this evaluates to an intrinsic precession rate of 1.36o yr−1, which implies a
precession period of 265 years.

Bailes (1988) showed graphically that the maximum observable rate of precession
may be significantly less than the intrinsic value. The geometry of the system
and our viewing angle have a significant impact on our ability to detect geodetic
precession. The observable quantity is the rate at which the angle δ between the
observer’s line of sight and the pulsar spin axis changes, as this will manifest itself
as a changing cut through the emission cone. Bailes (1988) and Cordes, Wasserman
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Figure 6.1: Rate of change of the angle between our line of sight and the spin axis
of the pulsar (dδ/dt) as a function of precessional phase, for various misalignment
angles (shown inset top left, in degrees) for PSR J1141–6545. We have assumed an
inclination angle of 76o, consistent with scintillation measurements. The amplitude
of the observable precession signature is highly dependent on both the misalignment
angle and our current position in the precession cycle, but any derived value of dδ/dt
gives a minimum misalignment angle for the system.

& Blaskiewicz (1990) present expressions for the rate of change of δ, of the form
reproduced in Eq. 6.5. The most important parameters in the expression are the
misalignment angle between the spin axis and the orbital angular momentum vector,
and the precessional phase at the current epoch, neither of which are known.

dδ/dt = Ωp~n · (~s×~j)(1 − [~n · ~s]2)−1/2. (6.5)

Here, ~n is a unit vector along the line of sight to the observer, ~s is a unit vector
along the pulsar spin axis and ~j is a unit vector in the direction of the orbital
angular momentum. To evaluate this equation, we must know the misalignment
angle, the current precessional phase and the orbital inclination angle i. The first
two parameters are unknown for the PSR J1141–6545 system, but we can assume
the value of i derived from scintillation studies and plot one precessional period of
dδ/dt for various misalignment angles (see Fig. 6.1).
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Unfortunately, it is difficult to translate an observed difference in mean pulse pro-
file morphology into a quantitative measure of angular shift. This requires knowledge
of the intrinsic beam shape, which of course we do not possess, making the result
model dependent. It is possible that polarimetric studies may offer a key alternative
method, however it is still necessary to assume some model of pulsar polarisation as
a function of impact angle. In this chapter we restrict ourselves, where possible, to
a quantitative description of the observed evolution of the mean pulse profile.

6.3.1 Selected Observations

Figure 6.2 shows a coherently dedispersed, polarimetrically calibrated mean profile,
observed with the multibeam receiver and CPSR1 at a frequency of 1413MHz in
January, 2001 (MJD 51922). The pulse profile is morphologically quite simple,
consisting of a single component flanked on the left by a shoulder of emission. Note
the small “bump” high on the leading edge of the profile, which is also present in the
FPTM and analogue filterbank data. The peak fractional polarisation is of order
20% in both linear and circular. The position angle swing does not seem to fit the
predictions of the rotating vector model and is similar to that seen by Kaspi et al.
(2000a), although lacking the orthogonal mode change that is present in the leading
shoulder of the Kaspi et al. profile.

Figure 6.3 shows our most recent fully calibrated mean profile, observed in May,
2004 (MJD 53134) with the H-OH receiver and CPSR2, at a centre frequency of
1341MHz. There are a number of striking differences when compared to Fig. 6.2,
most notably an overall broadening of the profile, which now has an extended trailing
component; loss of the leading “bump” and general steepening of the position angle
swing, which now has an identifiable slope.

Pulsar profiles can be corrupted by systematic errors associated with instrumen-
tation. Typical effects include baseline artifacts due to improper binning and radio
frequency interference, insufficient quantisation capabilities in the samplers (leading
to the removal of power near the pulse as the samplers attempt to maintain an
optimum mean level), and smearing due to insufficient time and frequency resolu-
tion. Fortunately, in the case of PSR J1141–6545 we have a variety of instruments,
each of which has sufficient time resolution to over-sample the profile, and that give
self-consistent results at similar epochs. We would be concerned if observed changes
only coincided with equipment upgrades, but this has not been the case.

The mean pulse profile has changed significantly in the space of 3 years. This
is confirmed in the next two sections where we present an analysis of data taken
during (and before) the epochs presented in Figs. 6.2 & 6.3. We observe a smooth
secular change in the characteristics of the mean pulse.
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Figure 6.2: PSR J1141–6545 mean profile, obtained from 28 hours of data taken in
January, 2001 (MJD 51922), at a centre frequency of 1413MHz. The solid line rep-
resents total intensity, the dashed line total linear and the dotted line total circularly
polarised emission. There are 1024 phase bins across the profile, which has been
polarimetrically calibrated using a simple model of relative gain and phase in the
orthogonal linear receiver probes. Note the slight “bump” on the leading edge of the
profile and the absence of any steep position angle evolution across the phase range
shown.



6.3. PSR J1141–6545 113

Figure 6.3: May, 2004 (MJD 53134) PSR J1141–6545 profile (as in Fig. 6.2) obtained
from 2 hours of data taken with CPSR2 at a centre frequency of 1341MHz. Note the
smooth leading edge and extended trailing component, as well as the more pronounced
position angle sweep.
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Instrument Date (MJD) Freq. (MHz) S/N
FPTM 51381 1318.25 125
FPTM 51781 1413.50 791
CPSR1 51922 1413.00 778
FPTM 52087 1413.50 743
CPSR2 52614 1405.00 1051
CPSR2 52845 1341.00 427
CPSR2 52902 1341.00 822
CPSR2 52902 1341.00 1354
CPSR2 52920 1341.00 390
CPSR2 53109 1341.00 346
CPSR2 53130 1341.00 728
CPSR2 53133 1341.00 537
CPSR2 53134 1341.00 553

Table 6.1: List of parameters associated with the 13 observations used to characterise
the secular evolution of the PSR J1141–6545 mean pulse profile.

6.4 Evolution of the Total Intensity Profile

To examine the evolution of PSR J1141–6545’s mean pulse profile in greater detail,
we sum all the data within each observing session to produce a set of 13 well spaced,
high S/N profiles. These mean profiles typically span 1–2 days, with total integrated
times of a few hours. Table 6.1 summarises the most important parameters of each
profile including observing system, start date, observing frequency and S/N.

We demonstrate that even though our points are not evenly spaced in time, the
data describe a clear trend in profile evolution (Figs. 6.4 & 6.5). The changes are so
great that visual inspection of the profiles can reveal much qualitative information
including an overall broadening, extension of the trailing shoulder and smoothing
of the leading edge (Fig. 6.4). In addition, we compute a quantitative measure of
the width of each mean profile using an algorithm that defines thresholds in pulse
phase based on where the flux under the pulse exceeds 10% of the peak value for
the first time, and drops below this value for the last time. We choose the 10%
threshold because it includes the majority of the on-pulse region, thus incorporating
the important leading and trailing components of the pulse, which are seen to evolve
significantly. The secular trend remains if the level is set to 50%, however the χ2

of the linear fit worsens marginally as we would expect from this narrower region of
the profile.

A simple linear least-squares fit to the width data shows that the rate of profile
broadening is well approximated by a straight line with slope 1.3±0.06ms yr−1.
Unlike PSR B1913+16, PSR J1141–6545 has only a single pulse profile component.
It is therefore difficult to constrain the angular extent of the beam, or the angle
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Figure 6.4: The upper panel shows superposed mean total intensity profiles from
observations taken at various epochs during the past five years. Each profile was
observed at a wavelength near 20 cm. The MJD of each observation is marked on
the plot, in line with the peak of the corresponding profile. For example, at pulse
phase 0.495, the MJD of each observation increases monotonically with decreasing
amplitude. The flux under each profile in the plotted region has been normalised
to the flux under the earliest profile to allow direct comparison, regardless of the
amplitude scaling schemes used by individual instruments. Each mean profile was
aligned using an ephemeris obtained from a global timing solution across the entire
data set, effectively maximising the cross-correlations between each profile. The lower
panel shows the evolution of 10% width (see text) as a function of time, with one point
for each profile in the upper panel. The profile clearly broadens over the span of our
observations. Uncertainties are derived from consideration of the RMS noise level
in each profile and represent 1σ uncertainties. The line of best fit, obtained using a
linear least-squares method, is shown (dashed).
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between the magnetic axis and the line of sight, using total intensity information
alone. A similar total intensity profile can be produced by intersecting the centre
of a narrow beam or the edge of a wider beam, which introduces a degeneracy in
the interpretation. Stairs, Thorsett & Arzoumanian (2004) describe a method for
determining the full geometry of the system through the detection of a secondary
precession effect caused by orbitally modulated aberration. Unfortunately we have
been unable to detect this in PSR J1141–6545. Given a sufficient time baseline, the
profile variations should eventually deviate from the currently observed linear trend.
This will also provide an opportunity to constrain the three-dimensional geometry
of the pulsar system.

In order to characterise the rate of change in more detail, we perform a difference
profile analysis on our data set. This involves using (arbitrarily) the first profile in
the series as a standard template whose amplitudes are subtracted from the remain-
ing profiles after their flux and alignment have been normalised to the standard.
Measurement of the remaining flux in the difference profile gives an indication of
how much the profiles vary across a particular epoch (Fig. 6.5). This method is sim-
ilar to the technique of principal component analysis performed on PSR B1534+12
by Stairs, Thorsett & Arzoumanian (2004), where only the mean profile and one
orthogonal component are taken into account. We use this numerical measure of
profile difference to examine quantitatively the rate at which evolution is occurring.

Figure 6.5 shows that the fractional difference trend is well approximated by
a straight line with slope 2.4±0.07×10−4 fractional difference units per day. The
mean pulse profile of PSR J1141–6545 is therefore changing at a steady rate of
approximately 9% per year. The profile evolution seen in Figs. 6.4 & 6.5 is unlikely
to be instrumental in origin because it occurs smoothly over the entire time span,
instead of jumping discontinuously at the points when new hardware was introduced.
In addition, the instrumental upgrades always decreased systematic smearing of the
observed profile, whereas we observe the profile width increasing with time.

Given that our observations span a frequency range of almost 100MHz, it is pos-
sible that intrinsic evolution of the profile shape with frequency might contaminate
the result. Such contamination is however unlikely to be responsible for the observed
secular trend in pulse width, because as Table 6.1 shows, the changes in observing
frequency have not been linear in time. To demonstrate that PSR J1141–6545 does
not exhibit significant profile evolution over the range of observing frequencies in
our data, we compare two CPSR2 profiles observed on the same day (MJD 53204) in
July, 2004. These two profiles were observed at 1405MHz and 1341MHz respectively
and we analyse them in a similar fashion to Fig. 6.5, using the 1405MHz profile as
a standard template and constructing a difference profile. Figure 6.6 shows that the
profile does not evolve significantly across a bandwidth of 64MHz, therefore we can
be confident that frequency evolution does not contaminate our result.

A number of different authors have reported observing the mean profile of a
pulsar changing in some way. Some slower pulsars have been observed to emit in two
or more “modes” of pulse shape, that each remain stable for a time before switching
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Figure 6.5: The upper panel shows superposed difference profiles, constructed from
the data shown in Fig. 6.4, using the earliest profile as a standard template (shown as
a horizontal line through zero). The vertical scale is in units of the standard profile
flux, indicating that some individual components of the profile have changed by up to
20%. There is a monotonic increase in difference amplitude with time, at pulse phase
0.515 for example, the amplitude increases with the MJD of the observation. The
lower panel shows the fractional difference between each difference profile and the
standard template, as a function of time. Each point represents a single difference
profile. The fractional difference is found by summing the absolute values of the
amplitude in each pulse phase bin in the difference profile and dividing by the flux
in the standard template. Errors are based on measurements of the off-pulse RMS.
While this technique is sensitive to changes in S/N as well as morphology, we are
confident that our choice of high S/N observations and a narrow phase window allows
the morphological information to dominate. The line of best fit is shown (dashed),
obtained using a linear least-squares method. Note that the earliest profile has a
fractional difference (and error) of zero, providing a reference point.
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Figure 6.6: Difference profile constructed from two CPSR2 observations taken on
MJD 53204 at two frequencies separated by 64MHz. There is no systematic mor-
phological difference above the level of the noise that might be expected if the pulsar
profile was rapidly evolving as a function of radio frequency.

rapidly to another mode (Lyne 1971). In more recent years, various authors have
reported observing random profile variations in some of the millisecond pulsars, most
notably PSR B1821–24 (Backer & Sallmen 1997) and PSR J1022+1001 (Kramer
et al. 1999). None of the reported variations, or the mode changing phenomenon,
match the steady secular change we have observed in PSR J1141–6545, which is
itself a slow pulsar and therefore may not suffer from the erratic variations seen in
a small number of the millisecond pulsars. It is still unclear whether or not random
variations in MSP profiles are intrinsic to the pulsar as a recent analysis of PSR
J1022+1001 observations made by Hotan, Bailes & Ord (2004) finds no instabilities
that might induce strange timing behaviour.

Can we hope to distinguish between geodetic precession and, say, free precession
of the pulsar? Pulse shape variations are attributed to free precession in observations
of PSR B1828–11 (Stairs, Lyne & Shemar 2000) and PSR B1642–03 (Shabanova,
Lyne & Urama 2001). This evidence manifests in the form of profile shape changes
correlated to variations in the pulse arrival times. These changes are cyclic, but
with no clear a priori timescale. The geodetic precession timescale is already well
determined to be near 265 years. From Fig. 6.1 we would hope to see the emission
cone tilt at a rate < 1.36o yr−1 and continue any secular trend for decades unless we
are at one of the two crossing points encountered every geodetic precession period.
The overwhelming majority of slow pulsars exhibit no evidence for free precession
whatsoever. On the other hand, we expect any binary pulsar that has received a mis-
aligning kick to precess to some degree. We therefore assert that geodetic precession
is responsible for the observed secular variation in the mean profile of PSR J1141–
6545 and we discuss this interpretation in section 6.6. Long-term monitoring of the
precession will ultimately determine a timescale and hence the true mechanism.

We now present an analysis of the polarimetry of this pulsar, providing further
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evidence that our line of sight to the emission cone is changing steadily with time.

6.5 Evolution of Polarised Emission

The standard interpretation of pulsar polarimetry is the rotating vector model
(RVM), put forward by Radhakrishnan & Cooke (1969). This assumes a dipolar
magnetic field whose central axis is offset from the neutron star rotation axis. As
the emission cone sweeps past our line of sight, the changing orientation between the
observer and the magnetic field is expected to produce a characteristic “S” shaped
curve in the measured position angle of any linearly polarised components. In ad-
dition, the rate at which the linear polarisation vector rotates as the beam crosses
the observer is dependent on whether or not the line of sight cuts close to the centre
of the beam. Polarimetric observations may therefore offer a sensitive indicator of
both the rate at which the beam is precessing past the observer and where in the
emission cone we are at the present time.

First we consider the morphology of the polarised component of the mean pulse.
The polarimetric changes observed between Figs. 6.2 & 6.3 are extreme. To con-
vince ourselves that rapid polarimetric evolution is taking place, we focus on the
most recent data with a high time density of observations and the same instrument
(CPSR2). The polarimetric capabilities of CPSR2 and the PSRCHIVE software
package (Hotan, van Straten & Manchester 2004) have recently been verified by
comparison with published results with good agreement (Ord et al. 2004). Fig-
ure 6.7 shows profiles of the polarised emission of PSR J1141–6545, recorded using
CPSR2 and ordered consecutively in time.

Figure 6.7 shows that the polarimetric profile is certainly changing, even over
a period of less than 10 months. The linear and circular emission appears to con-
verge during this time. Significant morphological differences in polarised emission
appear between two widely separated observations that also correspond to a change
in receiver, when the multibeam system was replaced by the refurbished H-OH.
Therefore it is still possible that the differences in polarised emission could be in-
strumental in origin, although comparison with Fig. 6.2 suggests that position angle
evolution is also occurring. Observations over a longer time span are required to
make more conclusive (and perhaps quantitative) statements. Regular polarimetric
observations of this pulsar will be a high priority in future years.

Next we attempt a more quantitative analysis of the position angle of the linearly
polarised component of the pulsar beam. In the formalism of the RVM, measured
position angle (PA, ψ), is presented as a function of the angle between the spin and
magnetic axes (α), the minimum angle between the magnetic axis and the line of
sight (β) and pulse phase (φ)

tan(ψ(φ) − ψ0) =
sinα sin(φ− φ0)

cosα sin δ − sinα cos δ cos(φ− φ0)
. (6.6)
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Figure 6.7: Consecutive profiles of the polarised emission from PSR J1141–6545, ob-
served with CPSR2 over a period of 289 days beginning in July, 2003 (MJD 52845).
The dashed line represents total linear polarisation and the dashed-doted line repre-
sents total circular. The vertical axis (unlabeled for simplicity) is in mJy, the vertical
range is kept constant across all sub-panels. All profiles have been polarimetrically
calibrated using a simple model of relative gain and phase for two orthogonal linear
receiver probes and flux calibrated against 3C218 (Hydra A). The peaks of the linear
and circular components can be seen to move closer together as time progresses.
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Here δ = α+ β is the angle between the spin axis and the line of sight, as in section
6.3; φ0 is the pulse phase of steepest PA swing and ψ0 is a constant position angle
offset.

Unfortunately, application of this method to pulsars with narrow duty cycles and
shallow or complicated PA swings does not well constrain α or β independently. In
common with the analysis presented by Kaspi et al. (2000a) we find it impossible to
fit the RVM model to the early observations of PSR J1141–6545 with any degree of
confidence. More recent observations are better suited to a partial RVM analysis,
in that the recent PA behaviour includes a sweep in the central region of the pulse
profile. The narrow duty cycle still restricts the applicability of the RVM and it
is therefore impossible to constrain α. Under the assumption that the steepest PA
evolution is still providing an indication of the orientation of the magnetic field
lines with respect to both the spin axis and the line of sight we have applied a
simplification of the RVM model with the sole purpose of determining the general
evolution of β. Within the RVM formalism the rate of change of PA as a function
of pulse phase has a maximum value,

(

dψ

dφ

)

max

=
sinα

sin β
. (6.7)

We have evaluated the gradient of the steepest PA swing in those observations
for which a straight line fit can be obtained from the same central region of the
pulse profile. This procedure could only be applied to epochs between which the
linear behaviour of the PA swing was considerably wider in pulse phase than any
possible translation, allowing the profiles to be aligned by a suitable ephemeris.
The applicable observations are those obtained with CPSR2 since mid-2003. Earlier
observations cannot be subject to this analysis as they display PA behaviour which
is too complicated. This fact alone indicates that the detected emission represents
a different cut through the emission region than was evident in earlier observations.

The data have been grouped into two epochs (2003 and 2004) separated by
approximately 0.7 years. Average position angle profiles were formed from the con-
stituent observations at each epoch. These average PA profiles include observations
from both 64MHz observing bands and within each epoch are separated by several
days. Although there were very slight variations between the PA profiles within
each epoch, there was no systematic trend. A linear least squares minimisation of a
straight line fit to the PA profiles demonstrates a significant deviation in the gradient
obtained at the two epochs. Epoch one (2003) displays a gradient of –15.1±0.3o of
PA swing per degree of phase. Epoch two (2004) displays a gradient of –17.1±0.3o

of PA swing per degree of phase. A straight line fit to a difference PA profile, formed
by the subtraction of the epoch two profile from the epoch one profile, is presented
in Fig. 6.8. The gradient of this difference fit is 2.3±0.4o, which is consistent with
the simple subtraction of the best fit for epoch two from that of epoch one.

Equation 6.7 was then evaluated for all α and a rate of change of β between
the two epochs was determined. The calculated value of dβ/dt is a strong function



122 CHAPTER 6. GEODETIC PRECESSION IN PSR J1141–6545

Figure 6.8: Difference PA as a function of phase. The average PA from the mid-2004
epoch was subtracted from that of the mid-2003 epoch. A straight line fit has been
applied to the residual. The steepening of the PA swing as a function of time is an
indication that the pulsar emission beam may be precessing into, and not away from
our line of sight.

of α but suggests that β is increasing. The peak rate of change is 0.8o yr−1 (68%
confidence), but this interpretation requires the pulsar spin axis to be 90o from
the magnetic axis, which is unlikely if we assume the orientation is random. It
is therefore probable that dβ/dt is less than 0.8o yr−1. The gradient of PA also
indicates that β is currently negative for all possible α. We therefore infer that the
beam is precessing into the line of sight at a rate less than 0.8o yr−1. It should be
noted that dβ/dt ≡ dδ/dt as the two angles are related by a constant offset. Thus
we can use this result, coupled with Fig. 6.1, to make some general statements
about the unknowns in Eq. 6.5. It is clear that either the misalignment angle is
smaller than approximately 30o, or we are currently at a special precessional phase
where dδ/dt is changing rapidly and has not attained its maximum value in the
span of our observations. Conversely, unless α is near 0o or 180o, we expect that the
misalignment angle is greater than approximately 15o.

The mean flux of the pulsar in these observations is 4.0±0.5mJy. There does
not appear to be a significant trend in mean flux within the past year, but this may
change as the time baseline of flux calibrated data grows.
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6.6 Discussion and Conclusion

Our observations indicate that the line of sight to the emission cone of PSR J1141–
6545 is precessing deeper into the core, producing a steeper position angle swing.
Depending on the chosen beam model, this could also explain why the pulse profile
is seen to increase in width. Our result has implications both for the study of
pulsar emission beams and for the detection rates of relativistic pulsars in large-
scale surveys. PSR J1141–6545 is the slowest pulsar (by an order of magnitude) for
which geodetic precession is observable, providing a unique means of examining the
emission cone of a normal (un-recycled) pulsar. Further polarimetric observations,
extended time baselines or the detection of orbitally modulated aberration may
allow determination of our present location in the emission cone and the geometry
of the beam as a whole. Given the expected precession period of order 265 years
and the fact that we seem to still be moving towards the central axis of the beam,
it is possible that this pulsar may only have precessed into view within the past few
decades. As Kaspi et al. (2000b) noted, precession might explain the non-detection
of this pulsar in early surveys with flux limits well below the required threshold
(Johnston et al. 1992; Manchester et al. 1996). If this is the case, it could be
argued that surveys of the sky for relativistic pulsars should continue on a regular
basis. By their very nature, the most interesting objects are likely to be visible for
the least amount of time.
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Chapter 7

PSR J0737–3039A: Baseband
Timing & Polarimetry

“In physics, you don’t have to go around making trouble for yourself – nature does it for
you.”

Frank Wilczek

In this chapter, we describe May 2004 observations of the 22.7ms “A” pulsar in
the double pulsar binary system, J0737–3039. Data were obtained with a coherent
dedispersion system at 20 cm and 50 cm wavelength bands, during an intensive 15
day observing session at the Parkes radio telescope. High S/N polarimetric profiles
of the “A” pulsar are presented; these profiles provide templates against which to
search for evolution of the pulse profile in coming years. We measure flux densities
for the “A” pulsar of 1.2±0.1mJy at 1373MHz and 4.2±0.5mJy at 685MHz. Fara-
day rotation is also detected in both bands; the rotation measure of the pulsar is
120±4 radm−2 at 1373MHz and 118.4±0.3 radm−2 at 685MHz, implying a mean
longitudinal component of the magnetic field of approximately 3µG along the line
of sight to the pulsar. Pulse arrival times from individual 2min integrations are
analysed and we detect a clear signature of Shapiro delay in the timing residuals.
Assuming a mass of 1.25M⊙ for the companion “B” pulsar, we derive a limit of
88.5+0.8

−1.1 degrees on the inclination angle of the system, almost consistent with the
most recent limit of 0.29±0.14o away from 90o, obtained from scintillation studies.
The need to obtain many arrival times near inferior conjunction forces us to use
low S/N profiles for our analysis. This can lead to unrealistic error estimates if
standard timing techniques are used. In an appendix, we describe how to obtain
more realistic error estimates and how to avoid some catastrophic consequences of
building a standard template profile from low S/N data.
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7.1 Introduction

The double pulsar binary system J0737–3039 is the only known example of a double
neutron star binary in which both members are active radio pulsars. The discovery
of the 22.7ms “A” pulsar was first reported by Burgay et al. (2003). Pulse timing
revealed that it orbited a companion star once every 2.4 hours, making the sys-
tem an ideal laboratory for testing relativistic gravity, similar to the original binary
pulsar system, PSR B1913+16 (Hulse & Taylor 1975) and the more recently dis-
covered PSR B1534+12 (Wolszczan 1990). Within two months, Lyne et al. (2004)
reported the detection of 2.8 s pulsations from the companion (PSR J0737–3039B).
The presence of two pulsars in the same system enables timing measurements to
over-determine many of the parameters required to describe the relativistic orbit,
allowing unique tests of General relativity. The component masses of the system
are already known to extremely high precision; according to Lyne et al. (2004), mA

= 1.337±0.005M⊙ and mB = 1.250±0.005M⊙.

The diffractive interstellar scintillation timescale of the “A” pulsar is modulated
by the large (∼300 km s−1) orbital velocity, allowing estimation (Ransom et al.
2004) of the space velocity and inclination angle of the system, assuming a thin
scattering screen and isotropic interstellar medium. A recent analysis (Coles et al.
2005) of the two-dimensional correlation between the scintillation patterns of both
the “A” and “B” pulsars indicates that the ISM is not isotropic on the scale of
the projected semi-major axis of the orbit (∼1.4 lt-s). Coles et al. (2005) correct
for this and infer an inclination angle limit of 0.29±0.14o away from edge-on (90o),
but caution that refractive effects in the magnetospheres of both pulsars or even
gravitational lensing (Lai & Rafikov 2005) may introduce systematic errors in mea-
surements of the inclination angle. Comparison of the values derived using various
methods may in future help to isolate such effects.

Relativistic influences within the J0737–3039 system are so great that the lon-
gitude of periastron advances by ∼17o yr−1. If there is any misalignment between
the spin and orbital angular momentum axes, we should expect the spin axes of
both pulsars to precess on timescales of ∼70 years (Manchester et al. 2005b).
This “geodetic precession” (Hari Dass & Radhakrishnan 1975; Barker & O’Connell
1975b; Esposito & Harrison 1975) has been detected in PSR B1913+16 (Weisberg,
Romani & Taylor 1989; Kramer 1998; Weisberg & Taylor 2002), PSR B1534+12
(Stairs, Thorsett & Arzoumanian 2004) and PSR J1141–6545 (Hotan, Bailes & Ord
2005b). Manchester et al. (2005b) found no significant evidence of shape changes in
the mean profile of “A” over a one-year period that might indicate a changing line
of sight relative to the emission cone. It is possible that we are simply at a special
precessional phase where changes to our line of sight are minimised, or that there is
no angular momentum misalignment.

In this chapter we briefly describe the baseband recording system and coherent
dedispersion process (Section 7.2) used to obtain data at the Parkes radio telescope.
We also present high S/N polarimetric profiles for the “A” pulsar at centre frequen-
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cies of 685MHz and 1373MHz (Section 7.3), both of which exhibit slightly different
characteristics to the 820MHz profile presented by Demorest et al. (2004). These
profiles define the morphology of the mean pulse at the current epoch, providing a
valuable reference that can be used to detect future pulse shape changes. Our data
also reveal a value of rotation measure along the line of sight, similar in magnitude
but opposite in sign to that obtained by Demorest et al. (2004). Section 7.4 describes
our analysis of 2min average arrival times obtained from observations of the “A”
pulsar. We fit for several binary parameters, the spin period of the pulsar and the
dispersion measure along the line of sight over a time span of 15 days, during which
the “A” pulsar was observed for several hours per day. The astrometric position
given by Lyne et al. (2004) is assumed in our model of the binary system. The sig-
nature of Shapiro delay is clearly present in our data and we use this to place limits
on the inclination angle of the system. Section 7.5 summarises our results. Ap-
pendix A describes a new algorithm for measuring the relative phase shift between
two pulse profiles and compares it with another commonly-used method. Simulated
timing experiments were used to determine the most appropriate algorithm to apply
to our observations.

7.2 Observations

PSR J0737–3039A was observed at the Parkes radio telescope as part of a study
of several relativistic binary pulsars. The aim of this study was to obtain precise
measurements of the binary parameters for a small number of pulsar systems, by
observing them daily over a period of three weeks in April-May, 2004. Obtaining
a high density of observations over several orbits is essential when characterising
the signature of perturbations that only appear in small orbital phase ranges (like
Shapiro delay in an edge-on system). During the course of this experiment, the
“A” pulsar was tracked for several hours every day over a continuous period of
15 days, between MJD 53120 and MJD 53135. Data were recorded using CPSR2,
which records 4×64MHz bands, normally representing two dual-polarisation bands
at different sky frequencies. Observations were made across two bands centred on
1341MHz and 1405MHz, using the wide-band H-OH receiver, and across a single
band centred on 685MHz, using the low-frequency feed from the coaxial dual-band
10/50 cm pulsar receiver. Both the 10/50 and H-OH systems use orthogonal linear
probes to record full polarimetric information.

CPSR2 real-samples each IF at the Nyquist rate with two bits of precision,
writing raw samples to the disks of a processing cluster. This cluster of servers
performs coherent dedispersion (Hankins & Rickett 1975), writing out archives
folded using a single ephemeris. In the standard mode of operation, we synthesise
a filterbank with 128 coherently dedispersed spectral channels, corresponding to
an effective sampling time of 2µs. Individual integrations correspond to 1GB of
baseband data or approximately 16.8 s of observing time.
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Individual tracks lasted for approximately one hour and were often performed
sequentially for a period of several hours each day. Between these on-source tracks,
short (2min) calibration pointings were taken, 1o South of the pulsar position. Dur-
ing these calibration observations, the receiver noise source was driven with a square
wave at a frequency of ∼11Hz, injecting a linearly polarised signal at a known angle
to both receiver probes. This characterises the polarimetric response of the signal
chain so that corrections to the observed Stokes parameters can later be made. Ob-
servations of the radio galaxy 3C218 (Hydra A) were also taken several times each
week to calibrate the absolute flux scale of the observing system. All calibration
and data reduction was performed using the methods provided within PSRCHIVE
(Hotan, van Straten & Manchester 2004). We use a simple case of the polarimetric
model described by van Straten (2004), performing a correction for relative gain and
phase between the two orthogonal receiver probes.

7.3 Polarimetric Profiles

All 16.8 s archives produced by PSRDISP were averaged within each 64MHz band to
form 2min integrations. These integrations were then calibrated and corrected for
relative gain and phase and any changes in parallactic angle induced by the altitude-
azimuth antenna mount. Because the 1341 and 1405MHz bands were recorded si-
multaneously, each using two of the four CPSR2 IFs, it was possible to find pairs
of archives corresponding to the same time period within a given 20 cm observa-
tion. These pairs were combined (after calibration) to form new archives spanning
128MHz of bandwidth. The addition was performed without any loss of spectral
resolution. These frequency-added archives were then summed in time to form a
grand average archive representing the mean polarimetric state during our two week
session. The 685MHz integrations were also summed in time to form a single grand
average archive with 64MHz of bandwidth. The grand average archives were sub-
jected to a fitting procedure designed to determine the Faraday rotation measure
in the direction of the pulsar. The fitting algorithm applies various trial rotation
measure (RM) corrections and measures the total polarised flux density (the quadra-
ture sum of Stokes Q, U and V) after aligning and combining all spectral channels.
Because Faraday rotation can only decrease the amount of observed polarised flux
density, it is reasoned that the trial RM leading to a maximum level of polarised
emission must represent our best estimate of the true physical value. A Gaussian
curve is fitted to the flux density values obtained using a discrete sample of trial
rotation measures and the centroid taken to be the measured RM. The uncertainty
is defined to be the distance by which the centroid must shift to increase the χ2 of
the Gaussian fit by unity. The error at each trial RM is defined to be the standard
deviation of the baseline noise in the polarised emission profile, multiplied by the
square root of the number of bins used to compute the flux density.

At 20 cm, we find a rotation measure of 120±4 radm−2. At 50 cm the value
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is 118.4±0.3 radm−2. These values are consistent with each other to within 1σ
but the 50 cm observations are more precise, simply because depolarisation due to
Faraday rotation is a strong function of observing frequency. Demorest et al. (2004)
obtain values for rotation measure for both the “A” (–112.3±1.5 radm−2) and “B” (–
118±12 radm−2) pulsars independently, at a centre frequency of 820MHz. It should
be noted that Hotan, Bailes & Ord (2005a) published negative rotation measure
values but these were subsequently discovered to be in error due to a mistake in
the calibration process. We are confident that the true rotation measure is positive.
Even ignoring the sign difference, the rotation measure quoted by Demorest et al.
(2004) for the “A” pulsar is not consistent with our own measurement, although the
difference is within 3σ. The discrepancy may be due to the different methods used
to fit for a rotation measure value. The method described in this chapter makes no
assumptions about the linearity of the position angle sweep and may therefore be
more robust. The appropriate correction was applied to the grand average archives
and all frequency channels summed to produce Figs. 7.1 & 7.21

The overall polarimetric structure of Figs. 7.1 & 7.2 is consistent with the
820MHz profile presented by Demorest et al. (2004), except for the sign errors noted
previously. The mean profile clearly evolves with frequency, the relative strength of
the two components is nearly the same at 50 cm, while the trailing component dom-
inates at 20 cm. Manchester et al. (2005b) present mean profiles that show similar
frequency evolution. The 3030MHz profile presented by Manchester et al. (2005b)
reveals the presence of an additional, narrow outer-edge component that begins to
dominate the profile at higher frequencies. Both the main profile components con-
tain a highly linearly polarised region with approximately half the duty cycle of the
host component. In all cases, approximate mirror-symmetry about pulse phase 0.5
is preserved. Figures 7.1 & 7.2 show that the structure of the profile is quite com-
plicated on small timescales. The position angle of the profile at both frequencies
is consistent with data presented by Demorest et al. (2004) at 820MHz. The re-
gions of strongest linear polarisation have an almost flat position angle profile, while
the inner edges exhibit more complicated behaviour that, at least in the leading
component, may involve competing orthogonal modes.

Polarimetric structure is a sensitive indicator of emission region geometry and
secular profile evolution (Stairs, Thorsett & Arzoumanian 2004). Since the geodetic
precession period of “A” is only ∼70 years, Figs. 7.1 & 7.2 will be useful as a future
reference to study any changes in the polarimetric profile.

We obtain mean flux densities for the “A” pulsar of 1.2±0.1mJy at 1373 MHz
and 4.2±0.5mJy at 685MHz. Assuming a simple power law relation between flux
and frequency, we measure a spectral index of –1.8±0.3. Our 20 cm flux is consistent
with the value published by Lyne et al. (2004), but the spectral index we measure

1The plots shown in this thesis differ from the plots that were published by Hotan, Bailes & Ord
(2005a). An error in the receiver orientation parameters assumed during the calibration process
meant that the sign of Stokes V and the direction of the position angle swing were incorrectly
reported in the previous publication.
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Figure 7.1: PSR J0737–3039A average profile at a centre frequency of 1373MHz,
formed from 46 hours of data taken in two dual-polarisation bands using the H-OH
receiver and combined in software for a total bandwidth of 128MHz. The profile in
the lower panel has been calibrated for relative instrumental gain and phase. The solid
curve represents total intensity (Stokes I), the dashed curve represents linearly po-
larised emission and the dotted curve represents circularly polarised emission. There
are two main pulse components, both with linearly polarised sub-components near
the outer edge of the profile. The relative position angle of the linearly polarised
radiation is shown in the top panel. Absolute flux calibration was performed using
3C218 (Hydra A) as a reference.
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Figure 7.2: PSR J0737–3039A average profile, as in Fig. 7.1, formed from 14 hours
of data taken at a centre frequency of 685MHz. Data were taken with the low-
frequency feed of the coaxial 10/50 cm pulsar receiver using a single 64 MHz wide,
dual-polarisation band.
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appears to be at odds with Fig. 1 of Demorest et al. (2004), where the mean flux
density at 820MHz is shown to be approximately 5 times higher than we would
predict.

7.4 Arrival Time Analysis

The S/N obtainable from the “A” pulsar in 2min integrations with 128MHz of
bandwidth and a 64m diameter telescope is of order 10, quite low for precision timing
purposes. We chose to apply the time-domain algorithm described in Appendix A
to measure the relative shift of each profile with respect to the standard template,
to avoid severely underestimating the arrival time uncertainties.

All 2min, calibrated archives were summed in frequency and polarisation to
produce a single mean profile. Arrival times were obtained from each profile with
S/N greater than 7 and fit to a model (Damour & Deruelle 1985; Damour & Deruelle
1986) of the binary system (henceforth known as the “DD” model) that includes
theory-independent post-Keplerian corrections. Total intensity versions of Figs. 7.1
& 7.2 were used as standard template profiles, after mutual alignment. The standard
pulsar timing package TEMPO was used to perform the model fit. Because our time
baseline only covers 15 days, we do not fit for any parameters that induce long-term
signatures, instead adopting the values published by Lyne et al. (2004). Table 7.1
summarises the parameters of the timing model and the properties of our data set.
All errors quoted represent the 1σ uncertainty reported by TEMPO.

To obtain a reduced χ2 of unity, a scaling factor of 1.72 was applied to all errors.
All of our fitted parameters are consistent to within 1σ of the corresponding values
given by Lyne et al. (2004) and are in some cases of higher precision. In order to
search for the signature of Shapiro delay in our data, we constructed a χ2 map over
two timing model parameters (the companion mass mB and cosine of the inclination
angle i) that define the range and shape of the Shapiro delay. This map is shown in
Fig. 7.3.

Although we have relatively few data points, there is a broad but clearly defined
constraint on the companion mass and inclination angle of the system. If we assume
the companion mass value reported by Lyne et al. (2004) it is possible to take a one-
dimensional slice through the map and constrain the inclination angle alone (Fig.
7.4).

The 1σ limit shown in Fig. 7.4 constrains the inclination angle to be 88.5+0.8
−1.1

degrees. The 2σ limit allows any inclination angle up to and including 90o. This
result is consistent with the (less precise) limit of 87±3o (also based on Shapiro
delay) published by Lyne et al. (2004). Ransom et al. (2004) use a combination of
timing and scintillation velocity methods to derive a limit of 88.7±0.9o, which is
also consistent with our result. Coles et al. (2005) use scintillation velocity methods
alone to derive a stronger limit of 0.29±0.14o away from 90o, which is still within
our 2σ region. These results are in good agreement, especially considering the very
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Parameter Value
Right Ascension (α) 07:37:51.247 (2)
Declination (δ) –30:39:40.74 (3)
Period Derivative (10−18) 1.74 (5)
Periastron Advance (ω̇) (deg yr−1) 16.90 (1)
Gravitational Red-shift (γ) (ms) 0.38 (5)
Mass of B (M⊙) 1.250 (5)
Period (ms) 22.6993785566 (1)
Period Epoch (MJD) 52870.0000
Dispersion Measure (cm−3pc) 48.9151 (5)
Projected Semi-Major Axis (lt-s) 1.415044 (2)
Eccentricity 0.087784 (3)
Time of Periastron Passage (MJD) 53127.6859965 (5)
Orbital Period (days) 0.1022515621 (5)
Angle of Periastron (deg) 85.726 (2)
Inclination Angle (deg) 88.5 (+8 –11)
MJD of first TOA 53120
MJD of last TOA 53135
Total Time Span (days) 15
Number of TOAS 529
RMS Timing Residual (µs) 30.933

Table 7.1: PSR J0737–3039A “DD” timing model parameters derived from 15 days
of CPSR2 observations. The error in the last significant digit is given in parentheses
after the value. All parameters in bold were adopted from Lyne et al. (2004).
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Figure 7.3: PSR J0737–3039A Shapiro delay contour map. We show the χ2 reported
by TEMPO when holding the values of mB and cos(i) fixed at each point in the map
and fitting for the Keplerian binary parameters, spin period and dispersion measure.
Curves of constant ∆χ2 (with respect to the minimum) are shown. The two dashed
lines represent the companion mass limits published by Lyne et al. (2004).



7.4. ARRIVAL TIME ANALYSIS 135

Figure 7.4: One-dimensional slice through the Shapiro delay contour map shown
in Fig. 7.3, assuming the mass of “B” is 1.250±0.005,M⊙ as given by Lyne et al.
(2004). Note that the error in the mass of B is so small that it moves the curve by
approximately the width of the line. The minimum χ2 occurs at an inclination angle
of 88.5o. Lines of 1σ (68%) and 2σ (95%) confidence are drawn horizontally. The
curve presented in this figure has a slightly different confidence interval compared
to that obtained from a simple cut through Fig. 7.3 because we have re-computed
the extent of the confidence interval based on the new minimum χ2 value associated
with our assumed companion mass. Note that the “DD” model includes a degeneracy
in the inclination angle, Shapiro delay measurements alone cannot determine if the
projection of the orbital angular momentum vector along our line of sight is pointing
towards or away from the observer. We give values for i assuming that the projection
points towards Earth and the inclination angle is therefore less than 90o.
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different methods used.
Lai & Rafikov (2005) use the inclination angle estimate of Coles et al. (2005) to

predict an additional ∼4µs contribution to the Shapiro delay as a result of gravi-
tational lensing. More interestingly, Lai & Rafikov (2005) also predict the presence
of a new timing perturbation due to the apparent displacement of the pulsar during
lensing episodes, which last for ∼4 s. Detection of either of these effects will require
much smaller RMS timing residuals and higher S/N observations, to enable studies
of the polarimetric profile and pulse arrival times over small orbital phase ranges.
The fact that the “A” pulsar is eclipsed during the 4 s lensing event makes detection
of any effect even more challenging.

7.5 Conclusions

Our calibrated mean polarimetric profiles of PSR J0737–3039A may be used as a ref-
erence for future studies of pulse profile evolution. The rotation measure in the direc-
tion of the system is found to be 120±4 radm−2 at 1373MHz and 118.4±0.3 radm−2

at 685MHz. The flux density of this pulsar is measured to be 1.2±0.1mJy at
1373MHz and 4.2±0.5mJy at 685MHz, giving a spectral index of –1.8±0.3 (as-
suming a power law relation). The detection of Shapiro delay in our pulse timing
residuals is used to place a limit of 88.5+0.8

−1.1 degrees on the inclination angle of the
system, near that obtained by other authors from both timing and scintillation
experiments.



Chapter 8

High-Precision Baseband Timing
of 15 Millisecond Pulsars

“I believe that there is a subtle magnetism in Nature, which, if we unconsciously yield
to it, will direct us aright.”

Henry David Thoreau

In this chapter, we describe extremely precise timing experiments performed on
5 solitary and 10 binary millisecond pulsars during the past 3 years, with the CPSR2
coherent dedispersion system at the Parkes 64m radio telescope. 12 of our sources
have RMS timing residuals below 1.5µs and 4 are below 200 ns. The quality of
our data allows us to measure 8 parallaxes and 9 proper motions, from which we
conclude that models of galactic electron density still have limited predictive power
for individual objects. We derive a mean transverse velocity of 87 +31/–14 km s−1 for
these pulsars, in good agreement with previous authors. We demonstrate that unless
multi-frequency observations are made, typical variations in DM could introduce an
additional drift in arrival times of ∼1 µs per year at 20 cm wavelengths. Our high
timing precision means that Shapiro delay can be used to constrain the inclination
angles and component masses of all but two of the selected binary systems. The
signature of annual orbital parallax is detected in the timing of PSR J0437–4715 and
PSR J1713+0747, providing additional geometric constraints. The timing of PSR
J1909–3744 is used to demonstrate that the DE405 ephemeris is a better model of the
Solar system than the earlier DE200. In addition, we show that pulsar astrometric
parameters measured using DE200 and DE405 often differ significantly. In order
to use pulsars to search for a cosmological gravitational wave background, it is
desirable to time them against each other to eliminate Earth-based time standards.
We demonstrate that PSR J1909–3744 can be used as a reference against which we
obtain a very small RMS residual of 133 ns for PSR J1713+0747. Although the gain
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of the Parkes antenna is small compared to other telescopes involved in precision
timing, we obtain some of the lowest RMS residuals ever measured, highlighting the
importance of good instrumentation such as CPSR2 and good analysis software.

8.1 Introduction

The pulse periods of the radio pulsars are so regular that measuring ensemble aver-
age pulse arrival times and fitting them to a mathematical model allows the pulsar’s
position and several other parameters to be determined very accurately (Reichley,
Downs & Morris 1970). Pulsars can therefore be used as remote clocks that allow
Earth-based observers to probe the physics of distant and in some cases extraor-
dinary binary systems. The discovery of the first pulsar in a binary system, PSR
B1913+16, opened the way to new timing-based studies of relativistic 2-body grav-
itation (Hulse & Taylor 1975). Fortuitously, PSR B1913+16 resides in a compact,
eccentric “double neutron star” (DNS) binary system. Taylor & Weisberg (1982)
showed that the pulsar’s orbit was decaying at precisely the rate predicted due to
energy loss by gravitational radiation, confirming an important prediction of Gen-
eral relativity. The discovery of this system spurred early development of advanced
timing models (Blandford & Teukolsky 1976; Damour & Deruelle 1985; Damour &
Deruelle 1986).

Several years later, the first millisecond pulsar PSR B1937+21 was discovered
(Backer et al. 1982). The millisecond pulsars represent a distinct class of objects,
with much smaller period derivatives and correspondingly smaller inferred magnetic
fields and larger characteristic ages. The majority of MSPs reside in binary systems,
supporting the notion that they are members of the normal pulsar population that
have accreted matter from a companion (Bhattacharya & van den Heuvel 1991).
In general, they are very stable rotators and can be timed with precision levels far
higher than their more slowly rotating counterparts.

Since the discovery of PSR B1937+21, several successful surveys have found more
than 100 new MSPs. The Princeton-Arecibo declination-strip survey (Camilo et al.
1996) and the Green Bank fast pulsar survey (Sayer, Nice & Taylor 1997) both
discovered 2 (although PSR J1022+1001 was found almost simultaneously in both
surveys), and the highly successful Parkes 70 cm survey (Manchester et al. 1996;
Lyne et al. 1998; D’Amico et al. 1998) discovered 17. The Parkes multibeam survey
(D’Amico et al. 2001) was not optimised for rapidly spinning sources but recent re-
processing (Faulkner et al. 2004) of the data using advanced search algorithms
added another 15 MSPs to the catalogue. The Swinburne intermediate-latitude
survey discovered a further 8 (Edwards & Bailes 2001a; Edwards & Bailes 2001b)
of these objects. Roughly half the MSP population resides in the two globular
clusters 47 Tucanae (Manchester et al. 1991; Camilo et al. 2000b) and Terzan 5
(Ransom et al. 2005). Unfortunately, globular cluster pulsars tend to have small
flux densities and are unsuitable for precision timing as the motion of the pulsar in
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the gravitational potential of the cluster is difficult to model (Blandford, Romani
& Applegate 1987).

The increased timing precision that one can obtain from an MSP allows the
detection of subtle timing perturbations, making them ideal for the study of post-
Keplerian gravitation. One such perturbation is known as Shapiro delay and was
first observed in the binary millisecond pulsar PSR B1855+09. The orbital plane of
this system is nearly edge-on to our line of sight, leading to a gravitationally-induced
propagation delay that can be detected whenever the low-mass companion comes
close to our line of sight (Ryba & Taylor 1991). Kaspi, Taylor & Ryba (1994)
measure a median time of arrival (TOA) uncertainty below 1µs for this pulsar,
allowing the signature of Shapiro delay to be studied despite the relatively long 12
day orbital period.

In general, the detection of post-Keplerian perturbations can provide additional
constraints on the equations that describe orbital motion under a given theory of
gravity. If several additional parameters can be measured within the same system,
the component masses can be determined and the self-consistency of gravitational
theories can be tested (Taylor & Weisberg 1989; Stairs et al. 1998; Bailes et al.
2003; Stairs 2004).

The more precisely we measure arrival times, the better our knowledge of the
pulsar system. Sandhu et al. (1997) obtained an RMS timing residual of 0.5µs for
PSR J0437–4715. This allowed the proper motion and parallax to be measured with
a high degree of precision. They also detected a secular change in the projected semi-
major axis of the orbit, due to the proper motion of the system gradually altering
our line of sight to the orbital plane. van Straten et al. (2001) used a coherent
dedispersion system to make very precise arrival time (0.13µs RMS) measurements
and were able to detect a more subtle kinematic effect known as annual orbital
parallax. This allowed the three-dimensional orbital geometry of the system to be
determined. The authors used General relativity to predict the signature of Shapiro
delay (based on the orbital geometry) and subsequently detected it in the timing
residuals, providing further unique tests of this theory of gravity. In this chapter, we
confirm these outstanding results for the first time with a completely independent
data set.

More recently, Jacoby et al. (2003) report the discovery of PSR J1909–3744, a
binary MSP with a very narrow pulse profile that promises to be a good target for
precision timing. Its highly inclined orbit has allowed the most precise determination
of the mass (1.438 ± 0.024M⊙) of a millisecond pulsar (Jacoby et al. 2005). In this
chapter we extend the timing baseline and perform new experiments on these data.

The plan of this chapter is as follows: Section 8.2 summarises the characteris-
tics of our 15 selected sources. Section 8.3 describes the observing system used to
record pulse profiles at the Parkes radio telescope and outlines the methods used
to obtain arrival times. Section 8.4 describes the model fitting process. In Section
8.5 we present standard template profiles and updated ephemerides for each of the
pulsars observed, along with a brief description of our findings. Section 8.6 discusses
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pulsar distance estimates and proper motion measurements, Section 8.7 discusses
Shapiro delay and annual-orbital parallax and Section 8.8 discusses various factors
that influence the timing stability of a pulsar, including variations in the observed
DM. We also use our best pulsar as a time reference to obtain 133 ns RMS residuals
for PSR J1713+0747. This is an essential first step towards using pulsars to search
for gravitational radiation in a manner independent of terrestrial time standards.
Finally, Section 8.9 summarises the chapter as a whole.

8.2 Targeted Millisecond Pulsars

We have concentrated our efforts on 15 MSPs, selected due to a combination of
their interesting physical characteristics and precision timing potential. Ord et al.
(2006) describe the timing of a 16th object, PSR J1600–3053, in more detail. For
simplicity of presentation, we divide our source list into two groups on the basis of
whether or not the MSP has a binary companion. Table 8.1 shows the discovery
reference, RMS timing precision and the mean flux density at 20 cm wavelengths for
each pulsar, along with the spin and orbital (where applicable) periods.

Isolated MSPs are thought to be recycled pulsars that have lost their compan-
ions, perhaps via tidal disruption or ablation caused by the pulsar itself (Fruchter,
Stinebring & Taylor 1988). In this chapter, we present observations of 5 isolated
MSPs. On the other hand, binary MSPs typically reside in the system responsible
for their recycling. The companion star is likely to have evolved significantly since
the spin-up epoch, becoming either a white dwarf or another neutron star. In this
chapter we also present observations of 10 binary MSPs.

8.3 Observations and Analysis

Three years ago, the second Caltech Parkes Swinburne Recorder (CPSR2) was com-
missioned at the Parkes radio telescope. During the period spanning August 2002 –
April 2005, regular observing sessions (∼1 per month) were conducted, each a few
days in duration. These produced approximately 1.5TB of folded data, which were
stored on the Swinburne supercomputer to allow rapid, automated re-processing.
Data were archived as coherently dedispersed time-series, folded at the apparent
pulse period of each source and averaged with 16.8 s time resolution. We occasion-
ally conducted intensive observing sessions of up to three weeks in duration, when
several selected binary MSPs were observed daily. During these 3 years, we obtained
many orbits of each pulsar, giving us good binary phase and day-of-year coverage
which allows accurate measurement of astrometric and binary parameters.

CPSR2 is a general-purpose baseband recorder that was constructed primarily
from consumer components. It samples the received signal after down-conversion
and performs all subsequent processing in software. The only specially-designed
hardware component is the Fast Flexible Digitiser (FFD) board that links 4×64MHz
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PSR Discovery Timing RMS (old) RMS (new) Flux Period Pb

µs µs mJy ms days
J0711–6830 Bailes et al. (1997) Toscano et al. (1999b) 1.3 4.7 3.7 5.5 –
J1024–0719 Bailes et al. (1997) Toscano et al. (1999b) 2.9 1.1 1.5 5.2 –
J1744–1134 Bailes et al. (1997) Toscano et al. (1999a) 0.3 0.3 5.3 4.1 –
B1937+21 Backer et al. (1982) Kaspi, Taylor & Ryba (1994) 0.2∗ 0.1 12.5 1.6 –
J2124–3358 Bailes et al. (1997) Toscano et al. (1999b) 3.3 2.7 4.5 4.9 –
J0437–4715 Johnston et al. (1993) van Straten et al. (2001) 0.1 0.1 137 5.8 5.7
J0613–0200 Lorimer et al. (1995a) Toscano et al. (1999b) 2.2 0.6 1.3 3.1 1.2
J1022+1001 Camilo et al. (1996) Hotan, Bailes & Ord (2004) 0.7 1.5 10.9 16.5 7.8
J1045–4509 Bailes et al. (1994) Toscano et al. (1999b) 10.2 5.9 2.5 7.5 4.1
J1603–7202 Lorimer et al. (1996) Toscano et al. (1999b) 1.0 1.6 3.2 14.8 6.3
J1713+0747 Foster, Wolszczan & Camilo (1993) Splaver et al. (2005) 0.2 0.1 10.4 4.6 67.8
B1855+09 Segelstein et al. (1986) Kaspi, Taylor & Ryba (1994) 0.8∗ 1.0 3.1 5.4 12.3
J1909–3744 Jacoby et al. (2003) Jacoby et al. (2003) 0.1 0.1 2.1 2.9 1.5
J2129–5721 Lorimer et al. (1996) Toscano et al. (1999b) 0.8 1.2 1.7 3.7 6.6
J2145–0750 Bailes et al. (1994) Loehmer et al. (2004) 0.5 1.3 9.4 16.1 6.8

Table 8.1: Summary of selected MSPs. The best previously published RMS residuals are listed beside the corresponding
journal reference in columns 3 and 4. Column 5 shows the RMS residual we obtain from the data presented in this chapter.
The RMS residuals shown in columns 4 & 5 have been normalised to a standard integration time of 60min, scaling simply by
the square root of the integration time where necessary. Readers should note that in some cases, systematic errors reduce
the effectiveness of time averaging and the theoretical 60min RMS cannot be reached in practice. The 20 cm flux densities in
column 6 were obtained from Ord et al. (2004). ∗ Kaspi, Taylor & Ryba (1994) do not quote RMS residuals, choosing instead
to give typical values for the uncertainty in an individual day-long average TOA, which could be significantly smaller than
the RMS residual over the entire data set. These values are included in the table for comparative purposes and have not
been scaled to the standard 60min integration time.
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bands to a cluster of high-speed computers. In the standard mode of operation, these
four bands are configured as orthogonal polarisations from two different centre fre-
quencies. We used three different cryogenically-cooled receiver packages to observe
64MHz-wide bands centred on 685, 1341, 1405 and 3000MHz. Wavelengths near
20 cm were recorded with the wide-band H-OH receiver and the central beam of the
Parkes multibeam receiver (Staveley-Smith et al. 1996). Bands centred on 685MHz
and 3000MHz were observed (often simultaneously) with the coaxial dual-band pul-
sar receiver, installed near the end of 2003.

The CPSR2 FFD performs 2-bit Nyquist sampling on each band and transfers
the samples to two high-speed servers (known as “primary nodes”) via EDT–PCD60
Direct Memory Access (DMA) cards. Two bands are sent to each primary node,
allowing orthogonal polarisations to be packed together. Data acquisition software
monitors the sampler’s statistics and adjusts attenuators on the FFD to ensure
optimal digitisation. Once in RAM, the samples are distributed via gigabit Ethernet
to a cluster of 28 dual Intel Xeon processing (or “secondary”) nodes, located in
shielded racks at the telescope. In the standard mode of operation, each secondary
node receives 1GB (∼16.8 s) of raw data which it must process before the next
segment arrives. The cluster is divided in two, each half processing a single dual-
polarisation band. The secondary nodes perform real-time coherent dedispersion
(Hankins & Rickett 1975) using a program called PSRDISP (van Straten 2003).
This program averages the data synchronously with the predicted pulse period and
constructs a coherent filterbank with (typically) 128 channels. The four Stokes
parameters are constructed from the orthogonal polarisations. PSRDISP corrects for
2-bit quantisation errors (Jenet & Anderson 1998) and discards any data with bad
digitisation statistics. The resulting “folded” archives are binned using (typically)
1024 phase bins.

The PSRCHIVE (Hotan, van Straten & Manchester 2004) software package was
used to sum the archives to produce 5min integrations. 12.5% of the passband was
given zero weight at both edges to reduce the effects of filter roll-off and aliasing.
Unless otherwise specified, all remaining frequency channels were dedispersed and
summed to increase S/N and arrival times were computed from the uncalibrated
total intensity (Stokes I) mean profile. If necessary, further time averaging was
performed to increase the S/N.

The existing CPSR2 cluster can operate in real-time at a wavelength of 20 cm,
provided the DM of the source is less than approximately 40 cm−3pc. Monitoring
software displays an integrated profile for the whole observation that updates as
each short integration is processed. This allows the observer to immediately assess
data quality and fix hardware configuration problems with minimal loss of observing
time.

Standard template profiles were constructed for each wavelength band by sum-
ming together all the observed profiles. Templates from distinct wavelength bands
were aligned to a common fiducial phase by finding the maximum of their cross
correlation function. The two 64MHz-wide bands centred on 1341 and 1405MHz
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were combined and all frequency channels integrated to yield a single mean profile
with a centre frequency of 1373MHz. This profile was used to independently time
the 1341 and 1405MHz data. We found that very few points needed to be discarded
from the timing residuals due to “corruption”. The Parkes 20 cm band is relatively
interference free and the statistical tests performed by CPSR2 and PSRDISP ensure
a high level of data quality. In most cases, a simple selection on the basis of S/N is
sufficient to reach the RMS residuals presented in this chapter, without the arbitrary
deletion of “bad” profiles required by many of our former instruments.

8.4 Timing Models

The algorithm described by Taylor (1992) was used to measure each individual ar-
rival time. In cases of low S/N we found it necessary to use a procedure that involves
zeroing the last 7/8 of the discrete Fourier transform of the template profile before
fitting for the relative shift in the frequency domain. The time-domain algorithm
described by Hotan, Bailes & Ord (2005a) was used for PSR J1045–4509 because
it was better suited to the large duty cycle and low S/N of this pulsar. We ap-
plied standard pulsar timing techniques to the measured TOAs. Model fitting was
performed using the TEMPO1 software package.

8.4.1 Galactic Electron Density Models

Broad-band pulses are subject to dispersive smearing by electrons in the interstellar
medium. Lyne, Manchester & Taylor (1985) describe a model of galactic electron
density that was used to estimate pulsar distances based on the observed DM. This
model consisted of two nearly isotropic disk components and a contribution due to
the Gum Nebula. It predicted that electron densities in the plane of the galaxy
should in most cases be greater than 0.04 cm−3. Taylor & Cordes (1993) published
a new multi-component model of the galactic electron density that included spiral
arms and had a characteristic disk density approximately half that used by Lyne,
Manchester & Taylor (1985). More recently, Cordes & Lazio used various indepen-
dent distance estimates to produce an updated model known as NE2001 (Cordes
& Lazio 2002; Cordes & Lazio 2003).

The original Taylor & Cordes (1993) electron density model is still widely used
to estimate pulsar distances. Due to a limited number of free parameters and the
patchy nature of the ISM, it has large uncertainties along some lines of sight. In
this chapter we use the more recent NE2001 electron density model to estimate the
distance to each of our sources. Although this model has not been published in a
refereed journal, a comprehensive description and FORTRAN implementation can
be found at the following URL: http://rsd-www.nrl.navy.mil/7213/lazio/ne model/

1http://www.atnf.csiro.au/research/pulsar/tempo
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8.4.2 Binary Motion

Keplerian binary motion adds 5 basic parameters to the timing model. These are
the orbital period Pb, the eccentricity of the orbital ellipse e and the length of its
semi-major axis projected along the line of sight x, the longitude of periastron ω
and an epoch T0 when the pulsar is at periastron. Damour & Deruelle (1985) and
Damour & Deruelle (1986) describe a model that includes several post-Keplerian
corrections, defined in a theory-independent manner that allows observers to test
the predictions of any post-Newtonian gravitational theory. We use this model
(henceforth known as “DD”) and a similar model known as “ELL1” (Lange et al.
2001), that parameterises the orbit using two Laplace-Lagrange parameters κ &
η, and the time of ascending node Tasc. ELL1 is used when the product of the
eccentricity and semi-major axis of the system is very small (and the periastron not
well defined).

8.5 Results

In this section, we summarise the timing of our selected millisecond pulsars, begin-
ning with the isolated sources. In all tables, the error in the last significant figure
is given in parentheses. These errors represent twice the formal 1σ uncertainty re-
turned by TEMPO. The minimum profile width recorded in each table is defined
as the time between half-power points (also known as the 50% width) if there is a
single, central component in the mean pulse profile. When the profile consists of
multiple distinct components, a visual estimate of the width is made, using the nar-
rowest significant feature in any frequency band. The quoted Ṗ or Ṗb distance limits
(see Section 8.6) represent upper bounds, computed using the value of the relevant
parameter plus twice the formal 1σ uncertainty returned by TEMPO. ṖG represents
the component of the observed period derivative that is due to relative acceleration
in the galactic potential (Paczyński 1990). ṖS is the component of the observed
period derivative that we estimate is due to the Shklovskii effect (Shklovskii 1970),
which depends on the transverse velocity of the source. ṖI is the estimated intrinsic
period derivative of the pulsar, taking ṖG and ṖS into account (see Section 8.6).
The S/N threshold is the minimum S/N of any profile included in the timing model
fit.

8.5.1 Isolated Millisecond Pulsars

Fig. 8.1 shows standard template profiles for PSR J0711–6830, PSR J1024–0719,
PSR J1744–1134, PSR B1937+21 and PSR J2124–3358. Table 8.2 shows the corre-
sponding timing model parameters and several derived quantities.
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Figure 8.1: Standard template Stokes I profiles for PSR J0711–6830 (first row), PSR
J1024–0719 (second row), PSR J1744–1134 (third row), PSR B1937+21 (fourth row)
and PSR J2124–3358 (fifth row), at centre frequencies of 1373 (left) and 685 (right)
MHz. The vertical axis represents arbitrarily scaled amplitude and the horizontal
axis represents one unit of pulse phase per panel.
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Data Reduction Parameters J0711–6830 J1024–0719 J1744–1134 B1937+21 J2124–3358

MJD of First TOA 52619 52622 52622 52623 52649
MJD of Last TOA 53484 53484 53483 53484 53485
Total Time Span (days) 865 862 861 861 836
Total Number of TOAS 44 92 611 231 140
Integration Time (min) 60 60 5 5 60
S/N Minimum 10 20 30 30 20
RMS Residual (µs) 4.7 1.1 0.9 0.2 2.7
Reduced χ2 5.9 1.1 1.9 2.9 1.4
Measured Parameters

Right Ascension (α) 07:11:54.2007 (6) 10:24:38.68845 (2) 17:44:29.401230 (6) 19:39:38.561308 (1) 21:24:43.85350 (4)
Declination (δ) –68:30:47.473 (2) –07:19:19.1702 (6) –11:34:54.6474 (6) 21:34:59.12943 (4) –33:58:44.668 (1)
Proper Motion in α (mas yr−1) –11 (4) –34.9 (4) 19.6 (4) –0.41 (4) –14.4 (8)
Proper Motion in δ (mas yr−1) 19 (2) –47 (1) –7 (1) –1.5 (1) –50 (2)
Period (ms) 5.490968419123 (1) 5.16220455707167 (8) 4.07454587724659 (8) 1.55780651922290 (4) 4.9311148642820 (2)
Period Derivative (×10−20) 1.498 (8) 1.8531 (6) 0.8925 (6) 10.51160 (5) 2.059 (2)
Period 2nd Derivative (×10−31) – – – –3.4 (5) –
Parallax (mas) – 1.9 (8) 2.1 (4) – 4 (2)
Period Epoch (MJD) 53000.0 53000.0 53184.0 53050.0 53174.0
Dispersion Measure (cm−3pc) 18.4066 (6) 6.48520 (8) 3.13908 (4) 71.0226 (2) 4.5956 (2)
DM 1st Derivative – – – –0.0012 (4) –
Minimum Component Width (µs) 110 50 140 30 730
Minimum Duty Cycle (%) 2.0 1.0 3.4 1.9 14.8
Mean Profile S/N @ 1341 MHz 19.7 43.0 39.4 48.3 55.9
Derived Parameters

Composite PM (mas yr−1) 22 (3) 59 (1) 20.9 (6) 1.5 (1) 53 (2)
Distance (Dispersion) (pc) 860 390 410 3560 270

Distance (Parallax) (pc) – 520+390
−150 470+120

−70 – 250+250
−80

Distance (Ṗ Limit) (pc) 2320 430 2060 12000 610

ṖG (×10−20) –0.072 –0.06 (1) 0.010 (2) –0.042 –0.048 (5)

ṖS (×10−20) 0.562 2.2 +(18) –(6) 0.20 +(5) –(3) 0.0032 0.8 +(8) –(2)

ṖI (×10−20) 1.012 ¡ 0.3 0.69 +(2) –(6) 10.552 1.3 +(2) –(8)
Characteristic age (Gyr) 8.62 ¿ 27 9.3 +(9) –(2) 0.232 6 +(9) –(1)
Surface magnetic field (×108 G) 6.72 ¡ 3.6 4.80 +(10) –(1) 11.62 7.2 +(6) –(27)

Table 8.2: Timing model parameters for the isolated millisecond pulsars. The uncertainty in the last significant figure
represents twice the formal 1σ uncertainty returned by TEMPO and is given in parentheses after the value. Values marked
with (1) were adopted from Toscano et al. (1999b). The error in any value marked with (2) is dominated by the ill-determined
uncertainty in the pulsar distance as derived from the NE2001 galactic electron density model and these values should be
taken as a guide only.
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PSR J0711–6830

This pulsar suffers from a low density of successful observations and we were forced
to include points with S/N as low as 10 to fit for position and spin-down param-
eters. Day-of-year coverage is patchy and we therefore do not attempt to fit for
proper motion or parallax, choosing instead to adopt the proper motion published
by Toscano et al. (1999b). The RMS residual we obtain is twice as large as the
Toscano et al. (1999b) value, indicating that for this pulsar, additional bandwidth
is more beneficial than coherent dedispersion. Unless the S/N can be increased, this
pulsar is not a suitable timing array candidate.

PSR J1024–0719

We obtain 92 individual, 1 hr integrated profiles with S/N in excess of 20 for PSR
J1024–0719, largely due to favourable scintillation. The timing model requires both
proper motion and parallax (which we detect for the first time), yielding an RMS
residual of approximately 1µs. Our proper motion is very different to that published
by Toscano et al. (1999b). This pulsar’s complicated, multi-component mean profile
contains sharp ∼50µs wide features that allow TOAs to be precisely determined.

PSR J1744–1134

CPSR2 observations of PSR J1744–1134 have produced 611 individual 5min inte-
grations with S/N in excess of 30 and the RMS timing residual is less than 1µs. The
pulse period is short and the mean flux density exceeds 5mJy (Ord et al. 2004),
allowing precise timing even with short integrations. Toscano et al. (1999a) obtained
an RMS residual of 470 ns using 24min integrations. Scaling this by the square root
of the integration time leads us to expect ∼1µs RMS with 5min integrations. De-
spite having 1/4 the bandwidth of Toscano et al. (1999a) in each independent band,
CPSR2 TOAs have an RMS timing residual of 900 ns. Our density of observations
is low in the first ∼400 days and we detect apparent long-period timing noise with
an amplitude of ∼2µs, which may jeopardise this pulsar’s contribution to a timing
array.

PSR B1937+21

This pulsar is plagued by timing noise and dispersion measure variations. Kaspi,
Taylor & Ryba (1994) observe systematic drifts in the timing residuals with am-
plitudes of a few µs. Using CPSR2, we achieve an RMS timing residual of 211 ns
with only 5min integrations. Integrating to 1 hr reduces the RMS residual to 141 ns,
which is significantly worse than we would expect if no systematic errors were present
in the residuals. This is still one of the smallest RMS residuals ever measured, but
we appear to be limited by DM variations and intrinsic rotational instabilities. If the
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second frequency derivative is left out of the model, the residuals exhibit a clear sys-
tematic drift over a period of three years, with a maximum amplitude of ∼1µs. The
larger drifts observed by Kaspi, Taylor & Ryba (1994) may be a result of their longer
timing baseline, or simply the intrinsic randomness of the mechanism responsible
for this timing noise. We must also fit for a single dispersion measure derivative,
which provides somewhat poor compensation for the quasi-random DM variations
detected by Kaspi, Taylor & Ryba (1994) and Ilyasov et al. (2005). Cordes et al.
(1990) argue that variable interstellar scattering may also contribute to long-term
timing noise in this pulsar.

PSR J2124–3358

This is one of the few pulsars for which emission is visible over nearly the entire
rotation period. Although this has important implications for the width of the
pulsar’s beam, the lack of any sharp features in the mean profile is detrimental to
timing precision. The mean flux density at 1400MHz is only ∼2.5mJy and this
energy is distributed over nearly the entire pulse period. Lengthy integrations are
therefore necessary to achieve high S/N. We obtain 140 individual 1 hr integrations
with S/N in excess of 20. Fitting these to a timing model yields an RMS residual of
2.7µs, which is sufficient to measure proper motion and parallax, given the proximity
of this source.

Comments

We have achieved small timing residuals for PSR J1024–0719 and PSR J2124–3358,
allowing us to measure parallax and more precise proper motions than ever be-
fore (see Section 8.6). Toscano et al. (1999b) benefit from additional bandwidth
when timing PSR J0711–6830 and PSR J1744–1134, but the exceptional stability
of CPSR2 defeats the expected factor of 2 decrease in S/N, at least in the case
of PSR J1744–1134. PSR B1937+21 has very high timing precision, but only on
short timescales. More importantly, the reduced χ2 we obtain from 3 of these tim-
ing model fits is close to unity, demonstrating our relative freedom from systematic
errors.

8.5.2 Binary Millisecond Pulsars

We divide the observed binary MSPs into two groups of 5 on the basis of timing
precision and spin period. Timing model parameters for the most precise timing
sources are shown in Table 8.3. The remaining sources are displayed in Table 8.4.
Figs. 8.2, 8.3 and 8.4 show standard template profiles for the binary MSPs, at a
variety of wavelengths.
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Data Reduction Parameters J0437–4715 J0613–0200 J1713+0747 B1855+09 J1909–3744

MJD of First TOA 52618 52618 52622 52651 52619
MJD of Last TOA 53485 53485 53485 53483 53485
Total Time Span (days) 867 867 863 832 866
Total Number of TOAS 6517 1258 635 152 2859
Integration Time (min) 5 5 5 5 5
S/N Minimum 50 10 30 10 20
RMS Residual (µs) 0.4 2.1 0.2 3.3 0.3

Reduced χ2 2.4 1.5 1.1 1.6 1.2
Measured Parameters

Right Ascension (α) 04:37:15.8478747 (8) 06:13:43.97509 (2) 17:13:49.531524 (2) 18:57:36.39161 (4) 19:09:47.4378773 (8)
Declination (δ) –47:15:08.822580 (8) –02:00:47.1712 (4) +07:47:37.51449 (6) +09:43:17.2322 (8) –37:44:14.32397 (6)

Proper Motion in α (mas yr−1) 121.31 (1) 2.1 (2) 4.97 (6) – –9.49 (2)

Proper Motion in δ (mas yr−1) –71.53 (1) –10.5 (6) –3.7 (1) – –36.06 (6)
Period (ms) 5.757451840111090 (4) 3.06184403897281 (6) 4.57013652589336 (1) 5.3621004627635 (4) 2.947108021715178 (2)

Period Derivative (×10−20) 5.72933 (4) 0.9591 (4) 0.8533 (1) 1.771 (2) 1.40241 (2)
Parallax (mas) 6.3 (2) 2.1 (6) 1.1 (1) – 0.88 (4)
Period Epoch (MJD) 53019.0 53012.0 53100.0 53186.0 53055.0

Dispersion Measure (cm−3pc) 2.6445 (1) 38.77919 (6) 15.9916 (2) 13.2952 (6) 10.3940 (1)
Minimum Component Width (µs) 85 46 91 160 42
Minimum Duty Cycle (%) 1.5 1.5 2.0 3.0 1.4
Mean Profile S/N @ 1341 MHz 262.0 18.6 144.9 33.7 28.2
Orbital Period (days) 5.7410423638 (1) 1.1985125564 (2) 67.825129880 (6) 12.32717115 (4) 1.53344945052 (2)

Ṗb (×10−12) – – – – 0.6 (1)
x ≡ a sin(i) (lt-s) 3.36670403 (2) 1.0914443 (2) 32.34242156 (6) 9.230788 (1) 1.89799111 (2)

ẋ (×10−15) 79.7 (8) – –5 (4) – –

Eccentricity (×10−5) 1.918 (1) 0.55 (4) 7.4959 (6) 2.09 (2) 0.013 (1)
Epoch of Periastron (MJD) 52985.830642234 (400000) 53019.27 (2) 53082.782202417 (400000) 53200.36 (4) 53114.70 (4)
Angle of Periastron (deg) 1.294455 (20000) 47 (3) 176.200576 (2000) 275 (1) 177 (8)

κ (×10−8) – 401 (40) – –2083 (20) 0.8 (20)

η (×10−8) – 370 (30) – 193 (40) –13 (2)
Time of Asc. Node (MJD) – 53019.11370768 (4) – 53190.9310259 (4) 53113.950587418 (2)
Inclination Angle (deg) 42.6 +(1) –(3) – 77 (2) 60 < i < 88 86.6 (2)
Companion Mass (M⊙) 0.21 (2) – 0.25 (3) 0.21 (7) 0.207 (2)
Ω (deg) 237 (4) – 81 (9) – –
Derived Parameters

Composite PM (mas yr−1) 140.83 (1) 10.7 (6) 6.21 (8) – 37.26 (6)
Distance (Dispersion) (pc) 140 1705 890 1170 460

Distance (Parallax) (pc) 159 (5) 480+190
−110

910+90
−70

– 1140 (50)

Dist. (Ṗ ) Limit (pc) 210 11160 19800 – 1410

Dist. (Ṗb) Limit (pc) – – – – 1570

ṖG (×10−20) –0.035 (5) 0.003 (2) –0.029 (1) – –0.001 (4)

ṖS (×10−20) 4.4 +(1) –(2) 0.04 +(2) –(1) 0.039 +(4) –(2) – 1.13 (5)

ṖI (×10−20) 1.4 (2) 0.92 +(1) –(3) 0.843 +(3) –(5) – 0.27 (5)
Characteristic age (Gyr) 6.5 (10) 5.3 (1) 8.60 (4) – 17 (3)

Surface magnetic field (×108 G) 8.1 (6) 4.81 +(2) –(8) 5.62 (1) – 2.6 (2)
Pulsar mass (M⊙) 1.3 (2) – 1.1 (2) 0.4 < mp < 1.7 1.47 +(3) –(2)

Table 8.3: DD timing model parameters for the binary millisecond pulsars PSR J0437–4715, PSR J0613–0200, PSR
J1713+0747 and PSR B1855+09. The ELL1 model was used to time PSR J1909–3744. For PSR J0437–4715 and PSR
J1713+0747, the DD model was extended to include annual orbital parallax. Where given, companion masses were estimated
from Shapiro delay and pulsar masses were derived from the mass function for the system, using our knowledge of the
inclination angle and companion mass.
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Figure 8.2: The first row shows two standard template profiles for PSR J0437–4715,
at centre frequencies of 3000MHz (left) and 1373MHz (right). The 1373MHz profile
represent the polarimetric invariant interval. The second row shows Stokes I templates
for PSR J0613–0200, the third PSR J1713+0747 and the fourth PSR J1909–3744, all
at centre frequencies of 1373 (left) and 685 (right) MHz.

PSR J0437–4715

The best previous timing solution for PSR J0437–4715 (van Straten et al. 2001) had
an RMS residual of 130 ns at a wavelength of approximately 20 cm. However, this
RMS residual was obtained from 1hr integrations and several different instruments
linked with 4 arbitrary phase jumps, which could have helped to absorb timing noise.
The authors detected the signature of annual orbital parallax, with an expected
peak-to-peak amplitude close to our current RMS residual. In addition, van Straten
et al. (2001) time the polarimetric “invariant” profile in the hope that it will reduce
the impact of observing at different parallactic angles. The invariant interval is
defined in terms of the Stokes parameters I, Q, U and V to be:

Sinv = I2 −Q2 − U2 − V 2 (8.1)

Britton (2000) demonstrates that this quantity is invariant to most of the trans-
formations an observing system can inadvertently apply to a polarised signal. Sinv

is of little use when the pulsar is highly polarised (as it removes most of the flux)
but PSR J0437–4715 has a large component of un-polarised emission. We time the
invariant profile of PSR J0437–4715 in this chapter. All other pulsars were timed
using Stokes I.

We now have a continuous, unbroken series of CPSR2 observations spanning
nearly 3 years. Only the receiver package has changed during this time, yet we
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encounter a number of problems. At 50 cm, there is significant radio frequency
interference both within and just outside the observing band. The profile of PSR
J0437–4715 broadens at lower frequencies, reducing timing precision. In this chapter,
we therefore consider only 10 cm and 20 cm data, which is relatively interference free.

Observations at 20 cm suffer from a systematic error that is most likely induced
by the large intrinsic flux density of the pulsar itself, 2-bit quantisation errors, or
imperfect filters. van Straten (2003) notes that a significant fraction of the pulses
emitted by PSR J0437–4715 cannot be adequately characterised using 2-bit sampling
and CPSR2 is therefore likely to suffer from quantisation errors. Qualitatively, we
note that within a 64MHz-wide band near a wavelength of 20 cm, the time delay
between successive frequency channels is not representative of the DM of the pulsar.
There is an additional slope that can extend over several µs and is perhaps due to
aliasing or scattered power (Jenet & Anderson 1998). To combat this problem, we
discard all but the central 5MHz of the band. PSR J0437–4715 is so bright at 20 cm
that the associated S/N penalty is not significant. Our data quality varies with the
receiver used; with the multibeam system we note that the timing residual for any
observation depends on the parallactic angle. This dependence is not completely
removed by timing the invariant interval, though it is significantly reduced. The
residual dependence may arise from imperfect estimation of the off-pulse signal,
quantisation errors or small non-linear polarisation transformations introduced by
the receiver system itself. The new arrival time fitting method described by van
Straten (2006) may overcome these problems.

During the past ∼400 days, regular observations of PSR J0437–4715 were also
made at a centre frequency of 3000MHz. This frequency band offers relative freedom
from the systematic errors encountered at 20 cm (due to a smaller intrinsic flux
density), a sharper pulse profile, a cleaner observing band and better polarimetric
purity. Using 1 hr integrations at a centre frequency of 3000MHz, we obtain an
RMS residual close to 200 ns. Future observations will be made primarily at 10 cm,
but in this chapter we rely on 20 cm observations to extend our timing history and
thus constrain the astrometric parameters of the pulsar.

PSR J0613–0200

This is one of the few pulsars that can be timed to higher precision at lower fre-
quencies (despite interference), where the mean profile evolves a narrow spike. The
RMS residual quoted in Table 8.3 is comparatively large due to the fact that we
must include 20 cm TOAs to extend our timing baseline in order to measure proper
motion and parallax (which we detect for the first time). We also maintain 5min
time resolution to increase the number of TOAs in the fit. After integrating to
1 hr and removing all 20 cm data, fitting only for position, P and Ṗ and all binary
parameters, we obtain an RMS residual of 620 ns.
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PSR J1713+0747

This is one of the most precisely timed pulsars ever observed. With 5min inte-
grations and 64MHz-wide bands centred on 1341 and 1405MHz, we obtain a very
small RMS residual of 250 ns. Using 1 hr integrations this drops to 125 ns, one of the
smallest RMS residuals ever measured. Even this value is larger than we might ex-
pect based on the scaling of the integration times, indicating that systematic errors
may be present at a low level. We do not include any 50 cm data because the profile
broadens at lower frequencies, reducing the precision of arrival time measurements.
Our data reveals a wealth of information about the binary system. We use this very
precise timing to detect Shapiro delay and annual orbital parallax (see Section 8.7).

PSR B1855+09

We include PSR B1855+09 in this group even though its RMS residual is above 3µs.
Given that observations of this source commenced only recently, we must use 5min
integrations to maintain a large number of timing points. Lengthier integrations
and more intensive observing should reduce the RMS residual significantly, given
that Kaspi, Taylor & Ryba (1994) have already demonstrated sub-µs timing for this
pulsar. Despite the small number of observations, we have reasonable orbital phase
coverage and use Shapiro delay to constrain the orbital inclination and companion
mass, though we cannot yet confirm previous detections of parallax or proper motion.

PSR J1909–3744

PSR J1909–3744 is one of the best timing sources ever discovered. This pulsar’s orbit
is extremely circular and we therefore adopt the ELL1 timing model described by
Lange et al. (2001). Again, we discard all 50 cm data to improve the RMS residual,
which is 300 ns with 5 min integrations and 150 ns with 1 hr integrations. Our line of
sight is almost edge-on to the orbital plane, allowing the most precise measurement
of Shapiro delay ever made. The observed period and binary period derivatives are
dominated by kinematic effects, providing tight limits on the distance to the pulsar.
Because our time span is slightly longer than that of Jacoby et al. (2005), our values
for proper motion and orbital period derivative are more precise.

PSR J1022+1001

This pulsar was once thought to have an unstable mean profile that corrupted its
timing at a level of 20µs (Kramer et al. 1999). The timing residual presented in
Table 8.4 (1.5µs RMS) is consistent with the work of Hotan, Bailes & Ord (2004);
we find that this pulsar times very well given its relatively long, 16ms period. We
obtain stronger limits on the proper motion, parallax and Shapiro delay in this
chapter and demonstrate its continued timing stability.
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Data Reduction Parameters J1022+1001 J1045–4509 J1603–7202 J2129–5721 J2145–0750

MJD of First TOA 52649 52619 52622 52618 52618
MJD of Last TOA 53485 53468 53483 53477 53485
Total Time Span (days) 836 849 861 859 867
Total Number of TOAS 171 120 128 158 105
Integration Time (min) 60 60 60 5 60
S/N Minimum 50 30 10 10 45
RMS Residual (µs) 1.5 5.9 1.6 4.1 1.3

Reduced χ2 3.0 1.9 1.2 2.7 4.1
Measured Parameters

Ecliptic Longitude (λ) (deg) 153.86589022 (6) – – – 326.0246384 (1)
Ecliptic Latitude (β) (deg) –0.06400 (6) – – – 5.313066 (2)

Proper Motion in λ (mas yr−1) –15.6 (4) – – – –11.9 (8)

Proper Motion in β (mas yr−1) – – – – –7 (8)
Right Ascension (α) 10:22:57.998 (4) 10:45:50.18941 (8) 16:03:35.6798 (1) 21:29:22.7618 (2) 21:45:50.4640 (2)
Declination (δ) 10:01:52.5 (1) –45:09:54.143 (1) –72:02:32.6984 (8) –57:21:14.169 (6) –07:50:18.439 (6)

Proper Motion in α (mas yr−1) –16.8 (4) –7 (1) –2.8 (6) 72 –9 (2)

Proper Motion in δ (mas yr−1) – 8 (2) –6 (1) –42 –10 (6)
Period (ms) 16.4529296938470 (2) 7.4742241103250 (6) 14.841952018961 (1) 3.726348423287 (1) 16.0524236655171 (6)

Period Derivative (×10−20) 4.334 (4) 1.755 (6) 1.574 (8) 2.09 (1) 2.981 (8)
Parallax (mas) 2.5 (8) – – – –
Period Epoch (MJD) 53100.0 53050.0 53024.0 52944.0 53070.0

Dispersion Measure (cm−3pc) 10.2521 (1) 58.1662 (4) 38.0471 (1) 31.86 (1) 9.0015 (2)
Minimum Component Width (µs) 165 373 223 298 241
Minimum Duty Cycle (%) 1.0 5.0 1.5 8.0 1.5
Mean Profile S/N @ 1341 MHz 199.0 55.6 103.8 19.5 160.5
Orbital Period (days) 7.805130162 (1) 4.083529191 (6) 6.308629577 (4) 6.6254931 (1) 6.838902508 (2)
x ≡ a sin(i) (lt-s) 16.7654154 (4) 3.015131 (2) 6.8806611 (4) 3.500570 (6) 10.1641068 (8)

ẋ (×10−14) 4 (2) – – – –

Eccentricity (×10−5) 9.728 (6) 2.4 (1) 0.93 (1) 1.9 (6) 1.93 (1)
Epoch of Periastron (MJD) 53095.5905 (6) 53048.98 (4) 53312.29 (2) 53195.6 (1) 53056.114 (8)
Angle of Periastron (deg) 97.75 (2) 243 (2) 169 (1) 184 (6) 200.9 (4)

κ (×10−6) 96.40 (6) –21.51 (100) 1.8 (2) –1.42 (400) –6.9 (1)

η (×10−6) –13.14 (6) –10.78 (100) –9.1 (1) –19.36 (2000) –18.1 (1)
Time of Asc. Node (MJD) 53093.47118169 (4) 53046.2232147 (4) 53309.3306255 (1) 53192.22261 (2) 53052.29703625 (8)

Companion Mass (M⊙) 0.8 < mc < 1.31 – 0.14 (1)1 – > 0.51

Inclination Angle (deg) 41 < i < 531 – 59 < i < 681 – < 451

Derived Parameters

Composite PM (mas yr−1) – 11 (1) 7 (1) 82 14 (6)
Distance (Dispersion) (pc) 450 1960 1170 1360 570

Distance (Parallax) (pc) 400+190
−100

– – – –

Dist. (Ṗ ) Limit (pc) – 8700 8900 35500 4070

ṖG (×10−20) – –0.13 –0.08 –0.07 –0.23

ṖS (×10−20) – 0.4 0.2 0.08 0.4

ṖI (×10−20) – 1.49 1.45 2.09 2.81
Characteristic age (Gyr) – 7.9 16.2 2.8 9.0

Surface magnetic field (×108 G) – 9.6 13.3 8.0 19.2

Table 8.4: DD timing model parameters for the binary millisecond pulsars PSR J1022+1001, PSR J1045–4509, PSR J2129–
5721 and PSR J2145–0750. The ELL1 model was used to time PSR J1603–7202. Where coordinates are given in two reference
frames, the best fit for each frame was obtained independently. Values marked with (1) assume a pulsar mass of 1.3M⊙.
Values marked with (2) were adopted from Toscano et al. (1999b). The errors in ṖG and all derived parameters following it in
the table are dominated by the ill-determined uncertainty in the pulsar distance as derived from the NE2001 galactic electron
density model and uncertainties are therefore not reported for these values, which should be taken as a guide only. For PSR
J1022+1001, we have only measured the proper motion in one dimension and therefore cannot estimate ṖG, ṖS or ṖI
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Figure 8.3: Standard template Stokes I profiles for PSR J1022+1001 (first row), PSR
J1603-7202 (second row), PSR B1855+09 (third row) and PSR J2145–0750 (fourth
row) at centre frequencies of 1373 (left) and 685 (right) MHz.

PSR J1603–7202

PSR J1603–7202 has a narrow double-peaked profile that allows precise arrival time
measurements. We obtain an RMS residual of the same order as PSR J1022+1001.
With a DM of approximately 38 cm−3pc, this pulsar is one of the more distant in
our sample and we detect only a small proper motion and no parallax. This pulsar’s
companion has a mass of order 0.5M⊙ but we do not detect any signature of Shapiro
delay. We infer that the inclination angle of the system must be less than ∼45o, if
the pulsar mass is assumed to be 1.3M⊙.

PSR J2145–0750

PSR J2145–0750 is another relatively long-period MSP that times very well (1.3µs
RMS) due to a favourably narrow mean pulse feature. Although Loehmer et al.
(2004) measure a parallax that is consistent with the DM distance of 500 pc, we do
not detect any parallax signature in the timing residuals. Our 2σ limit on parallax
(see Section 8.6) constrains the pulsar to be further than 1.1 kpc away.

PSR J1045–4509

PSR J1045–4509 appears to exhibit timing noise with an amplitude of approximately
10 µs, which may explain the large RMS residual. It has a low-mass companion and
we cannot place any interesting limits on the system from Shapiro delay.
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Figure 8.4: Standard template Stokes I profiles for PSR J1045–4509 at a centre
frequency of 1373MHz (first row) and 685MHz (second row), and for PSR J2129–
5721 at a centre frequency of 1373MHz (third row). The frequency evolution of PSR
J1045–4509’s mean profile may contribute to its relatively poor timing.

PSR J2129–5721

Observations of PSR J2129–5721 are limited and we are forced to maintain 5 min
time resolution, which greatly reduces the S/N. This contributes to the compar-
atively large RMS residual; lengthy observations may yet lead to greater timing
precision.

Comments

Most of the MSPs in Table 8.4 have periods of order 3 times larger than those
in Table 8.3 and their RMS residuals are higher by approximately the same or-
der, demonstrating a proportionality between spin period and timing precision. In
the next section, we test our newly-derived timing models for self-consistency by
interpreting the fitted parameters in a physical context.
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8.6 Proper Motions, Distances and Initial Spin

Periods

Isolated millisecond pulsars can be modeled using relatively few free parameters.
Aside from their intrinsic period P , spin-down rate Ṗ and DM, only position, proper
motion and parallax must be accounted for. These last two often have small timing
signatures and are only detectable if the pulsar is nearby. Detection of both allows
the distance and transverse velocity of the pulsar to be uniquely determined, aiding
studies of Galactic kinematics. The observed spin-down rate is also connected to the
motion of the pulsar. Constant motion along the line of sight introduces a Doppler
shift that changes the observed period by a fixed amount, but this is absorbed as a
constant offset. If the velocity along the line of sight changes, the offset will shift,
causing an apparent change in period. Thus, any acceleration along the line of
sight will contribute to the observed spin-down rate. In most cases, the acceleration
experienced by a pulsar (excluding binary motion, which is modeled separately)
will be a combination of differential Galactic rotation (usually small), acceleration
towards the plane of the Galaxy and perhaps acceleration due to nearby stars. If
the pulsar happens to reside in a globular cluster, the gravitational potential of the
cluster will dominate; sometimes to the point where the observed period derivative
is negative.

Shklovskii (1970) pointed out that constant transverse motion can induce an
apparent acceleration along the line of sight, contributing to the observed Ṗ . The
magnitude of this effect is

Ṗs

P
=

|~v|2
dc

=
|~µ|2d
c

. (8.2)

Here, Ṗs is the Shklovskii period derivative (which adds to the intrinsic Ṗ ), ~v is the
transverse velocity of the system, d is the distance to the pulsar, c is the speed of
light, P is the period and ~µ = ~v/d is the composite proper motion.

Knowledge of the composite proper motion and observed period derivative allows
an upper limit to be placed on the distance to the pulsar by assuming that all the
observed Ṗ is kinematic in origin. This provides a consistency check for distances
determined using electron density models or parallax. It should be noted that Eq.
8.2 applies to any periodic signal whose point of origin is in motion and an equivalent
expression can be written down for the observed binary period Pb (if any) and its
derivative. Although the signature of Ṗb is much more difficult to detect, it can lead
to a better distance estimate (Bell & Bailes 1996).

Alternatively, if the distance and proper motion of the pulsar can be precisely de-
termined by observation, we can calculate the kinematic contribution to the observed
period derivative. Using models of the Galactic gravitational potential (Paczyński
1990), we can also estimate the component of the observed period derivative due to
relative acceleration along the line of sight. By subtracting both these contributions
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from the observed period derivative, we can determine the intrinsic period deriva-
tive, which can be used to estimate the characteristic spin-down age of the pulsar,
assuming a constant rate of change and an initial period close to zero.

If the pulsar resides in a binary system, relative motion between the source and
the observer slowly changes the line of sight to the orbital plane, introducing either
a secular or periodic (depending on the cause of the motion) time dependence into
several of the binary parameters. These effects are subtle and rarely observable, but
offer the chance to constrain the parameters of the system in a manner completely
independent of post-Keplerian gravitational theory.

Kopeikin (1996) derived expressions for the secular kinematic contribution to
xobs = x+ δx and a similar effect upon the longitude of periastron ωobs = ω + δω.

δx =
x

tan(i)
(−µα sin(Ω) + µδ cos(Ω))(t− t0), (8.3)

δω =
1

sin(i)
(µα cos(Ω) + µδ sin(Ω))(t− t0). (8.4)

Here, i is the inclination angle of the system, µα is the component of proper motion
in right ascension, µδ is the component of proper motion in declination and Ω is
the longitude of the ascending node, which defines the orientation of the orbit with
respect to rotations about the line of sight. Taking the time derivative of Eq. 8.3
gives

ẋ

x
= cot(i)(−µα sin(Ω) + µδ cos(Ω)), (8.5)

which can be re-written as

ẋ

x
= |~µ| cot(i) sin(θµ − Ω). (8.6)

Here, |~µ| is the magnitude of the proper motion vector and θµ is the corresponding
position angle on the sky. Often, i and Ω are unknown, making it difficult to estimate
the observable signature of ẋ. Knowledge of i allows an upper limit to be placed on
the absolute value of ẋ by assuming | sin(θµ − Ω)| = 1. Alternatively, rearranging
the equation allows detection of ẋ to place a lower limit on the magnitude of the
composite proper motion and an upper limit on the inclination angle. If the detection
of Shapiro delay can be used to measure sin(i), detection of ẋ can constrain Ω.

In this section, we analyse the self-consistency of our astrometric measurements
and compare them with other published results.

We measure the parallax of PSR J0613–0200 for the first time; the value of 2.1 ±
0.6mas corresponds to a distance of only ∼500 pc, 3 times closer than the distance
predicted by NE2001. Additional high-precision 50 cm observations should reduce
the parallax uncertainty. The proper motion we measure in declination (–10.5 ± 0.6
mas yr−1) is not consistent with the value of –7 ± 1 mas yr−1 measured by Toscano
et al. (1999b).
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PSR J1022+1001 lies very near the ecliptic plane; timing experiments cannot
strongly constrain the position or proper motion in a direction normal to the eclip-
tic, but the uncertainty is minimised by fitting for position in ecliptic coordinates.
Our value for proper motion in ecliptic longitude agrees with the value of –17 ± 2
mas yr−1 published by Kramer et al. (1999), but the proper motion in ecliptic lati-
tude is not constrained. We have an estimate of the inclination angle from Shapiro
delay measurements (41o < i < 53o) and also a measurement of ẋ. We can therefore
use Eq. 8.6 to calculate a lower limit on the composite proper motion. We require
|~µ| > 7mas yr−1, which means that our model is consistent with µβ being near zero.
Because we only have a lower limit on the proper motion we cannot constrain the
maximum |ẋ|. However, if we assume that |~µ| = 7mas yr−1, Eq. 8.6 can be used to
place an upper limit of 2×10−14 lt-s s−1 on |ẋ|. This is consistent with the value of
4 ± 2×10−14 lt-s s−1 that we measure. It is therefore very likely that our measured
ẋ is purely kinematic and the composite proper motion is only slightly larger than
7mas yr−1. Sources in the ecliptic plane experience the largest signature of parallax;
we measure a value of 2.5 ± 0.8mas, compared to the Hotan, Bailes & Ord (2004)
value of 3.3 ± 0.8mas. The previous value was obtained by fixing the proper mo-
tion to the value published by Kramer et al. (1999), but the more recent value was
obtained from a longer timing baseline which allowed us to fit for proper motion
and parallax simultaneously. Future observations will further refine this value. The
parallax distance of 400+190

−100 pc is consistent with the NE2001 distance of 450 pc.

The composite proper motion of PSR J1024–0719 published by Toscano et al.
(1999b) (81 ± 4 mas yr−1) exceeds our measurement of 59 ± 1 mas yr−1. Because
we have more than three times the number of TOAs and 1/4 the RMS timing
residual, we feel confident that the new values for µα and µδ presented in Table 8.2
are correct. The NE2001 distance for this pulsar is 390 pc. The Shklovskii distance
upper limit is very interesting because it implies that the intrinsic spin-down rate
would be negative if the pulsar were more than 430 pc away, meaning that nearly
all of the observed spin-down rate is kinematic in origin. We measure a parallax
of 1.9 ± 0.8mas that is consistent with the Shklovskii limit at the 1σ level and
constrains the distance to the system. Using this distance measurement, we calculate
an upper limit on the intrinsic spin-down rate of 0.3 × 10−20 s s−1, corresponding
to a characteristic age greater than 27 Gyr. Riess et al. (2005) report that recent
Hubble space telescope observations are consistent with a Hubble constant of 73 ±
5 km s−1 Mpc−1, corresponding to a Hubble time no larger than 15 Gyr. Assuming a
constant spin-down rate, PSR J1024–0719 could only have lost 1.4ms from its initial
period in this time. Thus PSR J1024–0719 may have been born with an initial spin
period of around 4ms.

PSR J1024–0719 and two other sources in our list (J1744–1134 and J2124–3358)
have been observed in X-rays (Becker & Trümper 1999). A deep observation with
the VLT produced a possible detection of PSR J1024–0719 at optical wavelengths
(Sutaria et al. 2003). Studies of high-energy emission benefit from accurate knowl-
edge of the distance to the source, which these timing observations help to constrain.
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We measure a small composite proper motion of 7 ± 1 mas yr−1 for PSR J1603–
7202, similar to the value of 8.7 ± 0.7 mas yr−1 measured by Toscano et al. (1999b).
This can be used, along with the NE2001 distance, to estimate the kinematic con-
tribution to the observed value of Ṗ , which we find to be 0.2×10−20, or 14% of the
observed value. We then compute a characteristic age upper limit of 16Gyr, which
is slightly older than the Hubble time, though smaller than the value of 21Gyr de-
termined by Toscano et al. (1999b). Assuming the measured intrinsic spin-down
rate is constant, the pulsar must have been born with a period greater than 8ms.
NE2001 predicts that this pulsar is more than 1 kpc away and we cannot detect the
signature of parallax.

The kinematic properties of PSR J1713+0747 were well measured by Splaver
et al. (2005). Our parallax of 1.1 ± 0.1mas is 2σ away from their measurement
of 0.89 ± 0.08mas and places the pulsar slightly closer to the Solar system, at a
distance that corresponds very well to the NE2001 distance. The formal errors on
our proper motion measurement are smaller but still consistent with the 1σ limit of
Splaver et al. (2005).

Toscano et al. (1999a) measure the proper motion and parallax of PSR J1744–
1134 and conclude that the pulsar is more than twice as far away as its small DM
and the Taylor & Cordes (1993) galactic electron density model imply. The more
recent NE2001 electron density model uses this pulsar as a calibrator, so there is
no predictive power in the distance estimate. We measure a proper motion that is
significantly different (about 3σ in both coordinates) to that previously published,
and our parallax measurement of 2.1 ± 0.4 mas is smaller than the value of 2.8 ±
0.3mas published by Toscano et al. (1999a), but within 2σ. As our timing baseline
increases, we will have greater confidence in these astrometric measurements.

We measure a parallax of 0.88 ± 0.04mas for PSR J1909–3744, corresponding
to a distance of 1140 ± 50 pc, more than twice that predicted by NE2001. We use
Eq. 8.2 and its orbital period analogue to obtain upper limits that are close to the
parallax distance, implying that a large fraction of the observed period and orbital
period derivative are kinematic in origin. In fact, the characteristic age of this pulsar
is slightly larger than the Hubble time, implying an initial spin period longer than
1.5ms. Eq. 8.6 can be used in conjunction with our measurement of the inclination
angle (from Shapiro delay) to place an upper limit of 3×10−16 on |ẋ|. Fitting for this
parameter yields a value of 1.5 ± 1.4×10−15, which is consistent with the predicted
value given the large degree of uncertainty.

In summary, we find slight discrepancies in our measured proper motions when
compared with previously published results, at the level of a few σ. This may indi-
cate that the formal uncertainty returned by TEMPO is too small or that unmodelled
systematic errors are present in our data. One possible explanation is our use of the
DE4052 Solar system ephemeris. Splaver et al. (2005) use very precisely determined
pulse arrival times from PSR J1713+0747 to demonstrate that DE405 is significantly

2http://ssd.jpl.nasa.gov/iau-comm4/relateds.html
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more accurate than its predecessor, DE200. Our timing of PSR J1909–3744 can be
used to investigate the behaviour of these two ephemerides in a similar way. The
total χ2 we obtain from a timing model fit (allowing all except the Shapiro delay
parameters to vary) using DE405 is 2831. If we use the older DE200 ephemeris, the
χ2 increases to 3108 and we obtain α = 19:09:47.4375075(8), δ = –37:44:14.31966(6),
µα = –9.78(2) and µδ = –36.09(6). The difference of 277 χ2 units clearly indicates
that DE405 is superior to DE200. The fitted values for position and µα are incon-
sistent with the values listed in Table 8.3, the value for µα in particular is more
than 10σ away. However, the difference we measure corresponds to ∼0.3mas yr−1,
which is small compared to some of the discrepancies we find. For example, the
proper motion in declination that we measure for PSR J0613–0200 is 3mas yr−1

greater than that published by Toscano et al. (1999b). This is a factor of 10 greater
than the differences we can attribute to the new reference frame of DE405. Indeed,
changing the Solar system ephemeris and re-fitting for proper motion in the timing
model for PSR J0613–0200 does not change the parameters significantly. In general,
it is not advisable to compare astrometric parameters obtained with reference to
DE200 and DE405, although the magnitude of the reference frame rotation is only
∼0.3mas yr−1, which cannot explain some of the larger discrepancies we see.

We measure parallax in the timing residuals of PSR J2124–3358 for the first time.
Although the significance of the detection is low, the corresponding distance estimate
of 250 pc agrees with the NE2001 distance and both are well within the Shklovskii
upper limit. Our proper motion measurements are consistent with those published
by Toscano et al. (1999b). This pulsar has been detected in X-rays with several
different instruments (Sakurai et al. 1999; Becker & Trümper 1999; Sakurai et al.
2001) and Gaensler, Jones & Stappers (2002) have identified a highly asymmetric
optical bow shock in Hα emission. Studies of this high energy emission may benefit
from an improved distance estimate, which future timing will provide.

In contrast with Loehmer et al. (2004), we do not detect a significant parallax
in the timing residuals of PSR J2145–0750, in the reference frame of either the
DE200 or DE405 Solar system ephemeris. Loehmer et al. (2004) claim to detect
a parallax of 2.0mas, however if we assume this value and fit for position and
proper motion, the χ2 increases by 15 compared to the no-parallax case. Given
that our RMS timing residual is less than half that of Loehmer et al. (2004), and
that the timing signature of parallax depends more on day-of-year coverage than
the total span of observations (once there is a long enough baseline to break any
covariance with other parameters), we should easily be able to detect a parallax as
large as 2.0mas. By computing a one-dimensional χ2 profile, we can rule out any
parallax larger than 0.9mas at the 2σ level, implying that the distance is greater
than 1.1 kpc. Interestingly, the longer data span available to Loehmer et al. (2004)
reveals secular evolution of the projected semi-major axis. However, if we adopt
the value of ẋ = 1.8 ± 0.6×10−14 lt-s s−1 and fit for parallax, the result is < 0 and
clearly unphysical. Given this paradox, we are reminded to treat astrometric timing
measurements with some caution. Of course the Loehmer et al. (2004) parallax
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PSR DM Distance ne (cm−3)
(cm−3pc) (pc) NE2001 Measured

J0437–4715 2.645 159 0.019 0.0166 (5)
J0613–0200 38.779 480 0.023 0.08 (2)
J1022+1001 10.252 400 0.023 0.026 (9)
J1024–0719 6.485 520 0.017 0.012 (5)
J1713+0747 15.992 910 0.018 0.017 (2)
J1744–1134 3.139 470 0.008 0.007 (2)
J1909–3744 10.394 1140 0.023 0.0094 (4)
J2124–3358 4.596 250 0.017 0.018 (9)

Table 8.5: Estimated mean electron density along the line of sight to each pulsar for
which we have a measurement of parallax. Uncertainties in DM and parallax can
be found earlier in this chapter and are incorporated into the stated uncertainty in
measured ne.

may be correct, as it agrees well with the DM distance and can be used to predict
the measured scintillation velocity of the pulsar. Our distance limit implies a mean
electron density of just 0.008 cm−3 along the line of sight, which is small, but not
unreasonable and very similar to that of PSR J1744–1134. Our density of timing
points is low during the first year of observations and with time we may resolve this
contradiction. Our Shapiro delay limits (see Section 8.7) on the system inclination
and companion mass agree very well with those of Loehmer et al. (2004).

In all, we have independent distance measurements for 8 pulsars, which can be
used to estimate the mean electron density along the line of sight to the source.
Table 8.5 summarises our findings.

We see that two of the electron densities show significant deviations from the
NE2001 model. Our parallax measurements for PSR J0613–0200 and PSR J1909–
3744 are new and the corresponding electron densities are significantly at odds with
the predictions of NE2001. In one case the density is under-estimated and in the
other it is over-estimated. NE2001 was designed to be better than the Taylor &
Cordes (1993) model, but even with greater complexity we see that it cannot always
predict the correct distance. Using our parallax distances, we find that the average
transverse velocity of our targeted MSPs is 87+31

−14 kms−1, in very good agreement
with the value of 85 ± 13 km s−1 published by Toscano et al. (1999b).

In several of our millisecond pulsars, we have determined that the initial spin
periods were near their current values and have therefore not changed much during
their observable lifetimes, as suggested by Camilo, Thorsett & Kulkarni (1994).
Bailes (submitted) recently showed that no recycled pulsars have spin periods less
than 10 mc/mp ms, where mc is the companion mass and mp is the pulsar mass.
Weak magnetic fields that lead to slow period evolution help to ensure this relation
is not washed out by period evolution.
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8.7 Orbital Parameters

8.7.1 Shapiro Delay

We can use either the detection or lack of observed Shapiro delay signature to
constrain the orbital parameters of all the binary pulsars in our source list except
PSR J1045–4509 and PSR J2129–5721. Shapiro delay is parameterised by its range
and shape, which are represented in the DD timing model by two theory-independent
parameters, r and s. These correspond to companion mass, mc, and sin(i) if we
assume that General relativity is the correct theory of gravity. Measurement of both
parameters and the pulsar mass function yields a value for the mass of the pulsar
itself (again, assuming General relativity is correct). We construct two-dimensional
χ2 maps to determine these two parameters, along with their uncertainty.

PSR J0437–4715 is only mildly relativistic, but its close proximity allows high-
precision observations. van Straten et al. (2001) detect a very weak Shapiro delay
and measure the rate of periastron precession with marginal confidence. Our mea-
surement of the longitude of periastron at an epoch several years in advance of the
previous measurement yields a rate of change equal to 0.02 ± 0.01o yr−1, consistent
with the measurement of 0.016 ± 0.01o yr−1 made by van Straten et al. (2001). This
rate of change is small and we are unlikely to obtain a better limit on the sum of the
masses from General relativity for some time. van Straten et al. (2001) also measure
the signature of annual orbital parallax. This breaks the degeneracy in our knowl-
edge of the sign of the inclination angle, which cannot be determined from Shapiro
delay alone. We allow the parameter Ω to vary freely while mapping the i–mc plane
and can determine the inclination angle to high precision, but the companion mass
is not as well constrained (see Fig. 8.5). We measure i = 42.5 ± 0.2o and mc = 0.21
± 0.02M⊙, in good agreement with the values of i = 42.75 ± 0.09o and mc = 0.236
± 0.017M⊙ published by van Straten et al. (2001).

The 1σ Shapiro delay contour for PSR J1022+1001 is quite extended, however
if we assume a reasonable pulsar mass of 1.3M⊙, we find that the inclination angle
should lie between 41o and 53o (the uncertainty in the sign of this angle is not stated
explicitly but should be assumed hereafter unless otherwise stated). Assuming the
same pulsar mass, the companion mass should lie somewhere in the range 0.8 to
1.3M⊙, making it almost certainly a heavy white dwarf. By similar arguments, we
can constrain the inclination angle of PSR J0613–0200 to be between 59o and 68o.
This corresponds to a companion mass between 0.13 and 0.15M⊙. Even if we let
the pulsar mass vary between 1.0 and 2.0M⊙, the companion mass remains between
0.1 and 0.2 M⊙ (68% confidence). This makes it one of the most dissymmetric MSP
binary systems suitable for tests of General relativity.

PSR J1713+0747 can be timed with such high precision that both Shapiro delay
and annual orbital parallax have been detected (Splaver et al. 2005). We therefore
include Ω in the timing model and allow it to vary when computing the map over
i–mc space (shown in Fig. 8.6). We measure i = 76.6+1.5

−2.0 degrees and mc = 0.25 ±
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Figure 8.5: χ2 map over i and mc for 5 min integrations of PSR J0437–4715 in two
bands centred on 1341 and 1405MHz. The contours represent 1, 2 and 3σ confidence
levels.
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Figure 8.6: χ2 map over i and mc for 5 min integrations of PSR J1713+0747 in two
bands centred on 1341 and 1405MHz. The contours represent 1, 2 and 3σ confidence
levels.

0.03M⊙. The inclination angle is slightly larger and the companion mass slightly
smaller than the values of i = 71.9 ± 1.8o and mc = 0.28 ± 0.03M⊙ that Splaver
et al. (2005) measure, but both are consistent at the 2σ level.

For PSR B1855+09, we measure an inclination angle of 73+15
−13 degrees and mc

= 0.21 ± 0.07M⊙. Our results are less precise than, but consistent with, those
presented by Kaspi, Taylor & Ryba (1994). Additional observations will increase
the density of points in orbital phase and allow a more precise measurement of the
Shapiro delay.

The large inclination and precise timing properties of PSR J1909–3744 make the
signature of Shapiro delay highly significant. Fig. 8.7 shows that the inclination
angle is constrained to lie between approximately 86.4o and 86.7o and the compan-
ion mass is 0.207 ± 0.002M⊙. The orbital eccentricity is 1×10−7, making this the
most circular pulsar binary system ever observed, a record previously held by PSR
J1012+5307 (Lange et al. 2001). We use the ELL1 binary model to better charac-
terise the shape of the circular orbit, but the uncertainty in the derived longitude
of periastron is still ∼8o. It is therefore unlikely that the rate of periastron advance
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Figure 8.7: χ2 map over cos(i) and mc for 5 min integrations of PSR J1909–3744 in two
bands centred on 1341 and 1405MHz. The contours represent 1, 2 and 3σ confidence
levels.

will ever be measured. PSR J1909–3744 could provide a stringent test for the pres-
ence of gravitational dipole radiation, thanks to its low eccentricity and our precise
knowledge of the component masses and inclination angle. Wex (2000) states that
the best single-source limit is αp < 0.02, based on the timing of PSR J1012+5307.
Unfortunately, the orbital period derivative of PSR J1909–3744 is dominated by
kinematic effects and therefore tied to its distance from the Solar system. Using our
parallax distance to correct for the kinematic contribution to Ṗb, we can set a limit
of αp < 0.03 (68% confidence), which is already close to the best constraint.

PSR J1909–3744 may also be a good system in which to test for violation of the
strong equivalence principle (SEP) in the strong field regime (Damour & Schäfer
1991; Wex 2000; Stairs et al. 2005). Wex (1997) describes the characteristics a
binary system must possess to provide a constraint. Firstly, the inequality Pb

2/e >
107 days2 must hold. This is certainly true for PSR J1909–3744 thanks to its small
eccentricity. Secondly, the binary system must be old enough for the orientation
of the eccentricity vector to have been randomised with respect to the Galactic
potential. After correcting for kinematic and galactic effects, the characteristic age
of PSR J1909–3744 is at least 14Gyr which is more than sufficient. Some amount of
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statistical analysis will be necessary to derive a constraint on SEP violation due to
the fact that we do not yet know the full three-dimensional orientation of the orbit.
This is left for future work. With an orbital period of only 1.5 days, PSR J1909-3744
may have evolved differently to the wide-orbit binary millisecond pulsars studied by
Stairs et al. (2005), offering an opportunity to test a new kind of system.

Loehmer et al. (2004) use their detection of ẋ and the lack of Shapiro delay in
the timing residuals of PSR J2145–0750 to place a limit of 0.5 ≤ mc ≤ 1.0M⊙ on
the companion mass. Although we do not detect any evolution of the projected
semi-major axis within 3 years, assuming a 1.3M⊙ pulsar leads to a limit of mc >
0.5 and i < 45o, at the 2σ level.

Our limit on the mass of PSR J1713+0747 is 1.1 ± 0.2M⊙, significantly lower
than (but still consistent with) the 1σ limit of Splaver et al. (2005). Bailes et al.
(2003) point out that most pulsar mass estimates come from members of DNS binary
systems and show that the mass estimate for PSR J1141–6545 (which has a ∼1 M⊙

companion) is slightly smaller than the average. Both PSR J1713+0747 and PSR
J1909–3744 have much less massive companions, but the pulsar masses are also quite
different. It will be necessary to study a wider range of dissymmetric pulsar binary
systems in order to establish any mass relationship. Our binary timing models are
only strictly valid when both stars can be treated as point masses. Pulsars with
very low-mass companions (like PSR J0613–0200) will test this assumption.

8.7.2 Annual-Orbital Parallax

For a nearby pulsar with favourable orbital orientation, the heliocentric motion of the
Earth can introduce periodic variations in two of the Keplerian binary parameters,
as shown by Kopeikin (1995).

xobs = xint

[

1 +
cot(i)

d
(∆I0 sin(Ω) − ∆J0 cos(Ω))

]

, (8.7)

ωobs = ωint −
csc(i)

d
(∆I0 cos(Ω) + ∆J0 sin(Ω)). (8.8)

Here, ∆I0 = ~r · ~I0 and ∆J0 = ~r · ~J0, where ~r is the position vector of the Earth in the
Solar system (as a function of time) and ~I0, ~J0 and ~K0 are the set of basis vectors
used to describe the pulsar binary system. The conventions used to describe a three-
dimensional basis for the orientation of an orbit differ between Kopeikin (1995) and
Splaver et al. (2005). The latter authors quantify these differences, most notably a
rotation of 90o about the line of sight. We adopt the basis used by Kopeikin (1995)
and van Straten et al. (2001).

Depending on the orientation of the system, the timing signatures of Eq. 8.7 &
8.8 can have very different amplitudes. Because Eq. 8.7 introduces a dependence on
tan(i), its detection breaks the usual degeneracy in the inclination angle, allowing
us to tell whether the orbital angular momentum vector is pointing towards or away
from the observer.
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Figure 8.8: χ2 map over i and Ω for 5min observations of PSR J0437–4715 in two
bands centred on 1341 and 1405MHz. The contours represent 1, 2 and 3σ confidence
levels.

PSR J0437–4715

Because the signature of Shapiro delay is very weak, including r and s in the timing
model does not provide a good constraint. However, fitting for i and Ω allows the
inclination angle and orbital orientation to be measured. We obtain the values Ω =
237 ± 4o and i = 42.5 ± 0.2o. The χ2 map is shown in Fig. 8.8. van Straten
et al. (2001) obtain a very similar value for Ω and a value of 42.75 ± 0.09o for i,
which is consistent with our measurement, even though the data sets are completely
independent.

It is interesting to note that the uncertainties in proper motion and ẋ decrease
as t3/2. With more timing history, it would be possible to use Eq. 8.6 to obtain a
very precise relationship between i and Ω. This would add a new constraint to Fig.
8.8. At the moment, our lack of precision in ẋ means that we can only constrain the
inclination angle to be less than 44.5o using this method. The limit obtained from
Fig. 8.8 is better. Presently we rely on trigonometric parallax to define the distance
to the pulsar, which appears in the two equations (Eq. 8.7 and Eq. 8.8) that define
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annual orbital parallax. In future, the Bell & Bailes (1996) distance estimate may
prove to be even more precise than parallax and we will then be able to determine
the orientation and inclination of the system to very high precision. This reduces
the search for Shapiro delay to a one-dimensional problem and may offer a better
constraint on the companion mass.

PSR J1713+0747

In contrast to PSR J0437–4715, Shapiro delay has a very significant effect on the
timing residuals of PSR J1713+0747. Because Shapiro delay is highly covariant
with the length of the projected semi-major axis, it is necessary to fit for the three
parameters i, Ω and mc simultaneously to properly constrain the system. We also
use Eq. 8.3 to compensate for secular evolution of the projected semi-major axis
instead of fitting for an arbitrary ẋ. We map out a complete three-dimensional
χ2 volume for a uniform grid of points in i, Ω and mc to determine the favoured
combination. In order to determine uncertainties, we compute a two-dimensional
map over i and Ω, leaving mc free (Fig. 8.9).

Although we identify several local minima in the i–Ω plane, there is a clear global
minimum more than 3σ below the others. We measure Ω = 81+8

−9 degrees and i =
76.6+1.5

−2.0 degrees. We note with interest that given the 90o basis rotation with respect
to Splaver et al. (2005), our value for Ω does not agree with previous measurements.
The discrepancy may be due to our shorter timing history, which makes it more
difficult to constrain the secular evolution of the binary parameters. If we compute
ẋ using Eq. 8.6 we obtain a value of –6.2 ± 1.5×10−15. Fitting for ẋ without sin(i)
or mc yields a value of –3.5 ± 0.4×10−14, but including the Shapiro delay parameters
and our best estimate of Ω in the fit changes the value to –5 ± 4×10−15, as shown
in Table 8.3. This compares well with the expected value, though the uncertainty is
large. The sign of the value is consistently negative, in contrast to the measurement
of Splaver et al. (2005). Our measurements also allow an estimate of the pulsar
mass, which we find to be 1.1 ± 0.2M⊙. This is smaller than previous estimates,
but still consistent with the typical value of ∼1.3M⊙.

8.8 Pulsar Stability

The timing presented in this chapter is some of the most precise ever published. 1 hr
integrations of PSR J1909–3744 produce an RMS residual of 150 ns, which is only
0.4% of the pulse width. The effective sampling time (the reciprocal bandwidth
of a single spectral channel) is 2µs, an order of magnitude larger than the RMS
residual. Traditionally, such precise timing has been plagued by large reduced χ2

values, indicative of systematic or underestimated errors. Observers were forced to
ignore the problem or apply an arbitrary, uniform scaling to the TOA error estimates
in order to compensate. We see in this chapter that CPSR2 data requires little or
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Figure 8.9: χ2 map over i and Ω for 5 min observations of PSR J1713+0747 in two
bands centred on 1341 and 1405MHz. The contours represent 1, 2 and 3σ confidence
levels. The colour map fades to white at a level of 6σ.
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Figure 8.10: Logarithmic plot of RMS timing residual against the number of residuals
averaged. The dashed line represents the predicted trend for white-noise residuals.
Clearly, observations of PSR J0437–4715 suffer from some unidentified systematic
problem that reduces the timing stability.

no error scaling as the reduced χ2 of our most precise timing sources is already close
to unity.

8.8.1 Fundamental Timing Stability

One of the simplest ways to determine the presence of low-level systematic errors in
any set of arrival times is to compute the way in which the RMS residual changes
when successively larger numbers of consecutive timing residuals are averaged. For
white-noise residuals, the RMS residual should decrease as the square root of the
number of residuals averaged. Figures 8.10 and 8.11 show the results of this test
when performed on PSR J0437–4715 and PSR J1713+0747.

It is interesting to quantitatively consider the relative timing stability of the
best pulsars in our sample using a figure of merit more descriptive than the RMS
timing residual. To do this, we compute the σz (Matsakis, Taylor & Eubanks 1997)
statistic as a function of timescale (Fig. 8.12).
We must use 5min average TOAs to maintain a large number of points, which
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Figure 8.11: As for Fig. 8.10. In contrast to PSR J0437–4715, PSR J1713+0747 is a
very stable pulsar that can be timed very precisely given sufficient observing time.
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Figure 8.12: σz as a function of timescale for 5 min integrations of PSR J1909–3744,
PSR J1713+0747 and PSR B1855+09. The diagonal dashed lines in the lower right
of the plot represent limits associated with (from top) Ωgh

2 = 10−7, 10−8 and 10−9.
Although our total time span is small, we see that PSR J1909–3744 is significantly
more stable than B1855+09.
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has the effect of increasing all σz values relative to those computed with longer
integrations (Kaspi, Taylor & Ryba 1994). PSR J1909–3744 and PSR J1713+0747
are the best pulsar clocks, far exceeding the stability of PSR B1855+09. With a
few more years of observations we may be able to place more stringent limits on Ωg

than those already obtained (Kaspi, Taylor & Ryba 1994). We note that Splaver
et al. (2005) require terms up to and including the eighth frequency derivative to
“whiten” their timing residuals for PSR J1713+0747, over a time span of 12 years.
We can obtain 125 ns RMS residuals over a time span of ∼3 years by fitting only
for the first frequency derivative.

In general, it is difficult to obtain an RMS residual below 100 ns with current
instruments and procedures. At this level of accuracy a large number of problems
start to arise. These include imperfect calibration, instrumental distortions of the
pulse profile, non-uniform bandpasses and uncertainties in the relationships between
various timescales.

8.8.2 Dispersion Measure Variability

For 8 of our 15 pulsars, the measured DM is significantly different to other values
that appear in the literature. In the case of PSR B1937+21, variations in DM
measurements have already been studied and attributed to genuine changes in the
observed DM (Kaspi, Taylor & Ryba 1994). Fitting for the first derivative of DM in
the timing model we have constructed gives a value of –0.0012 ± 0.0004 cm−3pc yr−1,
which matches very well with the slope seen in Fig. 3 of Kaspi, Taylor & Ryba
(1994).

In general, measurements of DM are subject to a number of systematic errors.
Any misalignment of the standard template profiles used to produce TOAs at dif-
ferent observing frequencies will appear as a constant offset in the measured DM.
Because pulse profiles can evolve with frequency, it is sometimes difficult to deter-
mine the best alignment and even more difficult to ensure that the offset does not
change when new template profiles are constructed. A systematic offset could also
be introduced by the observing system, which may have different signal path lengths
at different frequencies. This means that the uncertainty in a DM measurement is
often underestimated, which makes it difficult to compare measurements of DM
taken with different telescopes and at different epochs.

In order to investigate the magnitude of any intrinsic and systematic DM vari-
ations in our data, we compare our measurements with a selection of previously
published values and estimate the rate of change per year, assuming linear evolu-
tion. We also compute the time delay this would introduce if the incorrect DM were
assumed in the timing model (Table 8.6).

The discrepancies between measured DM values correspond to systematic time
delays of up to 5 µs per year, which would be catastrophic to any precision timing
project. Monitoring the DM of a pulsar precisely requires regular observations at
multiple frequencies over a long time span using the same hardware configuration.
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Pulsar ∆DM ∆T ∆DM Delay Reference
(cm−3pc) (yrs) (cm−3pc yr−1) µs

J0711–6830 –0.0031 7.0 –0.0004 0.8 Toscano et al. (1999b)
J1024–0719 –0.0027 5.4 –0.0005 1.1 Hobbs et al. (2004b)
J1045–4509 0.0138 7.6 0.0018 3.8 Toscano et al. (1999b)
J1603–7202 –0.0029 7.1 –0.0004 0.8 Toscano et al. (1999b)
J1713+0747 0.0009 6.0 0.0002 0.4 Hobbs et al. (2004b)
B1855+09 –0.0082 15.5 –0.0005 1.1 Kaspi, Taylor & Ryba (1994)
J2124–3358 –0.0192 7.9 –0.0024 5.1 Toscano et al. (1999b)
J2145–0750 –0.0012 6.2 –0.0002 0.4 Loehmer et al. (2004)

Table 8.6: Dispersion measure values and comparison with previous results. The
second column shows the minimum difference between the DM value we measure and
a previously published value for 8 pulsars where the change is outside the 1σ error
margin. The third column shows the elapsed time between the two measurements and
the fourth column shows the corresponding rate of change per year. The fifth column
shows the offset that an uncorrected DM drift of this magnitude would introduce into
the pulse arrival times each year. The final column lists the references from which
the earlier DM values were obtained.

In future, this will be necessary to avoid systematic errors and determine the true
nature of the observed DM variations.

8.8.3 Pulsar-Based Time Standards

Long-term precision timing of millisecond pulsars has demonstrated stability compa-
rable to the best terrestrial atomic clocks. It is therefore reasonable to test whether
or not terrestrial time standards can be made redundant by using one pulsar to time
another. The best reference source is the pulsar that has the smallest RMS residual,
provided it does not exhibit any timing noise. We use PSR J1909–3744.

In practice, observatories require a stable local frequency standard implemented
in hardware. At Parkes, the observatory time standard is a H-maser whose offset
from UTC is monitored daily by comparison with time signals from GPS satellites.
Observations of the pulsar we choose to use as a new time standard must be made
using the local frequency reference. However, assuming our mathematical timing
model is perfect, any systematic trend in the timing residuals (where all parameters
are kept fixed and no clock corrections are applied) must correspond to errors in
arrival time assignment, either due to profile corruption or a drifting local clock.
These residuals can be used to correct the arrival times obtained from any other
source. This mutual “referencing” of arrival times is fundamental to methods for
detecting long-period gravitational waves.

We obtained our best timing model for PSR J1909–3744 using the clock correc-
tions published by the observatory and then removed the GPS-PKS correction from
TEMPO and performed a new fit, keeping all model parameters constant. The un-
corrected residuals were then averaged within successive days, inverted in sign and
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Figure 8.13: The solid line represents measured Parkes clock offsets, obtained by com-
paring the maser-driven Parkes clock with GPS timing signals. The stars represent
daily average clock corrections derived from the timing residuals of PSR J1909–3744
and the dashed line represents a best linear fit to the daily averages within the four
regions bounded by adjustments to the maser. The linearised model is a very good
approximation to the true Parkes clock drift.

printed out in a format consistent with the TEMPO ‘time.dat’ clock correction file.
These new corrections were used to time PSR J1713+0747 and PSR J1744–1134.
Comparing the RMS timing residual obtained using the “official” clock corrections
to that obtained with the corrections derived from PSR J1909–3744 indicates the
effectiveness of the pulsar clock.

Daily average residuals from PSR J1909–3744 contain significant scatter at the
level of ∼100 ns, which we smooth by using a process of linear interpolation. The
new clock corrections are broken into 4 segments, bounded by points where the
first derivative is undefined due to hardware adjustment of the maser rate. We
fit a straight line to each segment, and obtain smoothed clock corrections from the
linearised model. This is a reasonable approximation; to first order, most clock errors
consist of a steady drift at some small rate. Fig. 8.13 summarises our approach.

Using the linearised PSR J1909–3744 clock corrections, we obtain an RMS resid-
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ual of 133 ns for 1 hr integrations of PSR J1713+0747 and 882 ns for 5min in-
tegrations of PSR J1744–1134. This corresponds to an increase of 8 ns for PSR
J1713+0747 and a decrease of 8 ns for PSR J1744–1134. The figure of 133 ns repre-
sents one of the smallest RMS residuals ever obtained.

Unfortunately, pulsar time standards suffer from a number of limitations at the
present time. Fig. 8.13 illustrates that a very high density of observations is required
to accurately monitor clock drifts; the gap in observations around MJD 53000 leaves
a significant discrepancy between the linearised model and the official corrections.
For this reason, the RMS timing residual of PSR J0437–4715 increases by 100 ns
when timed against PSR J1909–3744. Observations of PSR J1713+0747 and PSR
J1744–1134 were always made within days of observing PSR J1909–3744, making
them ideal test cases. Our method also involves an element of “bootstrapping”, in
that the official clock corrections were used to obtain the best timing model for PSR
J1909–3744. A truly independent timescale would rely on a free-floating reference,
which amounts to accepting that the timing model we use for the reference pulsar is
perfect at this epoch and will remain so in the future. Such faith in current models
is not warranted.

8.9 Conclusions

We have systematically studied pulse arrival times from 15 millisecond pulsars and
demonstrated the remarkable stability of the CPSR2 baseband recording and coher-
ent dedispersion system. We obtained some of the smallest RMS timing residuals
ever seen. This allowed several new parallax distance estimates, two of which were
at odds with the predictions of the NE2001 electron density model. Shapiro de-
lay or its non-detection were used to constrain all but two of the binary pulsars in
our source list. We measured annual orbital parallax in PSR J0437–4715 and PSR
J1713+0747. Future observations of these systems will be necessary to confirm the
orbital alignments and obtain more precise measurements of secular evolution of
the projected semi-major axes. In addition, we have highlighted that the DE405
Solar system ephemeris is superior to the earlier DE200 version and found that PSR
J1909–3744 can be used as an independent time standard with stability similar to
the best atomic clocks.

Decadal timing programs with sub-100 ns RMS precision will probe cosmologi-
cally interesting limits on the gravitational wave background (Jenet et al. 2005). At
this level of precision, sources of systematic error abound. Future improvements in
accuracy will be limited by scintillation, dispersion measure variations, digitisation
artifacts, polarisation purity, ionospheric variations, Solar system ephemerides and
the long-term stability of telescope and instrumental hardware. It will be necessary
to eradicate or compensate for all these if we are to improve below 100 ns RMS.



Chapter 9

Conclusion

“If you want to make an apple pie from scratch, you must first create the universe.”

Carl Sagan

Here, we review the findings described in previous chapters and discuss their
implications for precision pulsar timing. We also outline ways in which this research
could be extended to yield new results in the future. Finally, we discuss the evolution
of radio astronomical instrumentation in light of the rapid pace of technological
advance in the modern era.

9.1 Summary of Results

• We have shown in Chapter 5 that the integrated profile of PSR J1022+1001 is
stable. CPSR2 observations of this pulsar were timed to a level of precision an
order of magnitude better than any previously obtained. We note that given
its 16.5ms period, our level of timing precision for PSR J1022+1001 is typical
of the millisecond pulsars.

• In Chapter 6, we showed that the mean profile of PSR J1141–6545 has grown
dramatically over time, most likely as a consequence of geodetic precession.
This phenomenon will one day allow us to map the overall shape and polari-
metric structure of a pulsar emission cone, providing additional insight into
the nature of the emission mechanism.

• CPSR2 observations of the 22.7ms pulsar in the double pulsar binary system
(PSR J0737–3039A) yielded high S/N profiles at two previously unpublished
radio frequencies. We calibrated the data to an absolute flux scale and cor-
rected for instrumental polarisation in order to produce two mean profiles that

177
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were presented in Chapter 7. We also timed this pulsar over a period of 15
days and used the detection of Shapiro delay to constrain the inclination an-
gle of the orbit to 88.5+0.8

−1.1 degrees, in good agreement with other timing and
scintillation studies.

• Chapter 8 described high precision timing observations of 15 millisecond pul-
sars over a period of 3 years. CPSR2 was shown to produce high quality data,
from which we detected parallax in 8 systems, constrained the masses and in-
clination angles of several binary pulsars and detected annual orbital parallax
in two nearby sources. We measured several RMS timing residuals of order
200 ns, amongst the smallest ever obtained. We used the timing residuals of
PSR J1909–3744 as a reference clock against which we obtained an RMS resid-
ual of 133 ns for PSR J1713+0747. Linking the timing of two pulsars in this
way is central to the concept of a pulsar timing array.

9.1.1 Limiting Factors

The motivation for this thesis was the need to push pulsar timing precision to new
levels. Although we can obtain ∼200 ns RMS residuals with stable instrumentation,
it is not clear that we are capable of pushing RMS residuals below 100 ns with
current technology. At the levels of precision we are beginning to reach, there are
a number of potential sources of systematic error above and beyond those that are
routinely compensated for:

• Digitisation artifacts (including scattered power) may corrupt the folded pro-
file, especially if the signal is strong.

• Polarisation impurities in the observing system (and improper calibration)
may corrupt the folded profile.

• Dispersion measure variations due to relative motion between the pulsar and
the ISM and fluctuations in the Solar wind and the ionosphere may introduce
unmodelled time delays. These DM variations are very difficult to disentangle
from time delays introduced by systematic errors in the method used to align
standard template profiles from different frequency bands, or even changes in
the relative signal path length when different observing systems are used.

• Narrow-band scintillation may randomly alter the effective observing frequency.

• Timing noise may begin to dominate the residuals.

• Solar system ephemerides may not allow sufficiently precise (or consistent)
barycentric corrections.

• The use of different receivers and instruments causes discontinuities in the
timing history.
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These effects, and undoubtedly others that we are currently unaware of, make it
difficult to achieve sub-100 ns RMS timing residuals. In future, practitioners of
pulsar timing will have to employ wide-band detectors with multi-bit digitisers and
real-time monitoring capabilities to ensure the level of data quality required to fully
investigate these and other sources of uncertainty.

Telescopes are continuously upgraded to maximise their scientific output, but
this makes it difficult to obtain an unbroken timing series spanning more than a few
years. Although it is possible to combine the data from distinct instruments, phase
jumps are always necessary to cross the boundaries, reducing the power of a long
timing baseline.

9.2 Future Work

We must diligently monitor PSR J1141–6545, PSR B1534+12 and PSR B1913+16,
which already exhibit signs of geodetic precession, and PSR J0737–3039A, in case
its mean profile also begins to change. The geodetic precession timescale for this
pulsar is only ∼70 years; provided the geometry of the system is favourable, we
should expect to see rapid profile evolution. The lack of any detectable change in
the first 12 months of data (Manchester et al. 2005b) is mysterious. In addition, we
must assess the timing of PSR J0437–4715 at 10 cm, to see whether higher precision
can be obtained at this relatively short wavelength.

If General relativity is the correct theory of gravity, we expect there to be a back-
ground of cosmological gravitational radiation associated with super-massive binary
black holes at the centres of galaxies. To detect this radiation with a significance
greater than 4σ would require residual-whitening methods and 20 pulsars timed to
100 ns RMS over the course of 5 years (Jenet et al. 2005). The significance scales
with the number of pulsars in the ensemble and the detectable background ampli-
tude scales with the RMS timing residual. At the moment, we have sufficient timing
precision to detect the expected background level, but far too few sources to make
the detection significant. The best way forward is to increase the number of MSPs
that can be timed with the precision we achieve in this thesis. Unfortunately, this is
not only a matter of increasing the S/N of the observed profile. Although we study
15 MSPs in Chapter 8, only 3 are likely to achieve 100 ns RMS over 5 years. Only
the fastest MSPs have the intrinsic timing precision required. There are currently
84 pulsars with periods less than 5 ms, but many of these reside in globular clusters
and are therefore difficult to detect. Their timing is also often detrimentally affected
by acceleration in the gravitational field of the cluster.

While pulsars like J0711–6830 may benefit from more sensitive observing sys-
tems, PSR J1045–4509 has a mean S/N of 55 and appears to time poorly for fun-
damental reasons. Of the 84 short-period MSPs, we might expect roughly 1/4 to
be suitable for timing at the 100 ns level, provided a sufficiently sensitive instru-
ment exists. Solving the problem with integration time would tax the resources of a
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single telescope (an ensemble of 20 pulsars observed for 8 hours each would take a
week of telescope time). The sensitivity and multibeam capabilities of the proposed
Square Kilometre Array1 (SKA) should make the task trivial, but with new wide-
band timing instruments it may be possible to detect the cosmological gravitational
wave background with existing telescopes some 10 years before the SKA could be
completed.

Jenet, Creighton & Lommen (2005) derive an expression for the expected timing
signature caused by the presence of an intermediate-mass binary black hole within
a globular cluster. With amplitudes ranging from 5 to 500 ns (depending on how
close the binary black hole is to the line of sight), the signature of a 10–1000 M⊙

black hole binary pair may be detectable with current timing methods. Instrumental
sensitivity would ideally have to increase by an order of magnitude to make a search
for this type of timing signature in globular cluster pulsars feasible.

While the requirements of the Australian Pulsar Timing Array may seem dif-
ficult to meet at present, I believe we are only one or two instrumental iterations
(perhaps an additional factor of two or three in sensitivity) away from new scientific
capabilities.

9.3 Future Technology Development

New developments in software, algorithms, analytical methods and instrumentation
always have broad-ranging implications. In the case of pulsar timing, higher pre-
cision will lead to better constraints on the parameters of individual systems and
therefore to new and more stringent tests of gravitational theories. Developments
will also lead, via the emerging concept of the pulsar timing array, to new insight
on cosmological models and the gravitational wave background.

The scientific instruments of tomorrow will not consist of complex, hard-wired
single-use systems that cost disproportionately large amounts of money and are
quickly made obsolete. The scientific community is no longer an isolated body
operating far in advance of consumer demand. It is certainly true that scientific ap-
plications offer some of the most strenuous tests of general-purpose digital hardware,
but at least in radio astronomy, the gap is closing. During the course of this thesis we
have proven that within the limitations of 2-bit digitisation, CPSR2 is a robust and
versatile system that can perform the arduous task of precision pulsar timing and
polarimetry as well as any other instrument in the world. By using widely-available
general purpose processors as the central engine, it was immediately possible to take
advantage of the wealth of existing software and experience surrounding the Linux
operating system and the higher level programming languages (in particular, C++).
The modular design philosophy of CPSR2 and PSRCHIVE represents an innovation
that was long overdue in the pulsar community and has been used in professional
engineering circles for many years. Modularity is a concept so simple and pow-

1http://www.skatelescope.org
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erful that it can vastly reduce development and testing time and the unnecessary
duplication of effort, if applied with common sense.

As re-programmable devices like FPGAs become cost effective and widely avail-
able, the constraints imposed by desktop computing standards will start to evapo-
rate. Our ultimate goal should include adaptive instruments that can automatically
be configured for a specific experiment by allocating dynamic logic units built up
around core components capable of detection, filtering, spectrum analysis, and so
on. The interface between software and hardware will continue to blur. There will
of course be significant challenges; primarily the need for world-wide standards. It
is likely that some sort of meta-data approach (similar to the International Virtual
Observatory Alliance standard2) may be the ultimate solution, where a block of
information must carry around its own instruction manual. This generality, coupled
with wide-area network bandwidths several orders of magnitude greater than we
have today, will coincide with a new era in global communications. Scientists in
general and radio astronomers in particular will supply the drive and the applica-
tions that will test the first examples of this new technology. An instrument such as
the SKA would require unprecedented self-diagnosis and intelligent re-configuration
capabilities simply to handle the necessary data rates and wide-ranging analytical
tasks. Similarly, a world-wide electronic VLBI network will test intelligent data rout-
ing schemes under high loads, while simultaneously providing unprecedented spatial
resolution. Active cooperation between industry and the academic community will
be essential to achieve the goals of both parties.

2http://www.ivoa.net



182 REFERENCES

References

Anderson S. B., Gorham P. W., Kulkarni S. R., Prince T. A., 1990, Nature, 346, 42

Arzoumanian Z., Nice D. J., Taylor J. H., Thorsett S. E., 1994, ApJ, 422, 671

Baade W., Zwicky F., 1934, Proc. Nat. Acad. Sci., 20, 254

Backer D. C., Sallmen S., 1997, AJ, 114, 1539

Backer D. C., Kulkarni S. R., Heiles C., Davis M. M., Goss W. M., 1982, Nature,
300, 615

Bailes M. et al., 1994, ApJ, 425, L41

Bailes M. et al., 1997, ApJ, 481, 386

Bailes M., Ord S. M., Knight H. S., Hotan A. W., 2003, ApJ, 595, L49

Bailes M., 1988, A&A, 202, 109

Baring M. G., 2004, Adv. Space Res., 33, 552

Barker B. M., O’Connell R. F., 1975a, Phys. Rev. D, 12, 329

Barker B. M., O’Connell R. F., 1975b, ApJ, 199, L25

Bartel N., Ratner M. I., Shapiro I. I., Cappallo R. J., Rogers A. E. E., Whitney A. R.,
1985, AJ, 90, 318
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Appendix A

Computing Arrival Times

Computing the arrival time of a pulse involves determining the relative phase shift
between the observed profile and a standard template profile (the phase of which pro-
vides the fiducial point). Taylor (1992) describes this process in detail and outlines a
method for measuring the relative shift between two pulse profiles in the frequency-
domain. This method takes advantage of the Fourier shift theorem (Bracewell
1965), which states that any time-domain shift τ will manifest itself in the frequency-
domain as the slope of a linear phase gradient. Taylor (1992) presents two equations
(A7 and A8) that can be solved iteratively to determine τ . These equations include
a summation over all frequency components up to the Nyquist limit, which leads
to a number of practical problems (described below). The mathematical expression
derived for τ does not in any way depend on the original sampling time, meaning
that under optimal conditions, the algorithm can be used to determine the relative
phase shift to less than a single bin of precision. Taylor (1992) noted that in practice
it is not possible to measure the relative shift to better than approximately 10% of
a single phase bin. In recent years, RMS timing residuals as small as 3% of a phase
bin have been achieved (van Straten et al. 2001) using baseband recording, however
it remains the case that few pulsars can be timed to this level of precision.

Data used for pulsar timing vary greatly in S/N according to the specifications
of the observing system and the intrinsic flux density of the source. In addition,
each pulsar has a different characteristic profile shape. Timing algorithms must
therefore be able to function within a wide parameter space. To contrast with
the frequency-domain method, we developed a purely time-domain algorithm that
computes the discrete cross-correlation function of two profiles and fits a Gaussian
curve to a phase range (0.0125 units by default) surrounding the peak. The centroid
of the fitted Gaussian is taken to be the relative phase shift, sub-bin precision is
effectively obtained by interpolation. Fitting is performed using generalised code
based on the Levenberg-Marquardt (Levenberg 1944; Marquardt 1963) scheme.
The error associated with the shift measurement is the distance the centroid of the
Gaussian must be displaced to double the χ2 of the fit. Note that the error estimate
obtained using this method is not a conventional 1σ error, the required scale factor
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was determined by experiment.

We note that the idea of time-domain fitting is by no means new to pulsar timing.
Our method differs from the usual approach of fitting a parabola to the peak bin and
its single nearest neighbour on either side. By interpolating over a larger number of
bins (typically of order 25), we decrease the sensitivity of the algorithm to random
amplitude variations, making it more robust and suitable for use even when the S/N
of the profile is low.

PSRCHIVE (Hotan, van Straten & Manchester 2004) contains implementations
of Taylor’s frequency domain algorithm and the Gaussian interpolation scheme de-
scribed above. We find that the frequency-domain method is best used to fine-tune
a shift estimate. If the relative shift is large, the phase gradient in frequency space
may not be monotonic, making determination of its slope more difficult. It is there-
fore necessary to perform a discrete cross correlation of the two profiles and rotate
one by the coarse shift so obtained to ensure that both are approximately aligned
before moving into the frequency-domain. PSRCHIVE implements this algorithm
with an additional loop that successively lowers the cut-off frequency used in the
summation from the Nyquist frequency down to the 32nd spectral component. The
best fit from this set of trials is returned as the final shift estimate.

A.1 Systematic Errors

It is well-known that RMS pulse timing residuals are often inconsistent with the
individual pulse arrival time uncertainties. This is usually attributed to “systematic
errors” of unknown origin that somehow contaminate the mean pulse profile. To
combat this, an arbitrary scaling of errors is often used to bring the reduced χ2 of
any subsequent model fit closer to unity. We bring to light two hitherto unknown
regimes where standard analyses would cause incorrect estimates of both arrival
times and derived parameters. The first is when the S/N of an individual observation
is low or the pulse duty cycle is large, and the second is when a standard profile is
created from the sum of several low S/N observations that are then timed against
this summation.

Although both the time- and frequency-domains contain the same information,
the two methods described above have quite different susceptibility to systematic
errors. Using simulated data, we tested the behaviour of these two shift algorithms
in different S/N regimes. For simplicity, we simulate a Gaussian profile morphology;
a standard template with a centroid of 0.5 phase units was constructed synthetically
and given a small amount of unique, random noise, obtained using the R250 random
number generator (Kirkpatrick & Stoll 1981). We also constructed an ensemble of
test profiles that were given unrelated noise (according to the desired S/N level) and
shifted randomly about phase 0.5 by changing the centroid of the Gaussian function.

Our initial tests were performed using a pulse duty cycle of 0.2, roughly similar
to that of the two components present in the mean profile of PSR J0737–3039A. We
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find that the frequency-domain algorithm under-estimates the reported error in the
shift quite significantly. In all cases, the estimate converges to the true error as the
S/N increases; however even at a S/N of 50, the mean reported error is a factor of 4
smaller than the mean true error. In contrast, the mean error estimate obtained by
fitting in the time-domain is correct to within a factor of 0.5 even when the S/N is
as low as 10. The performance of the frequency-domain algorithm improves as the
duty cycle of the synthetic Gaussian profiles is reduced. If the pulse is less than 0.05
phase units wide, the mean error estimate returned by this method is also within a
factor of 0.5 of the true mean error when the S/N is of order 10.

When the noise level becomes a significant fraction of the total amplitude in any
given pulse phase bin, the frequency-domain algorithm performs poorly. Since the
Fourier transform of a Gaussian profile with width w is a Gaussian with width 1/w, it
is clear that a wide Gaussian profile contains no high-frequency spectral components.
Noise is inherently “white” and contains spectral power at all frequencies, thus the
high-frequency spectral components of a wide Gaussian profile are dominated by
its baseline noise. This is detrimental to the performance of the frequency-domain
algorithm, which uses high-frequency spectral components to extend the lever-arm
that defines the slope of the phase gradient. The time-domain algorithm gives
reliable shift estimates even when there is no narrow structure in the pulse profile
(or the S/N is low) but offers less precision when the S/N is high. If the frequency
spectra of the template and the observed profile are dominated by the structure of the
pulse itself, the frequency-domain algorithm can provide very precise shift estimates.
Any narrow features in the mean profile contribute additional power to the high-
frequency spectral components, increasing the effectiveness of the algorithm.

We also investigated a scenario in which the standard template profile is con-
structed from a summation of the profiles whose arrival times are being measured,
as is often the case in practice. While this is the best way to accurately characterise
the shape of the mean pulse, it has the side effect that noise in an observed profile
may correlate with its own contribution to the noise in the template baseline. We
investigated the problem by constructing a template from half the simulated profiles
in a given ensemble. The simulated profiles were constructed with a S/N of 14 and
the first half of the ensemble was copied and integrated to form a high S/N tem-
plate. To best illustrate the danger of “self-standarding”, we analytically shifted the
centroid of each Gaussian profile in the ensemble (leaving the baseline noise fixed),
using a linear ramp with a slope of 1/256 bins per unit ensemble index. We then
used the frequency-domain algorithm to estimate the shift and its uncertainty for
each profile in the ensemble.

Figure A.1 shows the analytic shift applied to each profile in the 512 member
ensemble and the shift returned by the frequency-domain algorithm, with the cor-
responding error estimate. The shifts reported in the first half of the ensemble
cluster around zero instead of the analytic linear ramp. Profiles in the latter half
of the ensemble return to the linear ramp. It is clear that the “scatter” about the
mean is smaller in the first half of the ensemble, showing that the RMS deviation is
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Figure A.1: Results of a single simulated timing experiment. Each profile in the
ensemble of 512 was constructed with a S/N of 14. The first 256 profiles were summed
to form a standard template. The diagonal dashed line represents the analytic shift
given to each profile and the data points represent the shift reported by the frequency-
domain algorithm. This algorithm does not properly characterise the true analytic
shift when the ensemble profile has made a significant contribution to the template.
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artificially reduced when “self-standarding” occurs. This problem diminishes with
increasing S/N and is insignificant once each of the observed profiles has a S/N of
∼25. The time domain algorithm does not suffer from the same problem, even when
the observed profiles have S/N < 10. The noise present in a given observed profile
imprints itself on the standard template; small amounts of high-frequency informa-
tion are preserved even after the addition of many other observed profiles. The
time-domain algorithm is less sensitive to high-frequency structure. In general, only
the first ∼10% of the spectral components present in a given profile are dominated
by the structure of the pulse. Including higher frequency components when fitting
for the relative shift in the frequency-domain can clearly lead to systematic errors.

In summary, the mean error estimate returned by the frequency-domain shift
algorithm is only physically valid if the spectra of both the standard template and
the observed profiles are dominated by structural information. It is also possible to
measure an artificially low RMS timing residual if the standard template profile was
constructed by summing together all the observed profiles. The correlation between
baseline noise in an observed profile and its own imprint on the standard template
can be strong enough to overwhelm the true shift. Care should be taken to ensure
that reported RMS residuals are not dominated by this effect. “Self-standarding”
can be alleviated by reducing the number of spectral components used when fitting
for the linear phase gradient in the frequency-domain. The same effect can be
achieved by applying a low-pass filter to the spectrum of the standard template.
Using a synthetic, analytically constructed standard template would also prevent
spurious correlations, but may not provide a good match to the morphology of the
mean pulse.



196 APPENDIX A. COMPUTING ARRIVAL TIMES



Appendix B

CPSR2 Software Architecture

The CPSR2 data acquisition and communications code was written by Willem van
Straten and Steve Ord in the months before August 2002. It resides in the Swinburne
pulsar software repository, in the directory soft swin/online/cpsr2/das. Software for
monitoring the cluster, reporting its status back to the observer and controlling the
operation of the recorder resides in soft swin/online/cpsr2/GUI.

B.1 Control System Components

Many of the essential control system tasks run as “daemons”; jobs that have no con-
trolling terminal and perform their tasks in the background. Often, these daemons
can only be accessed via network sockets. Figure B.1 shows the software hierarchy
in more detail.

CPSR2 was designed to be highly modular; each hardware device had one or
more associated control daemons which could be queried or issued commands via a
network socket. This reduced the complexity of any individual component, but also
demanded a complex network of interprocess communication. The central control
daemon, cpsr2d, ran on the gateway machine in the Parkes control room, with
network access to the cluster and the outside world. It accepted user input from a
number of sources and propagated the correct sequence of commands throughout
the rest of the system in order to start or stop an observation, reset the system,
alter a header parameter and so on. The EDT–60 DMA cards were controlled by
the cpsr2 dmad daemon that ran on both primary nodes. In addition, the second
primary node ran a daemon called cpsr2 ffdd that communicated via a serial interface
to the FFD. The secondary nodes each ran two data-recording processes, cpsr2 recv
and cpsr2 dbdisk, either in the foreground or the background. Their purpose was
to accept data over Gb Ethernet, buffer it in RAM and then write it to disk. All
machines ran the ekg daemon, which gathered system information and reported it
to any other program via a network connection across the 100Mb Ethernet layer.
The secondary nodes also ran the dm daemon, which controlled data reduction and
catalogued the files for quick reference. All daemons ran in the background, the user
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GUIMonitor display

CPSR Mk II Gateway

Primary Node 1 FFD Crate

Secondary Node (x28)

Primary Node 2

Dell 1 Gb Switch 2

CISCO 100 Mb Switch

Dell 1 Gb Switch 1

1 Gb Ethernet

100 Mb Ethernet

Ribbon Cable

Serial Line

To Telescope IFs

Coaxial Cable

cpsr2_vmon (Level setting)
mongoose (DAQ and comms)

ekg_daemon (Monitoring)
cpsr2_dmad (DMA control)
cpsr2_ffdd (FFD control)

cpsr2d (Main control)

ekg_daemon (Monitoring)
cpsr2_dmad (DMA control)

mongoose (DAQ and comms)
cpsr2_vmon (Level setting)

FPGA

ekg_daemon (Monitoring)

GUIManager display

cpsr2_dbdisk (Disk writer)

cpsr2_recv (Data receiver)

dm_daemon (Processing)

TEXTMonitor

Figure B.1: This diagram shows the primary hardware components of the CPSR2
instrument and lists the software programs that were run on each machine. Programs
listed above the dotted line ran in daemon mode, hidden from the user. Programs
below this line required terminal I/O and generally provided some sort of feedback
to the observer. The gateway ran a daemon called cpsr2d that was responsible for
interpreting high-level user input, either directly via a specially designed graphical
user interface or through TCS. Commands sent to cpsr2d were propagated to the
appropriate network sockets on the primary nodes, which initiated data recording
and network communications. Each machine ran the ekg daemon monitoring process,
which could be queried over the 100Mb Ethernet layer.
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did not normally need to interact with them in any way. However, each daemon also
had an ASCII command line interface that could be accessed via a telnet session,
for low-level debugging and control.

The primary data acquisition system was named mongoose, and ran within a
terminal on each of the primary nodes, so that status and debugging information
were visible to the observer. The data path made extensive use of shared memory
buffers. These buffers could be a significant fraction of the total extended memory on
an individual machine and had to be allocated within the the operating system before
the control programs were started. The sequence of commands used to allocate
shared memory buffers and run the programs that attach to them was stored in a
script that the ekg daemons could access. Because a mongoose crash would leave
the shared memory status flags (semaphores) in an inconsistent state, it was often
necessary to rebuild these memory buffers as part of the crash recovery process.

To begin an observation, it was first necessary to ensure that each machine
in the cluster (excluding the gateway) was running an ekg daemon. The control
process cpsr2d was run on the gateway machine. Once started, these daemons helped
automate the remaining setup tasks. The manual control interface, GUIMonitor, was
run on one of the secondary nodes, from a terminal opened on the gateway. While
running the monitor on the gateway itself would simplify the process, this was
impossible because it directly tests the health and latency of the Gb Ethernet layer,
which was not physically connected to the gateway machine. Once started, the
GUIMonitor would spend about 10 seconds polling the cluster nodes and then report
back their status. To ensure a clean start, it was usually necessary to perform a
“master reset”, using the supplied button on the GUI. This ran through a scripted
sequence of commands, shutting down any lingering jobs on the secondary nodes,
removing the shared memory blocks, re-allocating them and finally re-launching all
of the communications software. The monitor was not able to start up any program
requiring terminal access, so the user had to start a terminal session on both of the
primary nodes and run the mongoose. This checked the availability of secondary
nodes on the network, the consistency of the internal clock and the status of the
primary shared memory buffers and EDT buffers. If all was ready, the mongoose
waited on a condition variable that was set when the FFD started recording. The
mongoose had a “target list” that the user could edit via the GUIMonitor. The
target list specified which machines each primary node would attempt to send data
to. This was useful when observing in two widely separated frequency bands, as
the processing load associated with coherent dedispersion was a strong function of
wavelength (due to the fact that longer wavelengths were dispersed to a greater
degree and required longer FFTs). This meant that more cluster nodes had to be
allocated to the primary node whose wavelength was longest. When an observation
was started, the mongoose terminal displayed an updating time since start and any
error messages that were generated. It also briefly displayed the current file header,
which could be visually scanned to verify the configuration of the system. The
mongoose was also responsible for launching cpsr2 vmon, which extracted a small
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number of samples from the data stream to monitor the digitiser statistics. This
program opened a graphical display window that plotted the digitiser statistics in
real-time.

B.2 Real-Time Monitoring

Each ekg daemon maintained an internal database of useful information, including
the 5-minute load average of the host machine, the amount of free space on the
scratch disk, the number of free buffers in the main shared memory block and the
current network activity status. These parameters were made available as simple
ASCII strings on request, via a telnet session connected to port 10123 of the host
machine. This communications socket was 2-way, the ekg daemon could parse certain
commands and perform tasks on the host machine. These tasks included rebuilding
the shared memory space and launching the cpsr2 recv and cpsr2 dbdisk programs.
The ekg daemon also used a set of logical conditions to determine the overall status
of the host machine, which could be one of several pre-defined states, including
OFFLINE, ONLINE, RECEIVING and so on. This status variable was queried by
the mongoose before initiating a data connection, to ensure that the machine was
capable of receiving data.

The GUIMonitor was built using the Trolltech Qt1 widget set. It had a number of
tabbed screens that reported the essential parameters of the cluster (obtained from
the ekg daemons) and could also be used to start and stop observations or manually
enter the header parameters that cpsr2d inserted into each file. Alternatively, TCS
could be used to control CPSR2 in schedule mode, reducing the amount of use
intervention required. However, the communications link between TCS and cpsr2d
was not bi-directional. If CPSR2 crashed, TCS had to be interrupted manually or
it would continue sending commands.

Most serious errors in the recording process resulted in immediate termination
of the mongeese. The code was written in this way to ensure the integrity of any
data ending up on disk, by stopping the recorder at the first sign of trouble. The
GUIMonitor was compatible with the University of Edinburgh’s Festival2 Speech
Synthesis System. The gateway hosted a Festival server which spoke any text string
sent to it by the GUIMonitor. Numerous tests on the status of the recording system
were performed at regular intervals and if a problem was detected, the user was
warned with an informative spoken message.

Data processing was managed via a graphical user interface called GUIManager.
This was analogous to (and based on the same code as) the GUIMonitor. The
dm daemon process was run on each of the secondary nodes, to construct a record
of the files that had been written to disk. The information could be accessed di-
rectly via a telnet session to port 10125 on the host machine, but in most cases all

1http://www.trolltech.com/products/qt
2http://www.cstr.ed.ac.uk/projects/festival/
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communication was handled by the GUIManager. The dm daemons were capable of
launching PSRDISP inside a thread that was monitored until completion, at which
point a set of scripted commands were run to place the resulting folded archive in
the correct location in a central storage area. The data partition on each secondary
node was exported via a network file system (NFS) link, as was the central archive
storage partition (which physically resided in the first primary node). All the other
machines could then automount whatever disks they required on demand.

The number of PSRDISP processing threads allowed to co-exist simultaneously
was user-configurable, though running any more than two simultaneously would
overload the secondary nodes. By selecting the observation of interest from the list
presented within GUIManager, it was possible to obtain a list of individual data files
still on the cluster, their distribution across the nodes and a measure of the disk
space they occupied. PSRDISP could then be run on the selected observation. The
user could directly specify the desired spectral resolution and number of phase bins
produced. They could also customise the length of the first FFT in order to optimise
processing speed. An ASCII database containing the best processing parameters for
each regularly observed pulsar was kept on the first primary node and parsed by
the GUIManager. This information was used to present a set of default parameters
whenever a new job was initiated. If the current source was not in the database, a
conservative fall-back strategy was suggested.

B.3 Current Status

The tools described above were in use until the end of 2004. Subsequent devel-
opments intended to simplify the system for new observers made some of these
programs redundant. The CPSR2 control system continues to evolve and observers
searching for up-to-date instructions should refer to the Swinburne on-line manual
which can be found at the URL: http://astronomy.swin.edu.au/pulsar/observing/cpsr2.
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