KG Welcome

CIT-SUT Keck renewal

- Agreement in place since 2008
- Now renewed 2018B 2023A
- 10 nights p.a.

\$16K (AUD 20K) p.a. reserved for collaborative activities

Workshops, Exchanges, internships

- CIT researchers get priority access to SUT g3 supercomputer (new in Oct, 4000 cores)
- I-2 nights reserved p.a. for pilot studies for CIT-SUT collaborative projects (SUT, COO Directors)
- Annual workshop: 2018 Data Science in Hawaii?

The population of quiescent (or not?) galaxies at z~4.

and the population of red nuggets at z~4

CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING

Massive galaxies as probes of ΛCDM: a short history

Back to 2001 COLORS OF HIGH-REDSHIFT GALAXIES

Massive Galaxies as a probe of ΛCDM

Massive red (and blue) galaxies at z~2

- Franx+2003, Labbé+2003, Glazebrook+2004, Cimatti+2004, McCarthy+2004, van Dokkum+2004, Förster Schreiber+2004, and many others...
- K20, GDDS, MUSYC,
 ...
- DROs, EROs, pBZKs, DRGs

Age of Universe: 4 billion years Stellar mass: ~10¹¹ M_{sun}

MgII MgI

GDDS Paper IV

0.8

0.6

0.4

 F_λ

size< 1 kpc 'Red nugget'

Abraham et al. (2004): 30 ksec Gemini observations

DISCOVERY OF MASSIVE EVOLVEI

HSIAO-

z > 3 IN THE HUBBLE ULTRA DEEP FIELD

2 Ē

15

2.5

15

ABSTRACT

We have identified six early-type galaxies at z > 2.8 in the central 5.76 arcmin² Hubble Ultra Deep Field

 $Z_{\rm phot}$

Received 2004 May 20; accepted 2004 July 26

NALD O. MARZKE⁴

New ideas: 'cold flows'

Dekel et al. (2009) (see also Keres et al., van der Voorte et al.)

ZFOURGE Survey

A deep mass complete survey at 0.5<z<4

Ivo Labbé, Karl Glazebrook, Kim-Vy Tran, Casey Papovich, Caroline Straatman, Adam Tomczak, Ryan Quadri, Vithal Tilvi, Nancy Kawinwanichakij, Ben Forrest, Rebecca Allen,

Lee Spitler, Glenn Kacprzak, Themiya Nanayakkara, Glen Rees, Michael Cowley, Eric Persson, Pat McCarthy, Andy Monson, Pieter van Dokkum

How do galaxies assemble in the past

11 Gyr ?

Stellar Mass Functions Star Formation Histories Scaling Relations (e.g. size evolution) Role of Galactic Environment Active Galactic Nuclei

Lee Spitler (Macquarie Univ.)

Casey Papovich (TAMU)

Vy Tran (TAMU/UNSW)

zfourge.tamu.edu

ZFOURGE Survey

Medium Band Near-IR filters⇒ accurate photo-z's

including high-z quiescent galaxies

Builds on ideas pioneered by NEWFIRM Medium Band Survey (PI van Dokkum)

ZFOURGE Survey

CANDELS/GOODS-S

CANDELS/UDS

CANDELS/COSMOS

Excellent ~1% photo-z's!

Stellar mass - redshift

Stellar Mass Function (UVJ class) ZFOURGE+NMBS

Tomczak+2014

<u>Illustris comparison</u>

(Genel+2014)

Massive quiescent galaxies & their halos at z~4

'rest-frame UVJ classification' z>3.5 massive galaxies

Straatman et al. (2014)

R_e<1 kpc

Colour Filters 1.5 1.7 2.1 µm 腕

'K-band peaks' = Quiescent SEDs. Dust free.

SWIN BUR * NE *

Karl Glazebrook, SUT

Declining quiescent galaxy abundance

Straatman+2014 (see also Davidzon+2017)

What about DM halos?

Karl Glazebrook, SUT

Number of z>4 UV galaxies stays high

Karl Glazebrook, SUT

z~4 QGs: A challenge to models?

Wellons+15 (Illustris simulation)

Are they <u>really</u> at z~4?

MOSFIRE as a null detector...

4–8 hrs NIR spectra on sample of massive z~4 quiescent galaxies in EGS, UDS & COSMOS.

Deepest COSMOS Mask: 8 hrs Plan: rule out huge emission lines in K band

Nine z~4 Quiescent Galaxies

z_{photo}=3.55 K=22.4 M=1.45x10¹¹M⊙

Optimum binning & extraction...

Karl Glazebrook, SUT

<u>Strength of Balmer lines:</u> <u>quiescent & 200–1000 Myr old</u>

Full SED+spectrum SFH

dust free SED

Empirically: enough QG ancestors?

Observed ancestors?

ALMA detection (Reichers et al. 2016), z=6.3 SFR = 2900 $M_{\odot}yr^{-1}$ Stellar mass $3.7 \times 10^{10} M_{\odot}$ Dynamical mass $2.7 \times 10^{11} M_{\odot}$

Nearby ALMA source

⁶Hyde' ALMA: wavelength 870μm 3.5 kpc

QG: 'Jekyll'

One galaxy or two? (Simpson+2017) Single dusty starburst? SFR~100.

Minor effect on SFH

Glazebrook+2017

Karl Glazebrook, SUT

O/IR Deblending!

Cross=Jeckyll

SED modeling + L(FIR) + spectrum

Two galaxies at z~4 with very similar mass

BEFORE:

Hyde Dusty Starburst Rotating disk

AFTER:

(400 Myr later) Jekyll Dust free quiescent galaxy Fast rotation?

- Can now probe massive galaxies to z~4 in complete samples, and low mass to z~2.5
- quiescent 'red nuggets' at z~4:

too abundant for comfort. NOT emission-line contaminants

one definitive spectroscopic confirmation

not enough massive halos: require very high baryon conversion efficiencies. Are there enough ancestors? Obscured?

what is going on in SF at z>5? Or halo growth?

