The Geometry of Sagittarius Stream from PS1 3π RR Lyrae

Nina Hernitschek, Caltech

collaborators: Hans-Walter Rix, Branimir Sesar, Judith Cohen

Swinburne-Caltech Workshop: Galaxies and their Halos, Sept. 11 - 12 2017

PS1 3π Survey

Pan-STARRS 1 as a Time Domain Survey

most ambitious panoptic multi-epoch multi-band survey to date:

- solar system objects
- transients
- proper motions (& parallaxes)
- variable sources

(PS1 3 π Survey)

Summary

Pan-STARRS 1 as a Time Domain Survey

most ambitious panoptic multi-epoch multi-band survey to date:

- solar system objects
- transients
- proper motions (& parallaxes)
- variable sources

RR Lyrae:

- periodically varying on 1/4 day timescales
- high-precision 3D mapping of the (old) Milky Way [Hernitschek+2016], [Sesar+2017b]

Pan-STARRS 1 as a Time Domain Survey

PS1 3 π in one sentence:

An optical/near-IR survey of 3/4 the sky in non-simultaneous grizy to $r \sim 21.8$ based on ~ 70 visits over a 5.5-year period.

Pan-STARRS 1 as a Time Domain Survey

PS1 3π in one sentence:

An optical/near-IR survey of 3/4 the sky in non-simultaneous grizy to $r \sim 21.8$ based on ~ 70 visits over a 5.5-year period.

map galactic halo to ~ 120 kpc DEC $> -30^{\circ}$ 5σ single-visit depth of 22.0, 21.8, 21.5, 20.9, 19.7 mag coadded depth of $r \sim 23.2$ mag sky coverage of $\sim 31,000 \text{ deg}^2$ (3/4 sky)

image based on NASA/Adler/U. Chicago/Wesleyan/JPL-Caltech

40

${\sim}120~{\rm kpc}~{\rm PS1}~3\pi$

Outer halo

Inner halo

for kinematics & [Fe/H]

image based on NASA, ESA, and A. Feild (STScI)

RR Lyrae from PS1 3π

RR Lyrae variables are

- $\bullet~$ old: ${\sim}10^9~{\rm years}$
- periodical pulsators
- \Rightarrow easy to find and important tracers for old halo substructure

RR Lyrae from PS1 3π

RR Lyrae variables are

- $\bullet~{\rm old:}~{\sim}10^9~{\rm years}$
- periodical pulsators
- \Rightarrow easy to find and important tracers for old halo substructure

select RRab stars

RR Lyrae from PS1 3π

RR Lyrae variables are

- $\bullet~$ old: ${\sim}10^9~{\rm years}$
- periodical pulsators
- \Rightarrow easy to find and important tracers for old halo substructure

select RRab stars

using variability characterization & machine-learning source classification [Hernitschek+2016, Sesar+2017b]

 \Rightarrow pure (90 %) and complete (80% at 80 kpc) sample of 44,403 RRab stars, distance estimates up to ${\sim}130$ kpc, precise to 3%

PS1 3π Survey

(RR Lyrae)

Stellar Streams Modeling

g Modeling

Modeling

g Summary

Summary

Map of PS1 3π RRab stars

Summary

Stellar Streams

sets of stars on similar orbits \rightarrow constraining the dynamical mass within their orbit \rightarrow probe of the Galactic mass profile and shape including DM halo & accretion history

Stellar Streams

sets of stars on similar orbits \rightarrow constraining the dynamical mass within their orbit \rightarrow probe of the Galactic mass profile and shape including DM halo & accretion history

There are many streams, why the Sagittarius stream?

Stellar Streams

sets of stars on similar orbits \rightarrow constraining the dynamical mass within their orbit \rightarrow probe of the Galactic mass profile and shape including DM halo & accretion history

There are many streams, why the Sagittarius stream?

 \Rightarrow has a larger distance compared to others like GD-1 [Koposov+2010, Bovy+2016] and Ophiuchus [Sesar+2016]

dominant tidal stellar stream of the Galactic stellar halo, discovered by [lbata+1994]

dominant tidal stellar stream of the Galactic stellar halo, discovered by [lbata+1994]

shows **two pronounced tidal tails** extending each $\sim 180^{\circ}$ and reaching Galactocentric distances from 20 to more than 100 kpc: referred to as **leading and trailing arm** [Majewski+2003]

PS1 3π RRab sample: enables us to **trace the complete** angular extent of the Sgr stream as well as to look even to its **outskirts**

clearly distinct leading and trailing arms

- clearly distinct leading and trailing arms
- leading arm's apocenter at $ilde{\Lambda}_{\odot}{\sim}60^{\circ}$ with $D_{
 m sgr}{\sim}49$ kpc

Sagittarius Stream

- clearly distinct leading and trailing arms
- leading arm's apocenter at $ilde{\Lambda}_{\odot}{\sim}60^\circ$ with $D_{
 m sgr}{\sim}49$ kpc
- ullet trailing arm's apocenter at $ilde{\Lambda}_{\odot}{\sim}170^{\circ}$, $D_{
 m sgr}{\sim}92$ kpc

- clearly distinct leading and trailing arms
- leading arm's apocenter at $ilde{\Lambda}_{\odot}{\sim}60^{\circ}$ with $D_{
 m sgr}{\sim}49$ kpc
- ullet trailing arm's apocenter at $ilde{\Lambda}_{\odot}{\sim}170^{\circ}$, $D_{
 m sgr}{\sim}92$ kpc
- substructure at the apocenters of both the leading and trailing arm: two "clumps" (at $D \sim 60$ and 80 kpc) beyond the leading arm's apocenter, and a "spur" of the trailing arm reaching up to 130 kpc, predicted by dynamical models e.g. [Gibbons2014], [Diericks2017]

A Model for the Sagittarius Stream

quantitative description of the Sgr stream: mean distance and (line-of-sight and true) depth vs. $\tilde{\Lambda}_{\odot}$

A Model for the Sagittarius Stream

quantitative description of the Sgr stream: mean distance and (line-of-sight and true) depth vs. $\tilde{\Lambda}_{\odot}$

consider stars within $| ilde{B}_{\odot}| < 9^{\circ}$

model distribution in $\tilde{\Lambda}_{\odot}$ slices

(Modeling)

A Model for the Sagittarius Stream

quantitative description of the Sgr stream: mean distance and (line-of-sight and true) depth vs. $\tilde{\Lambda}_{\odot}$

consider stars within $| ilde{B}_{\odot}| < 9^{\circ}$

model distribution in $\tilde{\Lambda}_{\odot}$ slices

A Model for the Sagittarius Stream

quantitative description of the Sgr stream: mean distance and (line-of-sight and true) depth vs. $\tilde{\Lambda}_\odot$

consider stars within $| ilde{B}_{\odot}| < 9^{\circ}$

model distribution in $\tilde{\Lambda}_{\odot}$ slices

distance distribution $p_{\rm RRL}(D)$ towards any $\tilde{\Lambda}_{\odot}$ is modeled as the superposition of a **stream** and a **halo** component

Gaussian, characterized by power-law D_{sgr} and the l.o.s. depth, $\sigma_{\text{sgr}} = \rho_{\text{o}\text{RRL}} \left(\frac{R_{\odot}}{r}\right)^n$

g Modeling

(Modeling)

A Model for the Sagittarius Stream

distance distribution $p_{\rm RRL}(D)$ towards any $\tilde{\Lambda}_{\odot}$ is modeled as the superposition of a **stream** and a **halo** component

Gaussian, characterized by $D_{
m sgr}$ and the l.o.s. depth, $\sigma_{
m sgr}$

power-law $ho_{ ext{halo}}(X,Y,Z) =
ho_{\odot ext{RRL}} \left(rac{R_{\odot}}{r}
ight)^n$

fit likelihood approach for each $10^\circ\;\tilde{\Lambda}_\odot$ slice, maximize with MCMC

(Modeling)

A Model for the Sagittarius Stream

(Modeling)

The Depth of the Sagittarius Stream

actual depth of the stream: we know the angle between the normal on the stream, and the line of sight \Rightarrow deproject

Modeling

Summary S

Summary

The Depth of the Sagittarius Stream

 \Rightarrow larger depth at the apocenters is a **combination of projection** & true broadening due to velocity decrease near the apocenters

(Modeling)

Summary Summary

The Orbital Precession of the Sgr Stream

Sources orbiting in a potential show a **precession**: do not follow an identical orbit each time, but actually trace out a shape made up of rotated orbits

(Modeling)

The Orbital Precession of the Sgr Stream

Sources orbiting in a potential show a **precession**: do not follow an identical orbit each time, but actually trace out a shape made up of rotated orbits

the precession depends primarily on the shape of the potential \Rightarrow radial mass distribution including Dark Matter

The Orbital Precession of the Sgr Stream

angular mean distance estimates $D_{
m sgr}$ of the Sgr stream \Rightarrow make statements about the precession of the orbit

measure angle between the leading and the trailing apocenters

(Modeling)

The Orbital Precession of the Sgr Stream

angular mean distance estimates $D_{
m sgr}$ of the Sgr stream \Rightarrow make statements about the precession of the orbit

measure angle between the leading and the trailing apocenters

The Orbital Precession of the Sgr Stream

angular mean distance estimates $D_{\rm sgr}$ of the Sgr stream \Rightarrow make statements about the precession of the orbit

measure angle between the leading and the trailing apocenters

heliocentric orbit precession: $\omega_{\odot} = \tilde{\Lambda}_{\odot}^{T} - \tilde{\Lambda}_{\odot}^{L} = 104^{\circ}.4 \pm 1^{\circ}.3$ actual Galactocentric orbital precession: $\omega_{\rm GC} = 96^{\circ}.8 \pm 1^{\circ}.3$ \Rightarrow comparable to [Belokurov+2014]: smaller value than for logarithmic haloes (120°)

 \Rightarrow strong indicator for a steeper profile of the MW's DM halo

The Orbital Plane Precession of the Sgr Stream

aside from the orbital (apocenter) precession: the orbital plane itself might show a precession

The Orbital Plane Precession of the Sgr Stream

aside from the orbital (apocenter) precession: the orbital plane itself might show a precession

to test this: weighted latitude of the stream RRab, $\langle \tilde{B}_{\odot} \rangle$, as a function of $\tilde{\Lambda}_{\odot}$

The **weight** of each star is the probability that the star is associated with the Sgr stream.

The Orbital Plane Precession of the Sgr Stream

aside from the orbital (apocenter) precession: the orbital plane itself might show a precession

to test this: weighted latitude of the stream RRab, $\langle \tilde{B}_{\odot} \rangle$, as a function of $\tilde{\Lambda}_{\odot}$

The **weight** of each star is the probability that the star is associated with the Sgr stream.

 \Rightarrow evidence for the leading arm staying in or close to the plane defined by $\tilde{B}_{\odot}=0^{\circ}$, whereas the trailing arm is found within within -5° to 5° around the plane

 \Rightarrow we find a separation of ${\sim}10^{\circ}$, as derived by [Johnston+2005]

Summary

We quantified the geometry of the Sagittarius stream: extent & depth as given by RRab stars out to $>120~\rm kpc$

best model before: [Belokurov+2014] using BHB, SGB & RGB stars

Summary

We quantified the geometry of the Sagittarius stream: extent & depth as given by RRab stars out to $>120~\rm kpc$

best model before: [Belokurov+2014] using BHB, SGB & RGB stars

new: complete 360°, single type of tracer, precise distances, mapping and deprojecting depth

find striking features from [Dierickx+2017] simulation

- B. Sesar et al., The > 100 kpc Distant Spur of the Sagittarius Stream and the Outer Virgo Overdensity, as seen in PS1 RR Lyrae stars, 2017, ApJL, 844, 1, L4
- N. Hernitschek et al., The Geometry of Sagittarius Stream from Pan-STARRS1 3π RR Lyrae, 2017, ApJ submitted

