interstellar matter (ISM) drives Galaxy Evolution

SFR driven by gas supply ??

starburst vs main sequence ??

ISM gas is dissipative > very different dynamics

new approach to measuring ISM

need to measure the mass of SF ISM :

<u>CO</u> vs <u>long λ dust em.</u>

w/ ALMA → high J CO ??

physical understanding of RJ

dust cloud spectrum -- w/ increasing M_{dust}

- peak shifts to longer λ for increased τ (or dust mass)
- flux on long λ tail scales linearly with M_{dust}

RJ dust continuum optically thin,

w/ low z normal galaxies and ULIRGs + high z SMGs

ISM evolution z = 0.3 to 3

RJ dust continuum → ISM masses

ALMA w/ ~2 min integrations (CO 100x longer)

 1011 pointings w/i COSMOS field
 → 687 detections of Herschel far infrared sources !! (every one detected)

w/ Vanden Bout, Lee, Sheth, <u>Ausse</u>l, <u>Capa</u>k, Sanders, Bongiorno, Diaz-Santos, Casey, <u>Murchikova</u>, Koda, Laigle, <u>Darvish</u>, Vlahakis, <u>McCracken</u>, <u>Ilbert</u>, Pope, Chu, Toft, Ivison, Morokuma-Matsui, <u>Armus</u>, Masters

Scoville etal 2017, ApJ, 837, 150

all Herschel sources have $M_{ISM} = 10^{10} - 5 \times 10^{11} M_{\odot} !!$

 $MW \sim 5 \times 10^9 M_{\odot}$

logic of our analysis :

all ALMA 1.3 mm & 850 µm obs. in COSMOS field (~0.2 mJy rms) search for sources at positions of Herschel FIR sources (14000) all Herschel sources w/i FOVs detected !! → 687 detections

functional dependence of :

- 1. ISM $(z, M_*, sSFR rel. to MS)$
- 2. SFR / ISM (z, sSFR rel. to MS, M_*)
- **3.** Accretion rates needed to maintain SF

687 detections (z = 0.3 - 3) !!

M_{stellar}

gas contents correlated w/ ??

time in cosmic history (z)

mass of galaxy (M_{stellar})

starburst vs main sequence (sSFR / sSFR_{MS})

gas contents correlated with :

time in cosmic history (z)

mass of galaxy (M_{stellar})

starburst vs main sequence (sSFR / sSFR_{MS})

$$M_{ISM} = 7.07 \times 10^{9} M_{sun} (1+z)^{1.84} \left(\frac{sSFR}{sSFR_{MS}}\right)^{0.32} \left(\frac{M_{stellar}}{10^{10} M_{sun}}\right)^{0.30}$$

M**.**(M⊙)

M₊(M₀)

M.(M⊙)

SF law :

covariances from Monte Carlo Markov Chain fitting

well-behaved w/ single values uncertainties ~0.1 in exponents

$$M_{ISM} = 7.07 \times 10^{9} M_{\Theta} (1+z)^{1.84} \left(\frac{\text{sSFR}}{\text{sSFR}_{MS}}\right)^{0.32} \left(\frac{M_{\text{stellar}}}{10^{10} M_{\text{sun}}}\right)^{0.30}$$

$$SFR(M_{\text{sun}} \text{yr}^{-1}) / \left(\frac{M_{ISM}}{10^{9} M_{\text{sun}}}\right) = 0.31 (1+z)^{1.05} \left(\frac{\text{sSFR}}{\text{sSFR}_{MS}}\right)^{0.70} \left(\frac{M_{\text{stellar}}}{10^{10} M_{\text{sun}}}\right)^{0.01}$$
efficiencies

- evolution w/ z : due to both increase in ISM and SF eff.
- increase above MS for SBs : higher ISM and SF eff.
- ISM varies as $M_{stellar}^{0.3}$ and SF eff. indep. of $M_{stellar}$
- not a simple low-z KS law -- higher efficiency $H_2 \rightarrow *$'s

gas depletion times

ISM mass fractions

MS vs redshift (age of univ.)

evolutionary continuity of MS

 $M_{ISM}/10^{9}M_{\odot} = 7.02 (z_{evol}(MS))^{0.63} (sSFR/sSFR_{MS})^{0.52} (M_{\star}/10^{10}M_{\odot})^{0.50}$

Ζ

 $M_{rSM}/10^{9}M_{\odot} = 8.91 (z_{evol}(MS))^{0.51} (sSFR/sSFR_{MS})^{0.38} (M_{\bullet}/10^{10}M_{\odot})^{0.29}$

accretion rates are huge : 100 $M_{sum}yr^{-1}$ at z > 2

Ζ

overall cosmic evolution

cosmic evolution SF

cosmic evol. of ISM and stellar mass

summary :

- 1. RJ dust continuum is fast (2min) and reliable
- 2. ISM content and SFE evolve each less rapidly w/ z than SFR
- **3. ISM mass varies as** $M_{stellar}^{0.3}$
- 4. above MS, SB due to both increased ISM and higher eff.
- 5. accretion rate are huge ~ $100 M_{sun} yr^{-1}$

specific accretion rate $(\dot{M}_{acc} / M_{stellar})$:

==> lower at high M_{stellar}