The Fate of the Neutral Gas in Group Environments

Tobias Westmeier (ICRAR / UWA)
Collaborators

HIPASS 2
- M. Calabretta
- R. Jurek
- B. S. Koribalski
- M. Meyer
- A. Popping
- L. Staveley-Smith
- I. Wong

Parkes survey
- B. S. Koribalski
- M. Meyer
- A. Musaeva
- D. Obreschkow
- A. Popping
- A. Wright
- T. Young

SoFiA
- H. Courtois
- L. Flöer
- N. Giese
- J. M. van der Hulst
- R. Jurek
- B. S. Koribalski
- M. Meyer
- A. Popping
- P. Serra
- L. Staveley-Smith
- B. Winkel

Busy Function
- R. Jurek
- B. S. Koribalski
- D. Obreschkow
- L. Staveley-Smith

Ram pressure
- S. Haan

NGC 55 / 300
- R. Braun
- B. S. Koribalski
Motivation
Motivation

- H I deficiency in groups and clusters
 - Increases towards group centre
 - Increases with group size

Solanes et al. (2001)

Hess & Wilcots (2013)
Motivation

★ Gas stripping in high-density environments
 ▶ Removal of neutral gas through
 ● Tidal interaction
 ● Ram-pressure stripping
 ▶ Effect on HIMF and star formation

Kenney et al. (2004)

Kilborn et al. (2006)
Observations and Data
Observations and Data

★ HIPASS 2

- $\sigma_{\text{rms}} \approx 4.8 \text{ mJy}$ (at 26.4 km/s)
 - $M_{\text{H}1} \approx 5 \times 10^6 \, M_\odot \left[d / 5 \text{ Mpc} \right]^2$ (10σ at 26.4 km/s)
 - $N_{\text{H}1} \approx 9 \times 10^{17} \text{ cm}^{-2}$ (5σ at 26.4 km/s)

★ Deep Parkes H I survey

- $\sigma_{\text{rms}} \approx 11 \text{ mJy}$ (at 1.6 km/s)
 - $M_{\text{H}1} \approx 4 \times 10^6 \, M_\odot \left[d / 5 \text{ Mpc} \right]^2$ (10σ at 20 km/s)
 - $N_{\text{H}1} \approx 5 \times 10^{17} \text{ cm}^{-2}$ (5σ at 20 km/s)
Source Finding Application (SoFiA)

- New 3D source finding pipeline
- Graphical user interface
- Novel algorithms created for HI surveys
 - Smooth + clip finder (Serra et al. 2012, PASA, 29, 296)
 - Reliability calculation (Serra et al. 2012, PASA, 29, 296)
 - 2D–1D wavelet finder (Flöer et al. 2012, PASA, 29, 244)
 - CNHI finder (Jurek 2012, PASA, 29, 251)
- Download SoFiA
 - GitHub: https://github.com/SoFiA-Admin/SoFiA
 - Wiki, documentation, bug reports, feature requests
- Paper
 - Serra, Westmeier, et al., submitted to MNRAS
The Busy Function

\[B(x) = \frac{a}{4} \times \left[\text{erf}(b_1 (w + x - x_e)) + 1 \right] \times \left[\text{erf}(b_2 (w - x + x_e)) + 1 \right] \times \left[c (x - x_p)^n + 1 \right] \]

- **Purpose**
 - Fit **double-horn** profiles of galaxies
 - Measure galaxy parameters: line width, peak flux, integrated flux, radial velocity, etc.

- **More accurate than direct measurements, in particular for peak flux and line width**

- **Paper**
 - Westmeier et al., 2014, *MNRAS*, 438, 1176

- **Fitting software**
 - **BF_dist** (https://code.google.com/p/busy-function-fitting/, written by Russell Jurek)
Observations and Data

★ Galaxies detected

► 31 H I detections
 ● $v = 220 \ldots 1200$ km/s
 ● $d = 2 \ldots 15$ Mpc
 ● $\log(M_{\text{H I}}/M_\odot) = 6.6 \ldots 9.4$

► 14 detections not in HIPASS
 ● 5 due to velocity limit
 ● 8 new H I detections of dwarf galaxies
 ● NGC 59 (Beaulieu et al. 2006)

► All H I detections have (tentative) optical counterpart in DSS / GALEX

► No intergalactic gas / “dark galaxies”
Observations and Data

★ New HI detections

- $M_{\text{HI}} \lesssim 10^8 \, M_\odot$
- compact
- irregular
- not much data available (photometric, spectroscopic)

Images: DSS
Results
Results

★ HI mass vs. distance

► $M_{\text{HI}} \gtrsim 10^7 \, M_\odot$

► Fairly even spread of galaxies across mass range
Comparison with HI mass function

- Schechter function
 \[\Theta(m) \, dm = \Theta^* \, m^\alpha \exp(-m) \, dm \]
 where \(m \equiv M_{\text{HI}} / M_{\text{HI}}^* \)

- Global HIPASS HI mass function
 \[\alpha = -1.37 \]
 \[\log(M_{\text{HI}}^* / M_\odot) = 9.80 \]
 \[\Theta^* = 0.0060 \]
★ Comparison of simulation and observation

► Too many high-mass galaxies
 • $M_{\text{HI}} \gtrsim 10^9 \, M_\odot$

► Too few intermediate-mass galaxies
 • $M_{\text{HI}} \approx 10^7\ldots8 \, M_\odot$

► Similar result for ALFALFA HIMF (Martin et al. 2010)

► Is this result significant?
Comparison of simulation and observation

- Kolmogorov–Smirnov test
 - Cumulative H I mass distribution

- Results
 - $D \approx 0.17$
 - $p \approx 31\%$

- The chance of a statistical fluctuation creating a discrepancy greater than the one observed is 31% if model and observation were drawn from the same H I mass function.

- Discrepancy not statistically significant due to small sample size.
Discussion
Reason for lack of low-mass galaxies?

- Environmental effects
 - Tidal interaction and accretion
 - Ram-pressure stripping
- Internal effects (SF & AGN)
 - Ionisation of neutral gas
 - Ejection of gas
- Local Group
 - HI deficiency in dwarf galaxies (Grcevich & Putman 2009)
 - Quenching of star formation
- Ram-pressure stripping?

Based on data from Grcevich & Putman (2009)
Reason for lack of low-mass galaxies?

- Environmental effects
 - Tidal interaction and accretion
 - Ram-pressure stripping
- Internal effects (SF & SNe)
 - Ionisation of neutral gas
 - Ejection of gas
- Local Group
 - HI deficiency in dwarf galaxies (Grcevich & Putman 2009)
 - Quenching of star formation
- Ram-pressure stripping?
Ram pressure: NGC 55

- Studies hampered by disc inclination ($\approx 80^\circ$)
- Asymmetric HI disc

Westmeier et al. (2013)
Ram pressure: NGC 300

- Again asymmetric H I disc

Westmeier et al. (2011)
Ram pressure: NGC 300
- Again asymmetric H I disc
- Ram pressure significant at $R \gtrsim 15$ kpc

Westmeier et al. (2011)
Ram pressure: NGC 300

- Again asymmetric H I disc
- Ram pressure significant at $R \gtrsim 15$ kpc
- Kinematic signature

Discussion

Ram pressure: NGC 300

- Again asymmetric H I disc
- Ram pressure significant at $R \gtrsim 15$ kpc
- Kinematic signature
★ Outlook: systematic study of ram pressure in Sculptor galaxies

- Use galaxies as probes to
 - determine density of IGM
 - measure 3D motions of galaxies

- Determine role of ram pressure in
 - removal of neutral gas
 - impact on star formation history
Summary
Summary

★ Deep H I survey of Sculptor group region
 ▶ 31 H I detections, 8 entirely new, no “dark galaxies”
 ▶ Comparison with H I mass function
 ● Too many galaxies with $M_{\text{HI}} \gtrsim 10^9 M_\odot$, too few with $M_{\text{HI}} \approx 10^{7-8} M_\odot$
 ● Discrepancies not statistically significant due to small sample size
 ▶ ASKAP / Apertif and SKA 1 Survey needed

★ Ram-pressure effects in groups
 ▶ Evidence for ram pressure in Sculptor group
 ● morphological + model of Haan & Braun (2014)
 ● $n_{\text{IGM}} \approx 10^{-5} \ldots 10^{-4} \text{ cm}^{-3}$
 ▶ Ram pressure important for galaxy evolution in groups

★ “Missing satellites” problem might be an illusion
Motivation

Impact on H I mass function

- Steeper in…
 - …high-density environments (Zwaan et al. 2005)
 - …low-density environments (Springob et al. 2005)
★ Deep HI survey of Sculptor group

- Nearby
- HI mass sensitivity < $10^7 M_\odot$
- High spatial resolution
- But: large area on the sky
Results

★ Simulation of HIPASS H I mass function

- Assumptions
 - Homogeneous distribution of galaxies
 - Random mass of $6 < \log(M_{\text{HI}}/M_\odot) < 10$ following HIPASS Schechter function
 - Random orientation (→ inclination)
 - H I line width from global HIPASS Δv–M_{HI} relation
 - Random distance of $2 < d < 15$ Mpc (taking survey geometry into account)

- Calculate SNR and keep detectable galaxies
 - SNR > 10

Duffy et al. (2012)
Comparison with Springob et al. (2005)

- Environmental effect on HIMF
 - Low-density HIMF ($n < 1.5$)
 - $\alpha = -1.38$
 - $\log(M_{H\text{I}}^*/M_\odot) = 10.07$
 - High-density HIMF ($n > 3.0$)
 - $\alpha = -1.24$
 - $\log(M_{H\text{I}}^*/M_\odot) = 9.95$

- Results
 - Low density: $p = 43\%$
 - Med. density: $p = 8.5\%$
 - High density: $p = 21\%$

Springob et al. (2005)
★ Peak flux density maps

Observations and Data
Discussion

★ Ram pressure

- Ram pressure: \(P_{\text{ram}} = \varrho v^2 \)
- Gravitational pressure: \(P_{\text{grav}} = \Sigma_{\text{gas}}(r) \left| \frac{\partial \Phi(r)}{\partial z} \right|_{\text{max}} \)
- Face-on situation, but accurate for inclination angles of up to 60° (Rödiger et al. 2005)