Top Ten Reasons I had to go Last

10) that joke about the Minotaur, the Kiwi, and the Aussie
9) Fell asleep during Duncan’s talk
8) Skipped to front of coffee line every morning
7) “England: World Rugby Champions” t-shirt I sent Glen
6) Thought Swinburne was pronounced Swinebum
5) LOC assumed everyone would be at the Olympics by now
4) I’m from California: ‘nuff said
3) Got caught writing “CDM sucks!” on the theory posters
2) Ιτσ αλλ Γρεεκ το με!
1) The LOC didn’t like my idea for the Conference poster
Outline

• IRAC Observations of High-z Clusters

• Weighing Galaxy Clusters

• Unofficial Conference Summary, featuring prizes/refreshments
An IRAC Survey of High Redshift Galaxy Clusters

w/ Peter Eisenhardt (JPL), Piero Rosati (ESO), Brad Holden (UCSC), and Mark Dickinson (NOAO)

• GTO program, ~40 clusters at $0.6 < z < 4.1$
• $5 \times \sim 12$ arcmin field at 3.6, 4.5, 5.8, and 8.0 µm
• Depth of ~ 3 mag below L^*
RXJ1252-2927, $z=1.24$

IRAC 3.6 μm

$B + z + 3.6 \mu$m
A New Look at an Old Way to Estimate the Mass of Galaxy Clusters

Lin, Mohr, & Stanford (2004)
The IRAC Shallow Survey
4.5 μm image
8.5 sq degrees
in NDWFS Boötes
3 x 30 sec/position

NGC 5646

UGC 9315

Extreme 8 μm/l flux object

z > 1 cluster candidate
How to Estimate the Mass of a Galaxy Cluster

• Velocity dispersion
• X-ray temperature
• Weak lensing
Revisit the M/L Approach

• Measure total light, estimate mass from assumed M/L
Previous work in the optical

Girardi et al. (2002)
Revisit the M/L Approach

- Measure total cluster light, estimate mass from assumed M/L
- Realize/believe better to estimate masses from IR than the optical
Bell et al. (2003)

\[\log \frac{M}{L} \]

\[M(K) \]

\[\log_{10}(M/L) \]

\[\mu_K \text{ (mag arcsec}^{-2}\text{)} \]

\[
\begin{array}{c}
\log_{10}(M/L) \\
M_K \text{ (mag)} \\
\log_{10}(M/L) \\
f_g \\
\end{array}
\]

\[
\begin{array}{c}
\log_{10}(M/L) \\
\mu_K \text{ (mag arcsec}^{-2}\text{)} \\
\log_{10}(M/L) \\
B - R \text{ (mag)} \\
\end{array}
\]
Revisit the M/L Approach

• Measure total optical light, estimate mass from assumed M/L

• Realize/believe better to estimate galaxy masses from IR than the optical

• So how well can we estimate total cluster mass using NIR light measurements?
Total Cluster Mass

• Sample is 93 clusters at $0.01 < z < 0.09$

• Measured X-ray temperatures taken from David et al. (1993), Mohr et al. (1999), Finoguenov et al. (2001), Reiprich & Bohringer (2002), Sanderson et al. (2003)

• $M_{500} = 2.55 \times 10^{13} M_{\text{sun}} T_x^{1.58}$

Finoguenov et al. (2001)
Total Cluster Light

- From 2MASS extract K photometry within r_{200} down to $K_s = 13.2$ for each cluster

- Background correct using 2MASS log N - log S relation (Jarrett 2003)

- Determine faint end slope α
Composite K-band LF
Dependence of M/L on System Mass

• Yes: Girardi et al. (2002), Rines et al. (2004), Ramella et al. (2004)

• No: Balogh et al. (2001), Kochanek et al. (2003)

• sort of: Bahcall & Comerford (2002)
Explanations of a variable M/L

• low mass clusters/groups are more efficient at producing stars

• high mass clusters destroy more galaxies than low mass clusters

• galaxies have merged more often in high mass clusters
BCG+ICL Luminosity Fraction within 300 kpc

BCG+ICL light fraction

Poster by Anthony Gonzalez
Halo occupation number

\[
N(M_{500} \leq M_{-21})
\]

\[
\alpha_p
\]

\[
M_{500} \ (h_{70}^{-1} \ M_\odot)
\]
Future Work

• New study of ~40 clusters at $0.2 < z < 1.3$, using rest H-band (ground-based and Spitzer/IRAC) photometry and Chandra/XMM temperatures

• A separate project underway to better constrain the faint end slope of the LF in the rest frame K-band in a low-z cluster sample